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An elementary method of calculating that part of the tensor dielectric coefficient which determines the 
propagation of transverse electromagnetic radiation through a free-electron gas in a uniform external 
magnetic field is presented. The method presented here is based on a particle-orbit analysis and is some­
what analogous to a generalized version of the Kramers-Heisenberg quantum theory of gaseous dis­
persion. It is shown that the elements of the transverse dielectric tensor can be obtained from a knowledge 
of the quantum-mechanical transition probabilities for emission and absorption of photons (that is, from 
a knowledge of the Einstein A and B coefficients). The formal expression for the dielectric tensor thus 
obtained is shown to be valid for both the degenerate and the nondegenerate system of electrons. The 
dielectric tensor thus obtained is shown to reduce in the classical limit to the familiar results of the 
c?nven~ional c1a~sical ~~t pla.sma kine.ti~ theory. The first qua~tum correc~i?n to t~e classical hot plasma 
dielectric tensor IS explIcitly given and It IS shown that, under SUitable conditions, thiS quantum correction 
will playa significant role in the analysis of the experimental studies of the electrodynamic behavior of 
"classical electron-hole plasmas" in a uniform external magnetic field. 

T. INTRODUCTION 

In this paper we are interested in discussing the 
electrodynamic properties of a free-electron gas in a 
uniform external magnetic field. In particular, it is our 
aim to investigate the response of the system to 
transverse electromagnetic radiations. We shall use 
the solutions for the particle orbits as the basis for 
our discussion. In the literaturel - 4 there exists an 
alternative method of handling this problem. There 
one seeks a kinetic description of the system on' the 
basis of the Vlasov or collisionless Boltzmann equa­
tion. The equivalence of the particle-orbit theory and 
the kinetic description on the basis of the Vlasov 
equation was first demonstrated by Jeans and is 
usually referred to as the Jeans theorem. In general, 
the particle-orbit theory is much more of a physical 
approach and provides a better insight into the physi­
cal processes involved in a particular problem. How­
ever, the kinetic description on the basis of the Vlasov 
equation provides a much more rigorous treatment of 
complex problems which may not be easily accessible 
to the analysis of the particle-orbit theory. 

In electrodynamics the basic quantity for the 
description of the collective response of a system is 
the retarded frequency and wave-vector-dependent 

1 J. E. Drummond, Plasma Physics (McGraw-Hill Book Company, 
Inc., New York, 1961), Chap. 2; D. C. Kelly, Phys. Rev. 134A, 641 
(1964); J. J. Quinn and S. Rodriguez, ibid. 128,2487 (1962)' L B 
Bernstein, ibid. 109, 10 (1958); E. N. Adams and T. D. HOlst~in, J: 
Phys. Chern. Solids 10, 254 (1959); N. J. Horing. Ann. Phys. (N.Y.) 
31, 1 (1965); W. R. Chappel, JILA Report No. 35 (University of 
ColoradO, Ph.D. Thesis, 1965). 

2 G. Bekefi, Radiation Processes In Plasmas (John Wiley & Sons 
Inc., New York, 1966). ' 

3 T. H. Stix, The Theory of Plasma Waves (McGraw-Hill Book 
Company, Inc., New York, 1962). 

4 D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory 
(McGraw-Hili Book Company, Inc., New York, 1964). 

dielectric tensor 0(£0, k). Here £0 is the frequency of 
the electromagnetic wave of wave vector k. In prin­
ciple, both methods-the kinetic description based on 
the Vlasov equation and the particle-orbit theory­
enable one to calculate the response tensor 0(£0, k). 
In this paper we ~hall be interested in that part of the 
dielectric tensor which determines the propagation of 
transverse electromagnetic radiations through the 
free-electron gas in a uniform external magnetic field. 

In the kinetic theory approach one starts from the 
Vlasov equation which describes the time evolution 
of the particle velocity distribution function (or one 
starts from the Liouville theorem, which describes the 
time evolution of the single-particle density matrix). 
As a nrst step one seeks a linearized perturbation 
solution of the Vlasov equation (or of the equation of 
motion for the density matrix) in the presence of both 
the external uniform magnetic field and the radiation 
field. The uniform magnetic field determines the zero­
order trajectory (or the unperturbed Hamiltonian and 
the corresponding zero-order eigenvalues and eigen­
states) of the charged particles. In a coordinate system 
which follows the zero-order trajectory of the particles, 
usually referred to as the Lagrangian system of 
coordinates, one calculates the first-order perturba­
tion to the particle velocity distribution function (or, in 
the representation in which the unperturbed Hamil­
tonian is diagonal, one calculates the first-order 
perturbation to the density matrix). Knowing the 
first-order perturbed-velocity distribution function (or 
the density matrix) in terms of the perturbing radiation 
field, one then calculates the induced macroscopic 
current density by taking the first moment of the 
perturbed-velocity distribution function (or by taking 
the trace of the product of the density matrix and the 
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unperturbed current-density operator). This induced 
macroscopic current density yields directly the con­
ductivity or the mobility tensor, which, in turn, yields 
directly the required dielectric tensor D(w, k). 

The particle-orbit theory to be presented below is 
somewhat analogous to (a generalized version of) the 
Kramers-Heisenberg5,6 quantum theory of gaseous 
dispersion. The underlying physical principle behind 
the Kramers-Heisenberg method is that the dispersive 
properties of a gas of atoms are simply a manifestation 
of a balance between the two competing processes of 
photon emission (spontaneous plus induced or 
stimulated emission) and photon absorption by the 
atoms of the gas. It is our aim in this paper to show 
that the response of a system of "Landau electrons" 
to transverse electromagnetic radiations is indeed a 
consequence of such a balance between photon 
emission and photon absorption. 

We will begin by assuming Landau's quantized 
particle motion of the electrons in a uniform magnetic 
field7; then we calculate the transition probabilities 
for emission (spontaneous plus the induced emission) 
and absorption of a photon of momentum lik, 
energy liw, and polarization vector Eks by a "Landau 
electron." From these we then derive the energy­
balance equation by applying the principle of detailed 
balance for a differential path length along the photon's 
trajectory in the free-electron gas. We then seek the 
solution of this energy-balance equation and thus 
derive equations for the equilibrium photon-number 
density and the absorption coefficient per unit path 
length of a photon of definite momentum lik, energy 
liw, and polarization vector Eks ' We then examine the 
angular dependence of the absorption coefficient 
7(W, k) and thus construct an absorption tensor 
Ti;(W, k). We then show that the Hermitian part of the 
absorption tensor 't'(w, k) is directly proportional to 
the anti-Hermitian part of the transverse dielectric 
tensor D(w, k). We then obtain the transverse di­
electric tensor D(w, k) by making use of the fact that 
the real and imaginary parts of Di;(w, k) must satisfy 
the well-known Kramers-Kronig relations as a con­
sequence of the causality principle.s It will be seen that 

6 H. G. Kuhn, F.R.S., Atomic Spectra (Academic Press Inc., 
New York, 1962), pp. 59-68. 

6 H. A. Kramers, Nature 113, 673 (1924); 114, 310 (1924); 
G. Breit, ibid. 114, 310 (1924). 

7 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Addison­
Wesley Publishing Company, Inc., Reading, Massachusetts, 1958); 
V. Arunasalam, Princeton Plasma Physics Laboratory MATT-439, 
1966 (unpublished). 

8 C. Kittel, Elementary Statistical Physics (John Wiley & Sons, 
Inc., New York, 1958); N. N. Bogoliubov and D. V. Shirkov, 
Introduction to the Theory of Quantized Fields, English trans!. by G. 
M. Volkoff (Interscience Publishers, Inc., New York, 1959), Sec. 
46.2. 

the formal expression for D;;(w, k) thus obtained is 
valid for both the degenerate and the nondegenerate 
system of electrons. That is, the formal expression for 
Di;(w, k) is unaffected, whether or not one takes 
account of the Pauli exclusion principle, as long as one 
uses the appropriate distribution function of the 
electrons (Fermi-Dirac statistics for a degenerate 
system of electrons and Maxwell-Boltzmann statistics 
for a nondegenerate system of electrons). Finally, we 
will show that the classical limit of the dielectric tensor 
Dii(W, k) thus obtained is in complete agreement with 
the familiar results of the conventional classical hot 
plasma kinetic theory (whose starting point is the 
Vlasov equation), and we will give the first quantum 
correction to the classical hot plasma dielectric tensor. 
It will be seen that this quantum correction should 
prove useful (under some conditions) in examining the 
electrodynamic behavior of "classical electron-hole 
plasmas" in a uniform external magnetic field. 

II. REVIEW OF BASIC CONCEPTS 

We consider the motion of a free electron of charge 
q and mass fl in a uniform magnetic field B = Biz, 
where i~ denotes the unit vector along the iJ. axis. (See 
Fig. 1.) Let 

R = xi", + yill + ziz = r + ziz , 

V = v",i", + vlIill + vziz = v + vziz 
(1) 

be the position and velocity vectors of the electron. 
One can show that the energy-level spectrum of the 
electron is given by7 

En,v. = (n + t)liwb + tflv;, (2) 

where n = 0, 1, 2, ... ,wand Wb = (qB/ flc) is the 
electron-cyclotron frequency. The nonzero matrix 
elements of the perpendicular velocity and position 

FIG. 1. Motion of 
an electron in Car­
tesian coordinates. 
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operators are given by 

v =(v )*=-iv =(iv )* :1',..n-1 0011 -1,,. lIn.n-l 'lIn-l,n 

= (IiWb/2/l)inie-i4>n, (3a) 

Xn,n-l = (Xn-l,n)* = -iYn,n-l = (iYn-l,n)* 
= -i(Ii/2/lwb)ini e-i4>n, (3b) 

where cPn is an arbitrary phase factor and the asterisk 
means the complex conjugate. The matrix elements of 
e±ik •• are given by 

(4) 

The photon-electron interaction Hamiltonian that is 
responsible for transitions in which only one light 
quantum is involved is given by 

q [A ( iii 0 .) ( iii 0 .) A] H = - 2c • v - /l OZ I. + V - /l OZ I.' , 

(5) 

where the vector potential A(R) for the radiation field 
in a box of volume V can be written in terms of the 
usual creation and annihilation operators as9,lO 

A(R) '" (27TIiC
2)i '" ( ik·R + * + -ik.R) (6) = £.., -3- £.., Eksakse Eksakse , 

k Lw s~1,2 

where k· Eks = 0 and IEksl2 = 1. According to the 
golden rule of time-dependent perturbation theory, 
the transition probability j(f; i) from an initial state 
Ii) of energy Ei to a final state If> of energy E f is given 
by9 

j(f; i) = (27T/1i) 1</1 H li)1 2 beEf - Ei)' (7) 

We now consider the two fundamental processes of 
absorption jA and emission h illustrated in Fig. 2. 

From Eqs. (1), (2), and (4)-(7) we get 

. (47T2q2) 2 
JA = Nks -- I<n + II Eks ' M In)1 b", v +/ik III L3liw .,. • 

X b[w - lWb - k.(vz + Iik./2/l)], 

jE = (NkS + 1) (47T2q2) I<nl E:s ' Mt In + l)1 2bv ' v +/ik III L3liw • ,. • 

(N kS-1) photons .. 
( N ks + I ) pholons 

4 

X b[w - lWb - kiv. + Iik./2/l)], (8) 

-"T----~--£nt.t,v; 

1 r N ks photons 

~Lj_E ___ ~_~ __ E • 
n,vz 

FIG. 2. Emission and absorption of a photon by a "Landau 
electron." 

9 W. Heitter, The Quantum Theory of Radiation (Clarendon Press, 
Oxford, England, 1954). 

10 L. 1. Schiff, Quantum Mechanics (McGraw-HilI Book Company, 
Inc., New York, 1955). 

where 

M = [t(eik.rv + veik.r) + i.(v. + Iik./2/l)eik.rJ. (9) 

Mt is the Hermitian conjugate of M and is simply 
obtained by replacing i by -i in the above expression 
for M since the perpendicular velocity and position 
operators v and r are Hermitian and Nks represents 
the number of light quanta all having a momentum 
lik, energy liw, and polarization vector Eks ' To evaluate 
the matrix elements of M and Mt we can use the 
simplest form of the multipole expansion 

00 

e±ik-r = L (l/s!){±i(k",x + kyY)}' 
S~O 

00 

= L (l/s!){±i(k+r_ + k_r+)}" , (10) 
S~O 

where k± = (2-i )(k", ± iky) and r± = (2-i )(x ± iy) 
and the nonzero matrix elements of r + and r _ are given 
by 

(11) 

III. THEORY OF THE DIELECTRIC TENSOR 

Our aim now is to derive the energy-balance equa­
tion. Let the box of volume V under consideration 
contain NoF(En,v.) electrons per unit volume in the 
quantum state lEn.,,). We assume that the probability 
function F(En.v) is normalized so that 

f dvz Jt(En,v) = 1. (12) 

The detailed balance relation between the probabilities 
per unit volume of emission and absorption for a 
differential path length dX of a photon of momentum 
lik, energy liw ~ IilWb (where the cyclotron harmonic 
number I may take anyone of the valuesll 0, ± 1, 
±2, ... , ± (0), and polarization vector Eks may be 
written as 

(ONkS) = (IJNo)fdVz 
oX! wJk 

00 

X L [F(En+!,v;)jE - F(En,v.)jAJ. (13) 
n=O 

This equation (13) is usually referred to as the energy­
balance equation or as the equation of energy trans­
fer.12,13 Since jE and jA are proportional to (NkB + 1) 

11 The emission and absorption corresponding to I = 0 are 
essentially the Cerenkov emission and absorption processes. The 
positive values (that is, 1= + 1, +2,' .. , + (0) and the negative 
values (that is, 1= -1, -2, .. " - (0) of I correspond to emission 
and absorption of circularly polarized plane electromagnetic waves 
(or photons) whose sense of rotation is the same as and opposite to 
that of the gyrating electrons, respectively. 

12 S. Chandrasekhar, Stellar Structure (Dover Publications, Inc., 
New York, 1957). 

13 G. Bekefi and S. C. Brown, Am. J. Phys. 29, 404 (1961). 
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and Nk .. respectively, the solution of Eq. (13) for a 
uniform homogeneous system is 

Nks = Nk~)[l - e-T(!)(CO.k)X] (14) 

if we assume that Nks = 0 at X = O. Here, 

T(!)(W, k) = (L3

No)fdv.i [F(En.,,.)(jA/NkS) 
w/k n=O 

- F(En+1." .. )(iE/NkS + 1)] (15) 

is the absorption coefficient per unit path length for a 
photon of momentum lik, energy liw i::::! lliwb, and 
polarization vector £ks' and 

N(O) = [(J!No)fdV 
k. w/k • 

is the number of photons at steady state. Since the 
absorption coefficient T(/)(W, k) is real, by making use 
of Eqs. (8) and (9), Eq. (15) could be written in the 
form 

T(!)(W, k) = I IRe [TWCW, k)C£k~)i£kS)i]' (17) 
i j 

where i,j = x, y, and z; Re stands for the real part, 
and 

T~nCW k) = (N 047r2q2) fdV 
", Iiw(wJk) • 

where 

00 

x I {[F(En.v.} - F(En+!.v.HIr.IIl)] 
n=O 

x nwo[w - IWb - k.(v. + Iik./2ft)]}, 

(18) 

nW = [(nl Mt In + I)][(n + II Mi In)]. (19) 

In deriving the above expression for TWCW, k) we have 
used the convention IZI2 = [Z*][Z] for any complex 
number Z. 

It is relatively easy to show that (after Fourier 
analysis in space and time) Maxwell's electromagnetic 
field equations for plane waves of the form 

E(R, t) = £ks exp [i(k. R - wt)] 

in a medium of dielectric tensor D(w, k) give2•3 

(20) 

Letting k = Re k + i 1m k and setting k . £k. = 0 for 
transverse electromagnetic waves, from Eq. (20) we 

obtain 

21m k = (W
2
JC

2 Re k) 1m [£: •. D • £k.]. (21) 

Since E(R, t) = £ks exp [i(k. R - wt)], we get the 
absorption coefficient per unit path length T(W, k) for 
a primary electromagnetic beam of wave vector k, 
frequency w, and polarization £k.: 

T(W, k) = 21m k 

= (W2/C 2 Re k) I I 1m [Dii(£:.)l£k.)i]. (22) 
i j 

We now write 

Dij = oij + I DW, (23) 
I 

where D(I)(W, k) is the retarded frequency and wave­
vector-dependent dielectric tensor appropriate for the 
description of the collective response of the system 
under study to transverse electromagnetic radiation of 
wave vector k and frequency Wi::::! lWb (where 1 may 
take anyone of the values 0, ± 1, ±2,'" , ± C(). 

From Eqs. (17), (22), and (23) we get the following 
identity: 

I IRe [TW(£:s)l£kS)J 
i 

== (W2/C2 Re k) I I 1m [DW(£:S);(£k.)i] (24) 
i i 

for all values of i, j = x, y, and z. Hence 

(2i)-1[D(I) - D(/)+] = (t)(c2 Re k/w2)['t'(/) + 't'(/)+], 

(25) 

where 0(1)+ and 't'(/)+ are the Hermitian conjugates of 
D(/) and 't'(I), respectively. Thus, from Eq. (18), we 
obtain the retarded frequency and wave-vector­
dependent dielectric tensor 

D~I}(W k) = lim (ftW!)fdV 
'" y-++O Iiw2 • 

x i [F(En+!.vz+nk.lll) - F(En.v.)]m;) 

n=O W - IWb - k.(v. + Iik./2ft) + iy' 

(26) 
where 

W; = (47rNoq2/ft), 

and we have used the symbolic identity 

lim _____ --=1 _____ _ 

y-++O W - IWb - k.(v. + Iik./2ft) + iy 

_ {p 1 
W - Iwo - k.(v. + Iik./2ft) 

(27) 

- i7rO[w - tWb - kiv. + Iik./2ft)]}, (28) 
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where P denotes the principal value. It is clear from 
this symbolic identity that the real and imaginary 
parts of DW(w, k) will satisfy the well-known 
Kramers-Kronig relations8 in accordance with the 
causality principle (which states that the effect should 
not precede the cause). Equations (23) and (26) 
complete our formal theory of the transverse di­
electric tensor for a free-electron gas in a uniform 
external magnetic field. 

IV. COMPARISON WITH THE CLASSICAL 
HOT PLASMA THEORY 

It is physically instructive to compare the classical 
limit of the dielectric tensor thus obtained with the 
familiar results of the conventional hot plasma 
theory.2-4 We may do this with the aid of the following 
relations: 

F(En",.) -+ F(El.' vz), 

]t(En,v.)[ J -+ Loo dEl.F(El.' vz)[ J 

= L0027TV dvf(v, vz)[ ], 

where El. = pv2/2 is the kinetic energy of the electrons 
in a plane perpendicular to the uniform magnetic 
field B = Biz and j(v, vz) is the electron velocity 
distribution function. 

On making use of Eqs. (23), (26), and (29), one 
finds that the dielectric tensor appropriate for 
the description of a classical hot plasma may be 
written 

X 27TV dv 'J , i
oo 

( S(O )} 

o W - lWb - k.vz + iy 

(30) 

where 

Si; = hm i; - - + • - v, v •. (l) (. II(/)) [lWb a k a Jf( ) 
Ii-+o V av avo 

(31) 

By making use of Eqs. (3a), (3b) or (11), (9), and (10) 
in Eq. (19), one can readily obtain the various elements 
of the tensor II(') as a function of (n + t)IiWb and 
(v z + Iik./2p) for any given value of the harmonic 
number I. Then, taking the classical limit, one obtains 
lim IIV) as a function of v and v. for all values of ., 
/i-+o 

i,j = x, y, and z. Our results of Eqs. (30) and (31) are 
equivalent to the results of Eqs. (7.13) to (7.17) found 
in the book by Bekefi.2 It should be noted that we have 
written the tensor 5(!) in a Cartesian coordinate 
system which manifestly exhibits the cylindrical sym­
metry of the system under consideration, while Bekefi 
in his Eq. (7.15) has written the corresponding tensor 
5 in a Cartesian coordinate system in which the 
propagation vector k of the radiation field is assumed 
to lie in the x - z plane (that is, k 1. = k., and kll = 0). 
Thus the tensor 5(1) ofEq. (31) is related to the corre­
sponding tensor S of Eq. (7.15) found in the book by 
Bekefi through a similarity transformation. Further­
more, since the frequency W must satisfy the classical 
resonance condition co - IWb - kzvz = 0, it is rela­
tively easy to show that, in the nonrelativistic limit, 
the functions U and Was given by Eq. (7.17) of the 
book by Bekefi are such that 

-=-= --+k.- f(v,V.). W U [lWb a a] 
v. v v av avz 

(32) 

Finally, in the Appendix we show that the classical 
dielectric tensor O(O)(w, k) of Eq. (30) is in complete 
agreement with the familiar results of the conventional 
hot plasma theory.2-4 

V. THE FIRST QUANTUM CORRECTION TO 
THE CLASSICAL HOT PLASMA THEORY 

It is our aim now to evaluate the dielectric tensor 
Dilw, k) to the first order in the Planck constant Ii. 
On making use of Eqs. (23), (26), (30), and (A21), one 
finds that, to the first order in Ii, the dielectric tensor 
may be written 

Dii(W, k) = Dl~)(w, k) + lI.DJw, k), (33) 

where the first quantum correction lI.DiJ(w, k) may be 
written 

lI.DJw, k) = f [lim W~ roo dv. roo 27TV dv0W] , 
1=-00 1-++0 W J-oo Jo 

(34) 
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where 

0(~) = U ii + !!.... • ii AS(l) } ( 1= ) { k
2
S(l) 

'1 L - lWb - k.v. + iy 2# (w - lWb - k.v. + iy)2 

+ --12... _b - + k. - - - + k. - f(v, v.) W - lWb - k.v. + iy , [(S(I)) (lW a a ) (lWb a a ) J/ } 
Q! v av avo v av avo 

(35) 

where Q! is given by Eq. (All), S~J) is given by Eq. 
(31), and the first quantum correction ~S~:) is given by 

~sw = /iQ! lim [(ng) - lim n;~»)//iJ. (36) 
" .... 0 /l .... o 

Let us now choose a Cartesian coordinate system in 
which the x axis lies in the plane of the vectors k and 
B (that is, kJ. = k", and ky = 0). In such a coordinate 
system, the elements of the tensor S(!) are given by 
Eq. (AIO), and from Eqs. (9), (19), (36), (AI8), 
(AI9), and (A20) we obtain the elements of the 
tensor ~S(!) as 

where sgn 1 is + 1 for positive values of 1 and -1 for 
negative values of I, and A is given by Eq. (A4). 

It is physically instructive to examine the order of 
magnitude of the ratio [~Dii(w, k)/D~~)(w, k)]. Since 
the leading contribution to ~Dii(w, k) comes from the 
~S::) term of Eq. (35), we may, for example, examine 
the ratio 

where we have made use of Eqs. (37) and (AIO), the 
angular brackets refer to a statistical average over 
the electron states, T is the kinetic temperature of the 
electrons, and K is the Boltzmann constant. For a 
gaseous plasma of electrons and ions whose electron 
temperature T ~ 1 e V in an external magnetic field 
of 5 x 104 gauss, (/iwb/2KT) R:::i 3 X 10-4• Thus one 
can ignore the quantum corrections to the classical 
dielectric tensor for most laboratory gaseous plasma 
studies. However, if one is interested in studying the 
electrodynamic behavior of a "classical plasma" 
formed by electrons and holes in semiconductors at 
not too high carrier densities and not too low tem­
peratures T (that is, under conditions where the 
electrons and holes obey classical statistics), in the 
presence of an external magnetic field B, then, for 
some values of T and B, one has to use the first 
quantum correction to the classical dielectric tensor. 
For example, for InSb (for which the effective electron 
mass is about 0.015 times the free-electron mass) at 
liquid nitrogen temperatures (that is, T R:::i 77°K) in 
an external magnetic field of 104 gauss, (/iwb/2KT) R:::i 

0.6. Thus, although the electron-hole plasma is 
"classical" in the sense of statistical mechanics, the 
quantum corrections (to the classical dielectric tensor) 
arising from the "Landau quantization" of the electron 
orbits in a uniform magnetic field are significant. The 
results oftl;1is section will therefore prove useful for the 
analysis of the experimental studies of the electro­
dynamic behavior of such "solid-state classical plas­
mas" in external magnetic fields of moderate strengths. 

VI. SOME REMARKS 

In what has been presented so far we have assumed 
that the system of electrons in the box of volume L3 
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under consideration is nondegenerate. If the system of 
electrons is degenerate, then one has to take account 
of the Pauli exclusion principle,I° and in applying the 
principle of detailed balance we must bear in mind 
that a transition can only take place to an electron 
state which is vacant. Thus, we can use the above 
theory for a degenerate system of electrons, provided 
we make the following modification: We must replace 
F(En+1,v;) and F(En,v) by F(EnHv;){l - F(En,vz)} and 
F(En,v){ 1 - F(EnHv)} , respectively, in Eqs. (13), 
(15), and (16). Since 

[F(En•v) - F(En+l.vz+likziJL)] 

= [F(En,v){l - F(En+1•vz+1lk,iJL)} 

- F(En+l,vz+TikziJL){l - F(En•vz)}]' 

Eqs. (18) and (26) remain valid for both the degenerate 
and the non degenerate system of electrons. 

Finally, it may be noted that the method presented 
here is somewhat analogous to the Kramers-Heisen­
berg5,6 quantum theory of gaseous dispersion. The 
basic philosophy behind the Kramers-Heisenberg 
dispersion theory is that, starting from a knowledge of 
the fundamental quantum-mechanical transition prob­
abilities for emission and absorption of photons (that 
is, from a knowledge of the Einstein A and B coeffi­
cients), one can obtain the equation of energy transfer 

or the energy balance equation by a straightforward 
application of the principle of detailed balance. From 
the solution of this energy-balance equation one can 
obtain information about the absorption of electro­
magnetic energy by the system under consideration. 
The dissipation or the absorption of energy by any 
system is, in general, represented by the anti-Her­
mitian part of the dielectric tensor appropriate for the 
description of the system. Since the real and imaginary 
parts of any dielectric tensor must satisfy the well­
known Kramers-Kronig relations as a consequence of 
the causality principle, one can thus obtain the entire 
dielectric tensor from a knowledge of its anti-Her­
mitian part. Thus, in conclusion, it is interesting to 
find that the original ideas of Kramers and Heisenberg 
suffice to examine the dispersion properties of a hot 
plasma which is customarily done by a kinetic 
description based on the Vlasov equation.I - 4 
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APPENDIX 
From Eqs. (10) and (11) we get 

1 

(e±ik.r)m.n = (Om.n ± (~)"2[k+(n + l)!Om.n+1 - L)/i 0m,n-I] 
fl,Wb 

+ k!k:'[3n 2 + 3(n + 1)2]om.n - k+k~(4n - 2)[n(n - 1)]!Om.n_2 

+ k~[n(n - l)(n - 2)(n - 3)]!Om.n_4} ± ~(~)~{k![(n + 5)(n + 4)(n + 3)(n + 2)(n + In! 
5! fl,Wb 

X 0m.n+5 - k~k_5(n + 2)[(n + 3)(n + 2)(n + l)]!om.n+3 + k!k:'5(2n2 + 4n + 3)[n + l]! 
~ 23 2 r t x Um.n+l - k+k_5(2n + 1)", n 0m.n-I + k+k~5(n - I)[n(n - l)(n - 2)] 0m,n-3 

- k~[n(n - l)(n - 2)(n - 3)(n - 4)]tom.n_5 } + ... ), (Ai) 
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where we have evaluated the first six terms of Eq. (10). Grouping together the terms that belong to the same 
Kronecker 15's, the classical limit of Eq. (AI) may be written 

In order to compare our results with those found in 
Sec. 7.2 of the book by Bekefi,2 let us now choose the 
coordinate system such that the propagation vector k 
lies in the x - z plane of the Cartesian frame (that is, 
kJ. = k., and k1l = 0). Then 

(A3) 

Let 

(A4) 

Then it is apparent that one can show that the com­
plete form of Eq. (A2) may be written 

00 

lim (e±ik.r)m,n = L c5m•n+l(±I)I!IJp.), (AS) 
/j .... o Z=-oo 

where JP.) is the Bessel function14 of order I. Let 

v± = (2)-i(V., ± ivy). 

From Eq. (3a) it is relatively easy to show that 

lim (v±)m.n = bm •nH(v(2rl ). 
/j .... o 

From Eqs. (AS) and (A 7) we get 

lim (e±ik.r)n+z,n = (±l)IZIJzC.A.) 
/1 .... 0 

(A6) 

(A7) 

(A8) 

1& I. N. Sneddon, Special Functions of Mathematical Physics and 
Chemistry (Oliver and Boyd Ltd., London, England, 1961). 

(A2) 

and 

lim [~(e±ik.rv + V e±ik.r)] 
2 ± ± n+Z,n 

/1 .... 0 

= (±I)I!±lIJz±l(A)(;)t). (A9) 

Here the plus and minus signs in (± I) correspond to 
those in exp (±ik . r) and I ± I correspond to v±. 
From Eqs. (9), (19), (31), (A6), (A8), and (A9) we 
get 

V2Qzc;Zr . 2Q lJzJ; lJ~ 
IV -- v.vQz-Z A A 

S(!) = . 2Q IJzJ; 
-IV -

z A 
V2Qp;)2 - iv.vQzJzJ; , 

lJ~ 
iv.vQzJzJ; V!QIJ~ v.vQz-

A 

(AIO) 
where 

(All) 

and we have used the relations14 

(A12) 
and 

(Al3) 
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Here the prime denotes differentiation with respect to 
A. We wish to emphasize that the tensor S(I) of Eq. 
(AIO) is written in a Cartesian coordinate system in 
which the z axis is directed along the external magnetic 
field B and the x axis lies in the plane of the vectors 
k and B. Thus one sees readily that our results of the 
dielectric tensor agree in the classical limit with the 
corresponding results found in Sec. 7.2 of the book 
by Bekefi.2 

We now wish to show how one obtains the first 
quantum corrections to the results of the classical hot 
plasma theory. Since (n + t)liwb -+- flv 2/2, it is rela­
tively easy to show that, for s 2: 0, 

(
Ii )812 

- [en + s)(n + s - 1) ... (n + l)]t 
flWb 

(A14) 

and 

(
Ii )8/2 

- [n(n - 1) ... (n - s + 1)]1 
flW b 

(A1S) 

to the first order in Ii. On making use of Eqs. (AI4) 
and (AIS), one can easily show that 

00 

(rik.r) = '" b (± 1) I Ii m,n k m,n+~ 
Z=-oo 

x Jz(A)[l + (sgn 1)(l2Iiwb/2flV2
)] (A16) 

and 

(v±)m.n = bm.n'Fl(V(2)-t)[1 += (liwb/2flV2)] (A17) 

to the first order in Ii. Here sgn 1 is + 1 for positive 
values of 1 and -1 for negative values of I. From Eqs. 
(A6), (AI2), (A13), (AI6), and (AI7) we get 

(v. + Iik./2fl)(~kor)n+Z.n = (±1)IZlv.JzCA)[1 + (lik./2flV.) + (sgn 1)(12Iiwb/2flV2)], (A18) 

[t(~korv", + v",e±ikor)]n+Z.n = (±1)IZ+1I(V)([lJ~A)] + (~;:2){J;(A) + (sgn 1)[(1
2 

+ ~)lJl(A) - 2lJ;(A)]}), 

(A19) 
and 

[t(~korV1l + v1l~k.r)]n+z.n = (±1)IZ+1I(iV)(J;(A) + (~;:2){[lJ~A)] + (sgn 1)[(12 + 1)J;(A) - 211i(A)]}) 

(A20) 
to the first order in Ii. Furthermore, one can easily show that 

{(
lWb 0 0 ) (IWb 0 0 ) 2(IWb 0 0 ) }] - - + k. - -- - + k. - f(v, v.) k. - - + k. - f(v, v.) 

Ii v ov ov. v QV ov. v QV ov. +- +-'-----.....:..;...--
2fl W - 1wb - k.v. + iy (w - 1wb - k.v. + iy)2 

(A2l) 

to the first order in Ii. In this way one can easily obtain the first quantum corrections to the results of the 
classical hot plasma theory as given by Eqs. (33)-(37). 
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Singularities of Conformal-Invariant Scattering Amplitudes* 

DARRYL D. COON 
Department of Physics, University of Washington, Seattle, Washington 
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It is shown that conformal invariance alone, with no specific dynamics, provides severe constraints on 
th~ locat!on of singulari~ies ~f the ~~-mass-shell ampli~ude f?r elast!c scatte.ring of spinless particles. 
Kmematlcal ~nd dynal!lICal sl~gulantl~s are co.rrelated m an mterestmg fashIOn with the singular and 
general sol~tlon~ of dilfere?~JaI equat!ons which follow from the momentum-space requirements of 
conformal mvanance. ExpliCit expressIOns are found for the location of singularities which are inde­
pendent of t, the square of the momentum transfer. The possibility of having an asymptotic behavior of t" 
for large t together with singularities specified by the function IX is discussed. 

I. INTRODUCTION 

The conformal groupl-3 is a higher space-time 
symmetry group in which the Poincare transforma­
tions form a subgroup. Conformal transformations 
map light cones into light cones and conserve angles 
defined locally. Maxwell's equationsl and various 
massless field theories2 including electrodynamics and 
)'4>4 theory are conformal invariant. 

Exact conformal invariance implies vanishing 
masses or continuous mass spectra.2 However, a 
symmetry may be useful, as is Wa~n though its 
unbroken form has unrealistic mass constraints. Mack 
and Salam4 discussed a scheme for broken conformal 
symmetry in Lagrangian field theory. In S-matrix 
theory, constraints on mass spectra manifest them­
selves as restrictions on the singularity structure of 
scattering amplitudes. We will show that the interest­
ing singularity structure of conformal-invariant 
amplitudes is off the mass shell with singularities 
converging toward zero energy as the mass shell is 
approached. The way in which singularities are 
located might suggest reasonable symmetry-breaking 
schemes within the framework of S-matrix theory. 
We make use of some results of Bali, Coon, and Katz,5 
who recently investigated the restrictions imposed by 
conformal invariance on the off-mass-shell amplitude 
for scattering of massless spinless particles. 

It has been conjectured that the conformal group 
may provide an approximate description of some 

• Work supported by the U.S. Atomic Energy Commission 
AT(45-1)-1388. 

1 E. Cunningham, Proc. London Math. Soc. 8, 77 (1910); H. 
Bateman, ibid. 8, 223 (1910). 

• J. Wess, Nuovo Cimento 18, 1086 (1960). 
3 Discussion of the conformal group and many references to the 

other articles can be found in: F. Giirsey, Nuovo Cimento 3, 988 
(1956); T. Fulton, F. Rohrlich, and L. Witten, Rev. Mod. Phys. 
34,442 (1962); H. A. Kastrup, Ann. Physik 7,388 (1962). 

4 G. Mack and A. Salam, ICTP Preprint IC/68/68, Trieste, 1968. 
This paper includes references to more recent work. 

5 N. F. Bali, D. D. Coon, and A. Katz, University of Washington 
Preprint No. 539, Seattle, Washington, 1968; J. Math. Phys. (to be 
published). 

processes6 such as scattering at high energy and high 
momentum transfer. Integral representations5 for 
conformal-invariant elastic scattering amplitudes 
involve arbitrary functions of only two variables 
rather than the six implied by invariance under the 
Poincare subgroup alone. One might think that some 
of this information could remain relevant, at least 
in an asymptotic region, when the symmetry is broken. 

We begin, in Sec. II, with the momentum-space 
requirements of conformal invariance given in Ref. 5. 
From these requirements, three second-order partial 
differential equations are derived with six Lorentz 
scalars as independent variables. The off-mass-shell 
elastic scattering amplitude must be a dilatation­
invariant solution of these equations. Singularities of 
solutions of such partial differential equations lie 
along characteristic surfaces which are investigated in 
Sec. III. Attention is focused on singularities whose 
positions are independent of f, the square of the 
momentum transfer. In Sec. IV, it is' shown that, for 
a conformal-invariant amplitude to have an asymp­
totic behavior of fa for large f, then ~ must satisfy the 
differential equations which determine characteristic 
surfaces. 

II. CONFORMAL INVARIANCE AND SCAT­
TERING AMPLITUDES 

The conformal group3 is made up of Poincare 
transformations, the inverse radius transformation 

(1) 

and dilatations 

(2) 

where b is an arbitrary parameter. If an inverse radius 
transformation, a translation, and another inverse 
radius transformation are performed successively, the 

• H. A. Kastrup, NucI. Phys. 58, 561 (1964); Phys. Rev. 142, 
1060 (1965); 143, 1041 (1966); 150,1183 (1966). 
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resulting transformation has the form 

x ~ xll + allx
2 

(3) 
Il 1 + 2a . x + a2x2 

The corresponding infinitesimal generator is 

Kil == -i(x2all - 2xllx . a). (4) 

We now consider elastic scattering of spinless 
massless particles with momenta Pi' where i = 
1, 2, 3, 4. By virtue of the Poincare subgroup, which 
implies 

Pt + P2 + Pa + P4 = 0, (5) 

the usual off-mass-shell amplitude can be expressed as 
a function of the six Lorentz scalars 

S == (PI + P2)2, t == (Pt + Pa)2, (6) 
and 

Yi == p~, i = 1, 2, 3,4. (7) 

It has recently been shown5 that, for the S matrix to be 
conformal-invariant, the off-mass-shell elastic scatter­
ing amplitude M must be invariant under dilatations 

pf ~ b-1pf 

and must satisfy the equation 

(8) 

a 
2,LfM = 0, (9) 

i=1 
where 

Lf = OiPf - 2afai . Pi + 6af (lOa) 

= pfOi - 2Pi' aiaf - 2ar. (lOb) 

Here af and 0 t indicate differentiation with respect 
to Pi' Except for the last term in Eq. (lOa), the differ­
ential operators Lf are just the momentum-space oper­
ators corresponding to the coordinate-space operator 
Kil. The last term in Eq. (lOa) is present because 
(j(Pt + P2 + Pa + P4)M is the Fourier transform of a 
conformal scalar density rather than a conformal 
scalar. The only dependence on the weight5 of this 
scalar density is in the coefficient of the first derivative 
terms in Eqs. (10). 

Feynman diagrams of massless Ac/>4 theory provide 
examples of formal expressions which satisfy the 
above requirements. This is most easily seen in 
coordinate space where divergences are avoided. 

From Eq. (9) we obtain the following three partial 
differential equations for M in terms of Lorentz 
scalars: 

a2M a2M 
YI -a 2 - Y4 -a a + R + S + T = 0, 

YI s t 
(11) 

a2M a2M 
Y2 -a 2 - Ya a a + R + S = 0, (12) 

Ya s t 
a~ (J2M 

Ya -a 2 - Y2 -a a + R + T = 0, (13) 
Y3 s t 

Making use of the differential statement of dilata­
tion invariance 

aM aM 4 aM 
s- + t- + 2,Yi- = 0, (17) 

as at i=1 aYi 

we can write three linear combinations of Eqs. (11)­
(13) in the more compact forms 

a2M a2M (J2M 
Yl -;---;: - Y2 -a 2 + (Ya - Y4) -a a 

UYI h s t 

[
a a a a JaM + Yl-

a 
- Y2-

a 
+ Y3-

a 
- Y4;- --;- = 0, 

Yl Y2 Y3 UY4 ut 
(18) 

a2M a2M a2M 
Ya -a 2 - Y4 -;---;: + (YI - Y2)-;-;-

h UY4 ~ut 

[ a a a a JaM + YI;- - h -a + Ya -a - Y4;- --;- = 0, 
UYl Y2 Ya UY4 ut 

(19) 
a2M a2M a2M 

Yl -a 2 -. Ya -a 2 + (Y2 - Y4) a a 
YI Ya s t 

[
a a a a JaM + YI -a + Y2 -a - Ya -a - Y4 -a -a = 0. 
YI Ya Ya Y4 s 

(20) 

The off-mass-shell amplitude M must be a dilata­
tion-invariant solution of these linear partial 
differential equations. The coefficients only involve 
Yi == p;. Thus, derivatives of M with respect to sand t 
must also be homogeneous solutions ofEqs. (18)-(20). 

III. CHARACTERISTIC SURFACES 

Singularities of solutions of a linear analytic second­
order partial differential equation lie along char­
acteristic surfaces. 7 Characteristic surfaces are surfaces 
along which the partial differential equation represents 
an interior differential equation. The differential 
equation does not determine higher normal derivatives 

7 R. Courant and D. Hilbert, Methods of Mathematical Physics 
(English trans!.: Interscience Publishers, Inc., New York, 1962), 
Vo!. II, pp. 170-180,486-488,552-574, and 635. Our characteristic 
surfaces are in the six-dimensional s, t, P~ space. 
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from given initial data (Cauchy data) on such a 
surface. Characteristic surfaces are found by solving a 
first-order partial differential equation8 which is 
related to the original second-order equation. 

We now let 
eI>(s, t,Yl,Y2,Ya,Y4) = ° (21) 

specify a characteristic surface. The characteristic 
equations8 associated with Eqs. (18)-(20) are 

Ylel>~ - Yael>: + (Ya - Y4)eI>.eI>t 
+ [ylel>l - yael>a + yael>a - y4e1>4]eI>t = 0, (22) 

Yael>: - y4e1>: + (Yl - Y2)eI>.eI>t 
+ [ylel>l - hel>2 + yael>a - y4e1>4]eI>/ = 0, (23) 

Ylel>~ - Yael>~ + (Ya - yJeI>.eI>/ 
+ [ylel>l + y2e1>2 - yael>a - y4e1>4]eI>. = 0, (24) 

where we use the notation 

oel> oel> 
el>i == -, eI>. == -, etc. (25) 

0Yi os 
The same function eI> appears in all three equations 
because we wish to determine the characteristic 
surfaces which are common to Eqs. (18)-(20). That is, 
we are interested in combining the constraints of all 
three equations on the location of singularities. 

There are two cases8 to be considered: 
(1) If eI> satisfies Eqs. (22)-(24) identically in s, 

t, and Yi' then eI> = ° is a characteristic surface which 
belongs to a one-parameter family of characteristic 
surfaces given by eI> = const. 

(2) If eI> satisfies Eqs. (22)-(24) only on the surface 
eI> = 0, then eI> = ° is a characteristic surface which is 
not a member of such a family of characteristic 
surfaces. In this case, Eqs. (22)-(24) are not inter­
preted as differential equations since they are not 
satisfied identically in s, t, and Yi' 

If Eq. (21) is solved for s so that 

s = 'P'(t,Yl,Y2,Ya,Y4), (26) 

then we have another way of specifying the same 
surface. Dilatation invariance implies that eI> depends 
only on ratios of variables and that'P' is homogeneous 
of degree one in the variables t and Y i • 

Equations (22)-(24) correspond to the following 
equations for 'P': 

Yl'P'~ - Ya'P': - (Ya - Y4)'P't 
+ [YI'P'l - y 2'P'2 + Ya'P'a - Y4'1"4]'I"t = 0, (27) 

Y3'P'~ - Y4'1": - (Yl - Yz)'P't 
+ [yl'P'l - h'P'2 + Ya'P'a - y4'P'4]'P'/ = 0, (28) 

Yl'P'~ - Ya'P'~ - (Ya - Y4)'P't 
- [YI'P'l + y2'P'z - Ya'P'a - y4'P'4] = 0, (29) 

8 See Ref. 7, pp. 552-558. 

with subscripts denoting derivatives as in (25). These 
equations are satisfied identically in the variables 
t and Yi' Thus, both cases considered above now 
involve solutions of differential equations.s Again 
there are two possibilities: 

(1) That'P' is obtained by finding general solutions 
of each of the differential equations encountered in 
combining the homogeneity condition and Eqs. 
(27)-(29), or 

(2) that 'P' involves the singular solutions of at 
least one differential equation.9 

In the following, we will solve equations for eI> and 
'P' separately in order to illustrate the relation between 
the above statements concerning eI> and 'P'. 

f-Independent Singularities 

Since many significant singularities of the amplitude 
are independent of one kinematic invariant, we now 
find the t-independent dilatation-invariant solutions 
of the characteristic equations. (The s- or u-inde­
pendent solutions can be found from these by inter­
changing indices of the Yi') In this case, Eqs. (22), (23), 
(27), and (28) simplify greatly. Together with dilata­
tion invariance they imply 

eI> = eI>[ml + O'm2 , ma + COm4] (30) 
s! s! 

and 

where 

(32) 

Also, 0' = ± 1 and co = ± I independently. The signs 
associated with ml and ma are chosen to be positive. 
Here eI> and F are arbitrary functions of their argu­
ments. 

Since eI> now depends on only two variables, Eq. 
(24) can be reduced to the form of a partial differential 
equation with two independent variables. The 
equation can be factored into two linear partial 
differential forms. To find those eI> which satisfy these 
equations identically, we simply interpret the equa­
tions as partial differential equations. The solutions 
are 

eI> = eI>[{S - (ml + m2)2}! ± {s - (ma + m4)2}!], 
ml + ma + ma + m 4 

(33) 

where eI> is an arbitrary function of its argument and 

• When dilatation invariance is combined with a characteristic 
partial differential equation (for '1') which possesses no singular 
solution, we may obtain a differential equation which does have 
singular solutions. 
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each mi can be replaced by -mi. This replacement is 
possible because Eqs. (22)-(24) only involve Yi = m;. 
Thus, we have found the one-parameter family of 
characteristic surfaces given by <D = constant. 

Dilatation-invariant functions <D which satisfy the 
characteristic equations only on the surface <I> = 0 can 
most easily be found from the differential equations 
for 'Y. By combining Eq. (31) with the remaining 
equation (29) for 'Y, we obtain the ordinary differen­
tial equation 

(Z2 - 1) - - 4z(F - 1) - + 4F(F - 1) = 0, [d~2 dF 
dz dz 

(34) 

where 

This nonlinear equation can be solved by introducing 
the quantities 

2A == (z - 1) dF - 2(F - 1) (36) 
dz 

and 
dF 

-2B == (z + 1) - - 2(F - 1) 
dz 

and writing Eq. (34) as 

F= AB + 1. 

(37) 

(38) 

Equations (36)-(38) can be combined so that we need 
to solve only a single linear differential equation for A. 
Thus, we obtain the general solution 

F = (l/4c)[(c + 1)2z2 + 2(c2 - l)z + (c + 1)2], 

(39) 

where c is an arbitrary constant. The singular solu­
tionslO 

F= 1 and F= Z2 (40) 

can be obtained directly from Eq. (34). 
By examining the differential equation (34), we 

discover that if F(z) is a solution, then z2F(1lz) is a 
solution. The symmetry is related to the interchange of 
incoming and outgoing particles. The solutions (39) 
and (40) exhibit this symmetry. We also observe that 
F( -z) must be a solution. This corresponds to the 
replacement of c by l/c in Eq. (39). 

We now have found all the I-independent solutions 
of the characteristic equations (27)-(29) for 'Y. In 
terms of the variables m; == (p:)! and the arbitrary 
constant c, the characteristic surfaces s = 'Yare given 

10 The manner in which these singular solutions arise is stated in 
Footnote 9. 

by 

s = ..!.. [(c + 1)\ml + (fm2)2 + 2(c2 - 1)(ml + (fm2) 
4c 

X (m3 + wm4) + (c + 1Y,J(m3 + wm4)2], (41) 

s = (ml ± m2)2, (42) 

s = (m3 ± m4)2, (43) 

where (f = ±1 and w = ±1 independently. The 
family of characteristic surfaces (41) is the same as the 
family of surfaces <D = const associated with Eq. (33). 
This can be verified by solving Eq. (41) for the 
constant c. Equations (42) and (43) are obtained from 
the singular solutions (40) and have no arbitrary 
constants. They can be put into correspondence with 
dilatation-invariant <I>'s which satisfy all characteristic 
equations (22)-(24) only for <I> = O. 

Integral representations5 for dilatation-invariant 
solutions of equations such as Eqs. (18)-(20) are 
quite complicated. However, in some special cases the 
representations reduce to elementary functions: 

s - mi - m~ 

Us - (ml + mJ2][s - (ml - m2)2])! ' 

mim~/s'\ 

mimim~m!li. 

(44) 

(45) 

(46) 

The singularities of (44) are given by Eq. (42) and the 
singularity at s = 0 is given by Eq. (41) with c = -1. 

No change in dynamics can affect the positions of 
singularities associated with Eqs. (42) and (43). Such 
singularities are purely kinematical. If the amplitude 
has dynamical singularities, they must be associated 
with Eq. (41). This is reasonable since the constant c in 
Eq. (41) can take on a set of values each of which 
might depend on some coupling constant. Of course, 
kinematical singularities may also be associated with 
Eq. (41). 

IV. ASYMPTOTIC DEHA VIOR 

In order to see what kind of restrictions conformal 
invariance might impose on the asymptotic behavior 
of amplitudes, we assume that some amplitude 
behaves like 

fha, (47) 
where 

~ = ~(s, pL pL pL p~), (48) 

{J - (J( 2 2 2 2) - S, PI' P2' P3, P4 , (49) 

for large t. Dilatation invariance of the amplitude 
implies that ~ is dilatation invariant. We also assume 
that the asymptotic behaviors of the derivatives in 
Eqs. (18)-(20) are given by the derivatives of the 
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asymptotic behavior (47),u The leading terms on the 
left-hand side in Eqs. (18)-(20) then behave like 
(In t)2ttJ. These terms are generated by derivatives 
acting on the IX. in tIT.. From the requirement that the 
sum of the coefficients of the leading terms in each 
equation must vanish, we obtain three first-order 
partial differential equations for IX.. In fact, these 
equations are precisely the characteristic equations 
(22)-(24) for a t-independent characteristic surface. 
The solution of these equations has already been 
found in Sec. III. From Eq. (33), we see that 

IX. = IX({S - (rn l + rn2)2}! ± {s - (rn3 + rn4)2}!) , 

rn l + rn2 + rn3 + rn4 
(50) 

where IX is an arbitrary function of its argument. 
It is interesting that IX. must identically satisfy the 

characteristic equations because this admits the 
possibility that an amplitude with asymptotic behavior 
(47) may have singularities along surfaces given by 
IX. = const. An example of a function with a set of 
singularities along such surfaces is IJsin 7TIX.. Of course, 
Eqs. (18)-(20) provide restrictions on the nature of the 
singularities as well as their location. 

It is also interesting that IX. is not related to the 
characteristic surfaces (42) and (43) which are 
associated with strictly kinematical singularities. 

V. DISCUSSION 

We have given partial differential equations for the 
surfaces along which the off-mass-shell amplitude 
can have singularities and we have found the possible 
locations (41)-(43) of t-independent singularities. 
Some features which are, perhaps, suggestive are the 
appearance of singularities (42) and (43) resembling 
thresholds and pseudothresholds and the dependence 
of other singularities (41) on arbitrary constants which 
might be related to coupling constants. However, 
there is no guarantee that such singularities will 
actually be present in the Feynman diagrams or the 
amplitudes of a theory with conformal-invariant 
dynamics. The formulas (27)-(29) and (41)-(43) 
derived here constitute severe constraints, but con­
formal invariance does not require the amplitude to 
have singularities along any given characteristic 
surface. This is obvious since a constant "amplitude" 
would trivially satisfy all the requirements. A constant 
could represent the Born term in A~4 theory. 

11 This is compatible with and possibly indicative of next leading 
terms behaving like flT./ln f, flT./(ln f)2, etc., and flT.-', flT.- 2, etc. 

The purely kinematical singularities (42) and (43), 
which resemble thresholds and pseudothresholds, 
originate from the singular solutions of a differential 
equation (34), while the other class of singularities 
(41), which could encompass dynamical singularities, 
originates from the general solution of the differential 
equation (34). It is very interesting that there is a 
natural way for the differential conditions of a higher 
space-time symmetry to provide two such categories 
of singularities. 

Since the singularities (41)-(43) converge to s = 0 
as the mass shell is approached, there can be no 
production of particles with mass. The differential 
equations (18)-(20) for the amplitude also provide 
restrictions on the nature of possible singularities. 
It should be noted that all of the formulas presented 
here are consistent with crossing symmetry. 

One might wonder if any of the singularities (41)­
(43) other than s = 0 could arise in individual Feyn­
man diagrams. An interesting possibility is that they 
might arise in the process of making conformal­
invariant subtractions or cut-offs. A diagram with a 
logarithmic ultraviolet divergence could develop an 
infrared divergence if we perform a subtraction at 
s = O. Performing a subtraction at s = const ¥: 0 
would destroy dilatation invariance. Perhaps a 
resolution of the difficulty is to let the subtraction 
point depend on the p; and insist that the resulting 
amplitude satisfy the conditions (17)-(20) of conformal 
invariance. This conformal-invariant subtraction pro­
cedure could introduce singularities off the mass 
shell and not at s = O. Because of the mathematical 
subtleties involved, this question will require careful 
investigation. 

The restrictions of conformal symmetry apply to 
the whole amplitude as well as individual Feynman 
diagrams so that singularities connected with summing 
an infinite number of Feynman diagrams should also 
be restricted by Eqs. (27)-(29) and (41)-(43). 

Finally, we observe that if the (p7)! are replaced by 
nonvanishing masses, then the singularity structure 
(41)-(43) and its possible connection with the asymp­
totic form (47) are in accord with the usual features 
of S-matrix theory. The reasons for, and the signifi­
cance of, this phenomenon are not clear. 
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Explicit, exact solutions, satisfying a bootstrap criterion in the form of Levinson's theorem and 
having real coupling constants, are exhibited for the two-channel Low equation for arbitrary real values 
of the parameter appearing in the 2 x 2 crossing matrix. This disproves a claim made recently in the 
literature that the bootstrap criterion will restrict values of the crossing-matrix parameter to those corre­
sponding to the internal-symmetry group SU •. It is demonstrated that the previous alleged proof is 
inconclusive. 

I. INTRODUCTION AND SUMMARY 
OF RESULTS 

There have been several attemptsl - 5 to bootstrap 
internal symmetries in exactly soluble two-channel 
static models. To date, only Cunningham4 has 
claimed that a bootstrap requirement in the form of 
Levinson's theorem, first suggested for this purpose 
by Huang and Low,s along with the usual require­
ments of unitarity, crossing, analyticity, and the 
reality of coupling constants, will restrict the crossing­
matrix parameter to the integer values which corre­
spond to the internal-symmetry group SU2 • This 
result seemed remarkable in light of the negative 
results of several previous attempts with similar models 
to bootstrap this internal symmetry. Warnock5 has 
shown that solutions exist for the n-channel Low 
equation with an arbitrary n X 11 crossing matrix. 
Warnock's solutions have no subtractions, one bound 
state, and one CDD pole in one channel, with no 
bound states or CDD poles in the other channels. The 
present author3 had studied a model with coupled 
inelastic channels in a two-dimensional space-time 
and found that bootstrap solutions exist for contin­
uous real values of the crossing-matrix parameter. 
Finally, there is the impressive paper of Blankenbecler, 
Coon, and Roy,7 which demonstrated that the assump­
tion of diagonalizability of the S-matrix by a constant 
real orthogonal matrix rigorously and with no 
approximations implies SU2 as a symmetry group 
for a system of pions as an essentially kinematic result 
independent of the strong-interaction dynamics. In 
this proof the existence of the third crossed channel 
plays a crucial roll. 

* Work supported in part by the u.s. Atomic Energy Commission. 
1 A. W. Martin and W. D. McGlinn,Phys. Rev. 136, BI515(1964). 
• K. Huang and A. H. Mueller, Phys. Rev. 140, B365 (1965). 
• J. T. Cushing, Phys. Rev. 148, 1558 (1966). 
4 A. W. Cunningham, J. Math. Phys. 8, 716 (1967). 
5 R. L. Warnock, Phys. Rev. 170, 1323 (1968). 
• K. Huang and F. E. Low, J. Math. Phys. 6, 795 (1965). 
7 R. Blankenbecier, D. D. Coon, and S. M. Roy, Phys. Rev. 156, 

1624 (1967). 

Since Cunningham's proof assumes a static model 
with only two crossed channels, one subtraction, and 
no CDD poles, the papers mentioned above do not 
conclusively imply that his result cannot be correct. 
However, we shall demonstrate that Cunningham's 
arguments show only that a certain representation of 
the solutions to the two-channel problem does not 
exist for arbitrary values of the crossing-matrix 
parameter, not that no solutions exist. The source of 
the trouble comes from using Rothleitner's special 
solutions,S which have an infinite number of poles 
and zeros for arbitrary real values of the crossing­
matrix parameter and then attempting to find an 
infinite-product representation of an arbitrary multi­
plicative function which will cancel all but a finite 
number of these poles and zeros in order to produce 
S-matrix elements with only a finite number of poles 
and zeros. It turns out that no infinite-product 
representation of the form assumed exists. However, 
we are able to show that a form of solution given by 
Martin and McGlinn l does allow S-matrix elements 
having all of the desired properties. We shall exhibit 
one class of bootstrap solutions. It is not claimed that 
these are all of the solutions nor that they are unique. 

II. STATEMENT OF THE PROBLEM 

A mathematical statement of the two-channel static 
model, describing the scattering of mesons of mass m 
from.fixed baryons, is the following: If we let z = 
x + iy be the complex energy variable, then, in units 
Ii = c = m = 1, there are two S-matrix elements, 
Sa(z), rx = 1, 2, which are uncoupled from each other 
in the physical region (i.e., z real and above threshold). 
The complex z plane has the direct-channel cut 
running from + 1 to + 00 along the positive real axis 
and the crossed-channel cut running from -1 to - 00 

along the negative real axis. Unitarity implies that 

(1) 

8 J. Rothleitner, Z. Physik 177, 287 (1964). 

1319 



                                                                                                                                    

1320 JAMES T. CUSHING 

where x ~ 1 and bix) is real on this cut. Also, we have 

S",(z*) = S:(z). (2) 

The continuation of Siz) onto the second sheet 
through the unitarity cut, denoted by S!2)(Z), is given 
as 

(3) 

Finally, the statement of crossing symmetry on the 
first sheet is 

2 

S,,(-z) = 1A"pSp(z). (4) 
P~l 

Since crossing twice must bring us back to the initial 
channel and since both channels are physically identi­
cal in this problem, the crossing-matrix elements 
must satisfy 

2 

1 A"yAyp = b"p, (5) 
y~l 

2 

~A,,{J = 1. (6) 
{J~l 

The most general 2 x 2 crossing matrix satisfying 
these requirements is1.2 

A - 1 (-1 2t + 2) (7) 
- (2t + 1) 2t 1 . 

The subset of these 2 x 2 crossing matrices corre­
sponding to SU2 has t = n, where n is zero or an 
integer. General solutions to the problem as defined 
above have been given for arbitrary values of t by 
Martin and McGlinnl and by Rothleitner.8 We shall 
discuss both solutions in the following sections. 

Our criterion for a bootstrap solution will be that 
suggested by Huang and Low,6 namely, Levinson's 
theorem with no CDD poles, 

where ~b" is the change in phase of the phase shift 
b,,(z) of Eq. (1) between threshold and infinity along 
the physical cut and n" is the number of bound states 
in channel IX. As in Huang and Low, 6 the coupling 
constants squared are introduced via the Low equa­
tion for the function hiz) defined as 

where we are scattering S-wave mesons and 

q(z) == (Z2 - l)t, 

and the cutoff function v(z) has the form 

v(z) = K
2C/(t + K2)C, 

(9) 

(10) 

(11) 

with K > 1. For reasons that have been fully discussed 

in Ref. 6, in order to be able to have bootstrap 
solutions we must choose c = 1 and allow for one 
subtraction in the Low equation. (These are also 
Cunningham's choices.) The once-subtracted Low 
equation is 

haCz) = P,,(z) + C" + - - q(x')v(x') z foo dx' 
7T 1 X' 

(12) 

where the subtraction was made at z = 0 and the 
C" are subtraction constants. Here Piz) contains the 
crossing-symmetric combination of poles appearing 
in the strip -1 < x < +1, 

where the Xi are the location of the bound states (Le., 
Ixil < 1) and the Ai" are the coupling constants 
squared (i.e., Ai" ~ 0). The only use we shall have 
for the Low equation is to connect the residues of the 
S,,(z) at bound-state poles with the Ai" of Eq. (13). 
If we consider the special case of one bound state in 
each channel (as will be sufficient for our purposes 
later), and if piz) denote the bound-state pole terms 
of the Sa(z) with effective coupling constants Aa 
defined as 

A" == 2v(xa)(1 - x;)t Aa, (14) 

where x" is the bound-state energy in channel IX, then 
we see from Eqs. (7), (9), (13), and (14) that 

pb) = -An + 1 [~ _ 2(t + I)A12] 

Xl - z (2t + 1) Xl + Z Xl + z 

_ ~ + 1 [~ _ 2(t + l)A22], 

X 2 - z (2t + 1) X 2 + Z X 2 + z 
(15a) 

P2(Z) = -Au - 1 [2tAn +~] 
Xl - z (2t + 1) Xl + z Xl + z 

_~_ 1 [2tA21 +~] 
X 2 - z (2t + 1) X 2 + Z X 2 + z . 

(I5b) 

The two-channel S-matrix problem as defined in 
Eqs. (1)-(7) is solved by defining two auxiliary func­
tions which have simple properties under unitarity 
and crossing,1.8.9 of which the first is 

B(z) = tSb) + (t + I)S2(z) . 
S2(Z) - Sl(Z) 

(16) 

• G. Wanders, Nuovo Cimento 23, 817 (1962). 
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Crossings on the first-sheet and the second-sheet 
continuation follow from Eqs. (4) and (3) and are, 
respectively, 

B( -z) = -B(z), 

B(Z) (z) = - B(z) + 1. 

The most general solution for B(z) is8 •9 

(17) 

(18) 

1 i ! iz 
B(z) = - + -In [z + (Z2 - 1) ] + ! P(z) 

2 'TT (Z2 - 1) 

1 . -1 ( iz R( ) = - sm z) + 1 t' Z , 
'TT (Zll - 1) 

(19) 

where P(z) is an arbitrary real [i.e., P(z*) = P*(z)] 
even meromorphic function. For our purposes we 
shall choose 

(l(z) = (lo, (20) 

where Po is a real positive constant (cf. Refs. 4 and 6). 
We shall also need to know some of the properties of 
q(z) defined in Eq. (10). They are 

q(Z)(z) = -q(z) , 

q*(z) = -q(z*), 

q( -z) = q(z), 

Imq(z);;:: 0, 

(21a) 

(21b) 

(21c) 

(21d) 

where the last statement holds on the first sheet only. 
[These properties of q(z) are most easily proved by 
use of the mapping z = cosh (w), w = u + iv.] 

We shall now state separately the solutions given 
by Rothleitner8 and by Martin and McGlinn,! since 
these forms shall be important for what follows. 
Rothleitner defines a second function 

U(z) = Sz(z) (22) 

for which crossing and unitarity become 

U( -z) = U(Z)[B(Z) - t], (23) 
B(z) + t 

U(2)(Z) = 1/U(z). (24) 

It is easy to see that the most general solution to these 
functional equations is 

U(z) = Uo(z)D(z), (25) 

where Uo(z) is any solution to Eqs. (23) and (24) and 
D(z) is an arbitrary real even function satisfying 

D(2)(Z) = l/D(z). (26) 

Rothleitner constructs a Uo(z) as 

Uo(z) 

tan [~B(Z)Jr[B(Z~ - tJr[B(Z) ~ t + 1J 
- ----~----~=-----~~--------~-

tan [~(B(Z) + t)Jr[B(Z~ + tJr[B(Z) ~ t + 1J . 
(27) 

Finally, the S-matrix elements are given as 

SI(Z) = UoCz)D(z)[B(Z) - t - 1J 
B(z) + t 

= s (Z)[B(Z) - t - 1J, 
2 B(z) + t 

Slz) = Uo(z)D(z). 

(28a) 

(28b) 

Martin and McGlinn write their S-matrix elements 
as 

SI(Z) = A(z)[B(z) - t - 1] 

= S (Z)[B(Z) - t - 1J, (29a) 
2 B(z) + t 

S2(Z) = A(z)[B(z) + t], (29b) 

where B(z) is defined by Eq. (16) and A(z) is an 
arbitrary antisymmetric real analytic function in the 
cut z plane. Equations (29) automatically satisfy 
crossing. The second-sheet continuation for A(z) is, in 
our notation, 

A(2)(z)A(z) = -l/[B(z) - t - l][B(z) + t], (30) 

the most general solution of which is 

A(z) = Ao(z)D(z), (31) 

where Ao(z) is any particular solution of Eq. (30) and 
D(z) is an arbitrary real even function satisfying Eq. 
(26). Martin and McGlinn constructed an Ao(z) 
having no zeros or poles (away from both branch 
cuts), except for a simple pole at the origin. In our 
notation this particular solution is 

A (z) = [1 - i(Z2 - 1)1] 
o (t + i)z 

{
i(Z2 - l)!i oo In [1 + F 2(x')]x' dx'} x exp , 

'TT 1 (X,2 - 1)!(X'2 - Z2) 

where, for 1 ~ x < OJ, 

F(x)=~ 
(t + 1) 

(32) 

X [! In [x + (Xli - 1)1] + 2 x i (l(X)]. 
'TT (x - 1) 

(33) 

Here, P(x) is the arbitrary function in B(z), Eq. (19). 
We shall make the choice (l(x) = (lo, Eq. (20). 

III. CUNNINGHAM'S PROOF 

One possible way of attempting to construct 
bootstrap solutions is to begin with Rothleitner's 
solutions, Eqs. (27) and (28). Let us first examine 
Uo(z), Eq. (27), when t is zero or a positive integer. 



                                                                                                                                    

1322 JAMES T. CUSHING 

If t is zero or an even integer, 

t = 2n, n = 0, 1,2, ... , (34) 

then, since 

tan [t1T(B(z) + 2n)] = tan [t1TB(z)] (35) 

part of Eq. (43) vanishes. This can happen only when 

u = 0, 
so that 

z = cos v, 

(44) 

(45) 

and 

we find 
r(z + 1) = zr(z), 

which implies that the roots of Eq. (41) lie on the 
(36) real axis between the cuts (i.e., -1 :S x :S + 1). For 

x in this range Eq. (19) becomes 

r[B;Z) - nJr[BCZ)2 + 1 + n J 
Uo(z) = , (37) 

r[B;Z) + nJr[B(Z~ + 1 - n J 
which will be simply a ratio of two finite-order 
polynomials in B(z). If t is an odd integer 

t = 2n + 1, n = 0, 1, 2, ... , (38) 

then, ·since 

tan {l1T[B(z) + 2n + In = -1/tan [t1TB(z)], (39) 

we have 

Uo(z) = -tan2 [t1TB(z)] 

r[HB(z) - 1) - n]r[tB(z) + n + 1] 
X • 

r[HB(z) - 1) + n + l]r[tB(z) - n] 
(40) 

However, since tan2 [t1TB(z)] has the properties of a 
D(z), Eq. (26), this term can be put into D(z) so that 
Uo(z) is again effectively a ratio of polynomials in 
B(z). 

Although Huang and Low6 have investigated the 
roots of 

B(z) = y, y real, (41) 

for arbitrary (3(z) of Eq: (19), we shall explicitly study 
the case when (3(z) = (30 > O. In this case the 
substitution 

z = cosh (w), 

w = u + iv (42) 

shows that when z ranges over the entire (cut) first 
sheet, w is restricted to the range, - 00 < u < + 00, 

o :S v :S 1T. Then, since 

1 i iz 
B(z) == - + -In [z + q(z)] + - (30 

2 1T q(z) 

= 1 _ !!. + {30 sin (2v) 
2 1T 2 sinh2 u cos2 v + cosh2 u sin2 v 

+ i(~ + (30 sinh (2u) ) 
1T 2 sinh2 u cos2 v + cosh2 u sin2 v ' 

(43) 

Eq. (41) can have a root only when the imaginary 

B(x) = 1 sin-l (x) + x d: {30, (46) 
1T (1 - x ) 

which makes it evident that Eq. (41) has two real, 
symmetrically placed roots for any given value of y. 
Therefore, we see from Eqs. (37), (40), and (28) that 
the Sa.(z) can be constructed to have a finite number 
of poles and zeros if we choose the D(z) to have 
only a finite number of poles and zeros (aside from 
the tan2 [t1TB(z)] factor when t = 2n + 1) whenever 
t is zero or an integer. 

However, when t is not an integer, Uo(z), Eq. (27), 
will have infinitely many poles and zeros. This is 
easily seen since the r functions in Eq. (27) have poles 
only when their arguments are ° or negative integers, 
whereas the tangents have poles and zeros whenever 
their arguments are odd and even multiples of 1T/2, 
respectively. Unless t is an integer, there will be 
infinitely many of these poles and zeros which will 
not cancel each other. The form of B(x) given in Eq. 
(46) shows that B(x) will take on any arbitrarily large 
real value as x approaches threshold from below. 
Furthermore, when t is not an integer, Uo(z) has both 
an even and an odd part, each of which has infinitely 
many zeros and poles. Therefore, we cannot simply 
factor out the troublesome term as we did the 
tan2 [t1TB(z)] when t was an odd integer. If we want 
the S-matrix elements of Eqs. (28) to have only a 
finite number of poles and zeros and if we use the 
UoCz) of Eq. (27), we must construct a D(z) which 
will exactly cancel all but a finite number of the poles 
and zeros of Uo(z). 

Now Huang and Low6 have shown that if D(z) 
has only afinite number of zeros and poles, it can be 
represented as the finite product 

D(z) = rrl - irmq rr(1- anq)(1 + a:q) (47) 
m 1 + ir mq n (1 + anq)(1 - a:q) , 

where q(z) has been defined in Eq. (10). Cunningham4 
assumed that this could be extended to an infinite 
product if D(z) had infinitely many poles and zeros. 
We shall show that this infinite product never con­
verges. From Eq. (46) we see that the roots of 

(48) 
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are, for large N, 
(49) 

so that these roots accumulate at x = 1- (and at 
-1 +). If t is not an integer, D(z) must contain a factor 

IT (1 - irmq) = IT (1 + 2rm(1 - x
2

)! ), (50) 
m=O 1 + irmq m=O 1 - rm(1 - x2)! 

where 
rm---+ m/f3o· m-->oo 

(51) 

The necessary and sufficient condition that the infinite 
product in Eq. (50) converge is that 

00 r 
2 m 2)1 

m=O 1 - r m(1 - X 2 

(52) 

also converge.10 A necessary and sufficient condition 
that this series converge is that if we find anf(y) such 
that 

(53) 

then 

LOOf(y) dy (54) 

must exist.H From Eq. (51) we see that 

r m ---+ m (55) 
1 - rm(1 - x2)! m-->oo 130 - m(l - X2)~ 

so that 

fey) = y ! . (56) 
130 - y(1 - x2

) 

Since the integral in Eq. (54) diverges, the infinite 
product in D(z), Eq. (47), also diverges. Therefore, 
all Cunningham4 should have concluded was that 
the required D(z) cannot be represented as the infinite 
product of Eq. (47), not that no such D(z) exists. 
Furthermore, Levinson's theorem has not even been 
relevant here. 

IV. EXPLICIT BOOTSTRAP SOLUTIONS 

We shall now demonstrate that the S-matrix 
elements represented by Eqs. (29), (31), and (32) 
satisfy Levinson's theorem (8) and provide once­
subtracted solutions to the Low equation (12). For 
this we shall need to know the analytic structure of 
the exponential in Eq. (32), namely, 

i(Z2 - l)ilOO In [1 + F2(x')]x' dx' 
l(z) == , (57) 

7T 1 (X,2 - 1)!(x'2 _ Z2) 

10 E. C. Titchmarsh, The Theory of Functions (Oxford University 
Press, London, 1939), 2nd ed., p. 14. 

11 W. Kaplan, Advanced Calculus (Addison-Wesley Pub\. Co., 
Reading, Mass., 1952), p. 315. 

where F(x) is given in Eq. (33). The detailed examina­
tion of this function will be left to the Appendix. The 
B(z) we shall use is that given in Eqs. (19) and (20). 
Since the nonsingular part of the integrand in Eq. (57), 

In [1 + F2(X)]X 

(x2 - l)! 
(58) 

is continuous and has a continuous first derivative on 
any open interval 1 < x < R, where R is large but 
finite and positive, the function in Eq. (58) will satisfy 
a Holder condition12 here. Therefore, the integral in 
Eq. (57), and even its principal value, will exist12 for 
all finite values of Z2, except possibly Z2 = 1. The 
behavior of 1(z) in the neighborhoods of z = 1 and 
z = 00 is studied in the Appendix. 

In order to verify that Levinson's theorem can be 
satisfied, we define, for the range I ~ x < 00, 

Ao(x) = IAo(x)1 exp [ic/>(x)], (59a) 

D(x) = exp [iO(x)], (59b) 

B(x) - t - 1 = IB(x) - t - 11 exp [hp(x)], (59c) 

B(x) + t = IB(x) + tl exp [ix(x)], (59d) 

so that, from Eqs. (8) and (29), we have 

~~1 = H~C/> + ~O + ~?jJ), (60a) 

~~2 = H~C/> + ~O + ~x). (60b) 

From Eqs. (A5) and (A13) we see that 

~c/> = -i7T - (-!7T) = 0, (61) 

while Eqs. (19) and (20) show that 

~?jJ = 0 = ~x. (62) 

Therefore, 

(63) 

Since Eqs. (9) and (11) imply that the cutoff poles 
must appear in each Sa(z), since Eq. (32) shows that 
Ao(z) has a simple pole at z = 0, and since Eqs. (63) 
and (8) tell us to arrange for the same number of 
bound states in each channel, a reasonable form for 
D(z) would be 

D(z) = (1 - iq/K)(1 - iq/so) 
(1 + iq/K)(1 + iq/so)' (64) 

where 

B(xo) - t - 1 = 0, 0 < Xo < 1, 

So == (1 - x~)!, 0 < So < 1. (65) 

We see from Eqs. (29) that the pole at z = Xo will 
appear only in S2(Z) but not in S1(Z). Therefore, 

12 N. 1. Muskhelishvili, Singular Integral Equations (P. Noordhoff 
Ltd., Groningen, The Netherlands, 1953), pp. 11 and 26. 
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Eq. (64) implies that 

or 

tan Wj(x)] = - [q(X)(K ~ so)J 
KSo - q (x) 

t~O = -TT, 

(66) 

so that 
(67) 

(6S) 

Therefore, if we consider the target a bound state in 
channell at z = 0 and another bound state in channel 
2 at z = Xo, then Eqs. (15), with Al2 = 0 = A 21 , 

require that 

2(t + 1) ---"--.:........:::.. An = Res [Sl(z)]I.=o, (69a) 
(2t + 1) 

Azz = Res [Sz(z)]I.=",o' (69b) 

where, from Eq. (S), n1 = n2 = 1. 
We must now verify that All and A22 are positive in 

order that there be no ghosts. If we define the mani­
festly positive constant Cas [cf. Eq. (32)] 

C = (t + t) lim [zAo(z)], (70) 
..... 0 

then Eqs. (2Sa), (64), and (69a) imply that 

An = c(~) (1 + so) > 0, 
K - 1 1 - So 

(71) 

since K > 1, Eq. (11), and So < 1, Eq. (65). Similarly, 
we find that 

A22 = 2(2t + 1) s~ (1 - SO/K)Ao(Xo) > O. (72) 
Xo 1 + SO/K 

Finally, we see from the representation given in 
Eqs. (29) and (32) that the S-matrix elements have no 
poles on the first sheet, aside from the bound-state 
poles just discussed, only a finite number of zeros, 
and, from Eq. (A20), 

where 

F(x)=~ 
(t + t) 

x {!. In [x + (x2 - 1)i] + x ! flo}. 
TT (X2 - 1) 

(A2) 

We begin by computing fez) as z approaches threshold. 
We shall show that the most singular part of the 
integrand ofEq. (AI) yields a finite result at threshold, 
so that the less singular terms yield nothing. We simply 
state a result which is easily verified by an application 
of Cauchy's integral theorem, 

I (00 In (y - 1) dy In (ei1Tz) 
- ; J1 (y - 1)[y - (z _ 1)] = i(z)! ' (A3) 

where the phase of the argument of the logarithm has 
been chosen to produce a cut for 0 < x < 00 and a 
real logarithm for - 00 < x < o. Then, since P(x) is 
dominated by the second term in the square brackets 
as z approaches 1, 

l(z) ~ i(zZ - I)! 
2TT 

where we have taken the upper limit on the integral 
to be 1 + E and then added on a piece which vanishes 
in the limit when z approaches 1. Therefore, from 
Eq. (32), 

lim \Siz)\ = 0 
1.1 .... 00 [In \z\J1 

In terms of the phase 1>(x), defined in Eq. (59a), this 
(73) implies that 

along any rayon the first sheet so that one subtraction 
is sufficient for the Low equation. 
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APPENDIX 

In this appendix we shall study the threshold and 
asymptotic behaviors of 

i(Z2 - l)iloo In [1 + p2(X')]X' dx' 
l(z) = , (AI) 

TT 1 (X,2 - 1)i(x'2 _ Z2) 

1>(1) = -iTT. (AS) 

Also, Eqs. (19), (20), (29), (32), and (64) show that 

S«(z) ----+ 1, (A6) 
..... 1 

so that the S-matrix elements have the proper thresh­
old behavior. 

It is somewhat more difficult to find the asymptotic 
behavior of fez) as \z\ approaches infinity along an 
arbitrary direction in the z plane. Even though fez) in 
Eq. (AI) is a function of Z2 and the whole Z2 plane is 
only the upper half z plane, the reality property of 
Ao(z) [i.e., Ao(z*) = A:(z)] and of the Siz) will imply 
that there are no essential singularities anywhere on 
the first sheet of the cut z plane if there are none on 
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the first sheet of the cut Z2 plane. If we let R be an arbitrarily large but fixed constant and choose z > R, 
then the dominant asymptotic behavior of fez) is given as 

i(Z2 - 1)IJ 00 [ln2 (x) J x dx 
l(z) ~ 7T R In (t + !)27T2 (x2 _ 1)1(x2 _ z2) 

P'::i i(Z2 - 1)1{_2In [7T(t + i)j (00 dx +foo In [In
2 
(x)]x dx } 

7T Jl (X2 - Z2) R (x2 - 1)1(x2 - Z2) 

~ In [7T(t + !)][1 _ 2i] + 2iZfoo In [In (x)] dx 
z 7T R (x2 - Z2) 

=In[7T(t+m 1-- -In(InR)-- --In -- , ( 
2i) i J 00 dx (X - Z) 
Z 7T R X In (x) x + z 

(A7) 

where we have again added or dropped terms which 
vanish when the limit is taken. Let 

h(z) = _.!. (OO~ In (X - Z) 
7T JR x In (x) x + z 

_.!. (OO~ In (X + z) (A8) 
- 7T JR x In (x) x - z . 

If we let z be real and positive, then 

h(z) = In (In R) - In (In z) 

+.!. ('~In(~) 
7T JR x In (x) z - x 

+ i (,00 dx I (X + Z) 
-.;; J. x In (x) n x - z 

~ -In (In z) + !.. y . [Jl d 
..... '<X) 7T R/. Y In (zy) 

x In (!±l') + e dy In (!±l')] 
1 - y Jo yIn (z/y) 1 - y . 

(A9) 

Since a standard definite integral is 

(\n (1 + X)dX = 7T
2

, (A10) 
Jo 1 - x x 4 

we see that the two integrals in Eq. (A9) have the 
respective bounds 

2 1 7T 
(Alla) 

4In(R) , 

7T2 1 
(Allb) ---

4 In (z) 

Therefore, as z approaches infinity along the positive 
real axis, 

l(z) ~ In [7T(t + t)J + i ~ _1_, (A12) 
'''''00 In z 4 In R 

where the last term can be made as small as we please. 

From Eqs. (32) and (S9a) we see that 

4>(00) = -!7T, (AB) 

while Eqs. (19), (20), (29), and (64) show that, on 
the real z axis, 

ISiz)l~l, (A14) ..... 00 

as must be the case in order to satisfy unitarity, Eq. (1). 
Finally, we must examine fez) as z approaches 

infinity along any rayon the first sheet. If we let 
z = pei</>, then' 

(

X + Z) {[(X2 - p2)2 + 4X2p2 sin2 4>]I} 
In -- =In 

x - z ~ x2 + p2 - 2xp cos 4> 

+ i tan-1 (2X: sin t), (A1S) 
x - p 

where 0 < 4> < 7T, since we have already studied the 
case when z is real. Also, in order to recover the proper 
expression for real positive z (i.e., 4> = 0), the inverse 
tangent in Eq. (AIS) ranges from 7T to 7T/2 as its 
argument goes from zero to infinity, when p > x, but 
from 0 to 7T/2 if p < x. Furthermore, since wit shall 
need only I S",(z) I ,and therefore IAo(z)l, we can examine 
just the real part of h(z), Eq. (A8), since the imaginary 
part is bounded: 

e z =-- --tan R h( ) 1 foo dx -1 (2Xp sin 4» 
7T R X In (x) x2 _ p2 

l{(P dx -1 [2(X/p) sin 4>] 
= - -.;; JRX In (x) tan (x/p)2-1 

+ (00 dx -1 [2(P/X) sin 4>J} 
Jp x In (x) tan 1 _ (pJX)2 

__ 1.[ e dy tan-1 (2Y sin 4» 
7T JR/P y In (py) -1 + y2 

+ [1 dy tan-1 (2Y sin 4»J. (A16) 
Jo y In (p/y) 1 _ y2 

The last term in Eq. (A16) vanishes as p ~ 00 since 
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the integral is bounded by 

- -tan 1 il dy -1 (2Y sin 4» 
In p 0 y 1 _ y2 ' 

(AI7) 

and the integral in (A17) clearly exists [cf. the state­
ment about the range of the inverse tangent following 
Eq. (A15)]. The first integral in Eq. (A16) has the 
following asymptotic bounds, again because of the 
range of the inverse tangent: 

! 1 il dy In [(In p) ] < -
7T Rip Y In (py) 

X tan-1 (2Y sin 4>2) < In (In p). (A1S) 
-1 + y 

JOURNAL OF MATHEMATICAL PHYSICS 

Because of the minus sign in Eq. (A16), we see from 
Eqs. (AI), (32), (29), and (19) that, asymptotically 
for z not real, 

/Ao(z)/ < 7T(t + t)(ln /z/)-! (A19) 

so that 

/S,,(z)/ < (In /z/)!, (A20) 

which implies that one subtraction will be sufficient 
for the Low equation. That one subtraction is neces­
sary for bootstrap solutions has been shown by Huang 
and Low.6 
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The field equations for the Lee model are solved by constructing eigenfields from the most general 
possible combination of bare fermion and boson operators. These solutions are found to require an 
infinite number of boson terms, the coefficients of which obey the integral equations of scattering theory. 
It is discovered that the algebra of the Lee-model fermion eigenfields is not that of free-particle operators. 
The anticommutator of the ith fermion eigenfield At has the form {Ai, A£}+ = 1 - 2;;#i At Ai, where 
the sum is over all other fermion eigenfields. An algebra of this type is not peculiar to the Lee model. It 
will hold for all fields which obey a general Pauli exclusion principle and which are orthogonal to one 
another. The explanation for this algebra lies in the fact that these eigenfields represent operators which 
create states and not particles. Several other models exhibiting this same behavior (including the harmonic 
oscillator) are presented; for these models boson fields may also be constructed which have the above 
algebra. The asymptotic convergence of these eigenfields is not examined. However, it is found that all 
such Lee-model fermion fields, including those constructed by the Yang-Feldman method, must satisfy 
the above algebra and do not enjoy a free-fermion canonical algebra. 

1. INTRODUCTION 

Asymptotic fields are essential to the LSZ formula­
tion of field theory and have been studied intensely by 
many authors. In order further to understand the 
nature of asymptotic fields, it is useful to examine 
them for simple soluble models; in-fields for a sepa­
rable potential model have already been constructed,! 
while Ezawa2 has previously studied the Lee modeP,4 
in its lowest sector. 

One common way to define an asymptotic field is 
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t Based on part of a doctoral thesis submitted by Stanley Jernow 
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~ Present address: Knolls Atomic Power Laboratory, Schenec-
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• T. D. Lee, Phys. Rev. 95, 1329 (1954). 
, G. Klillen and W. Pauli, Kg!. Danske Vidensk. Selsk. Mat.-Fys. 

Medd. 30, No.7 (1955). 

through the Yang-Feldman construction.5,6 This 
construction yields fields which automatically obey 
the equation 

[H, AiL = EiAi (Ll) 

in the Heisenberg picture, where Ei is an energy, His 
the relevant Hamiltonian, and At is the asymptotic 
field creation operator. In the present work the solu­
tions to Eq. (1.1) are examined for the Lee model in 
momentum space. Here the field operators are con­
structed, not by the Yang-Feldman method, but by 
the most general possible expansion in terms of bare 
fields. 7 This procedure allows us to examine the 
in-fields in greater detail than Ezawa has done. 

5 C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950). 
6 W. Zimmermann, Nuovo Cimento 10, 597 (1958). 
7 H. Ezawa, K. Kikkawa, and H. Umezawa [Nuovo Cimento 25, 

1141 (1962») have given a similar construction for in- and out-fields. 
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It is discovered that the fermion eigenfield solutions 
to Eq. (1.1) must obey certain stringent conditions: 
they must have the noncanonical algebra 

{Ai' At}+ = 1 - :lAtAj = IT (1 - AtA j), (1.2) 
j*i j*i 

where the sum (or product) is over all other eigen­
fields. This algebra is explained by the fact that these 
fields represent operators which create states and not 
particles; it is proved that any eigenfield which obeys 
orthogonality and a general Pauli excl.usion principle 
(as defined in Sec. 3) has the algebra of Eq. (1.2). In 
Sec. 3 it is shown that the harmonic oscillator can be 
solved to yield fields having this same algebra. 
Another model which displays similar behavior is also 
given. 

The asymptotic convergence in time of these eigen­
field solutions has not been examined; thus a question 
remains as to whether the field operators are truly 
asymptotic fields or rather some linear combination 
of in- and out-fields. In partial resolution of this 
question, it should be noted that the mathematical 
expressions which occur in these solutions do contain 
appropriate ±iE factors, and the fields thus refer to 
incoming or outgoing waves (just as do the Yang­
Feldman retarded or advanced Green's functions; 
see Ref. 1 on this point). It is for these reasons that the 
w)rds asymptotic field and in-field are used freely in 
the following sections. The eigenfield solutions, 
furthermore, create scattering states for the sector in 
which they are examined, and are thus in-fields in that 
sector; they are identical to Ezawa's2 solution in the 
N-O sector. Finally, the fact that the most general 
fermion solutions to Eq. (1.1) are found to obey the 
anticommutation relations of Eq. (1.2) implies that 
any Yang-Feldman Lee-model fermion in-field must 
also exhibit this algebra. 

2. ASYMPTOTIC FIELDS OF THE LEE MODEL 

The Lee model describes three particles, two static 
fermions N and V, and a lightboson 0 which may 
move relativistically. The Hamiltonian is 

H = He + mNN+N + mvV+V + AG+N+V + AGV+N, 

(2.1) 
where 

He == f dkwkO+(k)()(k), 

G+ == f dkf(wk)()+(k), 

w k = (",2 + k2}1j, 

and 

{v, V+}+ = {N, N+}+ = + 1, 

{V+, V+}+ = {N+, N+}+ = {V, N}+ = {V, N+}+ 

= 0, (2.2) 

[O(k), O+(P)L = 6(p - k), 

[O(k),O(P)L = o. 

All bare fermion operators commute with all bare 
boson operators. The real functionf(wk ) is assumed 
smooth and to have a form sufficient to ensure the 
convergence of all the integrals which will be en­
countered. Vector symbols for momentum indices of 
boson operators have been suppressed. In Eq. (2.1) 
all symbols are bare. Renormalized quantities will be 
carefully defined when they appear. Often creation and 
destruction operators for the boson will be symboli­
cally referred to in the text as 0+ and 0, respectively. 

There are two constants of the motion for this 
Hamiltonian: the operators 

(eigenvalue q1) 

and 

Q2 == f ()+(p)()(p) dp + V+V (eigenvalue q2) (2.3) 

both commute with H. The eigenstates of these oper­
ators thus separate into mutually orthogonal groups 
(sectors) of common q1 and q2. If an operator is 
described as being known to within a certain sector, it 
means that the matrix elements of the operator be­
tween states belonging to that sector and to sectors 
of lower q1 and q2 are known exactly; if this is not the 
case, it will be made clear in the text. That sector with 
q1 = q2 = 1 is known as the N-O sector. 

Corresponding to the three elementary particle 
fields of the model, we expect to be able to construct 
three asymptotic field operators obeying the eigen­
value equations 

(2.5) 

(2.6) 

where the energies of Ot.;,(P) and N~ are bare and Mv 
is physical. 

To solve the above equations the in-fields will be 
expressed as linear combinations of all fermion terms 
of the correct quantum numbers with corresponding 



                                                                                                                                    

1328 S. JERNOW AND E. KAZES 

boson coefficients: 

(jt,.(p) == Ft(p) + pt(p)V+ N + Fi(p)N+V + Ft(p)V+V 

+ Ft(p)N+N + Ft(p)N+NV+V, (2.7) 

Vt,. == DiV+ + LtV+N+N + LtN+V+V + LtN+, 
(2.8) 

Nt,. == ptV+ + PtV+N+N + PtN+V+V + PtN+. 

(2.9) 

The quantities Ft(P) -- Ft(P) , Lt -- Lt, Pt -- Pt ' 
which are defined by Eqs. (2.7), (2.8), and (2.9), are 
boson operators containing (j-particle creation and 
destruction operators; therefore, they commute with 
all fermion operators, Note that the fermion terms, 
because of their quantum numbers, are the only ones 
which may appear in the in-fields (no matter how these 
in-fields are constructed). The in-fields of Eqs. (2.7), 
(2.8), and (2.9) are thus the most general asymptotic 
fields possible. Obviously, Ft(P), Ft(P), Ft(P), Ft(P), 
and Lt and Lt all have the quantum numbers of a 
(j+ operator; Ft(P) has the quantum numbers of 
(j+(j+; Pi and Pi have () quantum numbers; and 
Fi(p), Lt, Lt, Pt, and Pt have the quantum numbers 
of the vacuum. Once these boson coefficients are 
known, the problem is solved. 

The determining equations for these boson oper­
ators are found by substituting Eqs. (2.7)-(2.9) into 
Eq. (2.4)-(2.6). By equating coefficients of linearly 
independent terms-that is, coefficients of similar 
normal ordered fermion operators-the following 
equations of motion result: 

wpFi(p) = [He, Fi(p)L, (2.l0a) 

(wp + mN - mv)Ft(p) = [Ho, Ft(p)L 

+ A[G, Fi(p)L - Apt(p)G + AGFt(p), (2. lOb) 

(wp + mv - mN)Ft(p) = [Ho, Ft(p)L + A[G+, Fi(p)L 

+ AG+Ft(p) - AFt(p)G+, (2.10c) 

wpFt(p) = [He, Ft(p)L - Apt(p)G+ + AGFt(p), 

(2.l0d) 

wpFt(p) = [Ho, Ft(p)L - AFt(p)G + ,-lG+Ft(p), 

(2. We) 
wpFt(p) = [Ho, Ft(p)L - A[G, Ft(p)L 

- A(G+, Fi(p)t, 
and 

(Mv - mv)L~ = [Ho, Lit + AGL~ , 

(2.1Of) 

(2. 11 a) 

(Mv - mv)Lt = [Ho, Lt1- - A[G, Lt1- + ALiG, 

(2.11b) 

(Mv - mN)Lt = [Ho, Ltl_ - A[G+, L:1- + AL~G; 
(2.11c) 

(Mv - mN)Lt = [Ho, Lt1- + AG+Lt. (2.11d) 

The equations for Pi -- Pt are the same as Eqs. (2.11) 
with mN substituted for Mv (the solutions P; differ 
from L~ by their quantum numbers). 

These equations may be solved by constructing the 
most general Ft(P) -- Ft(P), Lt -- Lr, Pi -- Pt in 
terms of ()+ and () operators. An example is 

yt;(p) = f1n,I(P; PI)(J+(PI) 

+ f In,z(P; PI' PZ ; kl)O+(PI)(J+(pz)(J(k l ) 

+ f!n.aCP; PI' Pz, P3; kl' k2) 

X (j+(Pl)(j+(PZ)O+(P3)O(k1)(}(k2) + ... , 

n = 1,4,5,6. (2.12) 

Repeated variables are integrated over; corresponding 
dpi' dk j have been suppressed. For ease of recognition 
momentum variables corresponding to a (j+ operator 
have been labeled Pi' while those corresponding to a 
(j have been labeled k j • The coefficients have been 
made symmetric separately in all Pi and in all k j ; for 
example, 

A.3(P;PI,Pz,Pa; kl' k2) = !4.a(P;PI,P2,Pa; k2' k l ) 

= A.a(P;Pl,Pa,Pz; kl' k2) = A.a(P;Pa ,P2' PI; kl' k2) 

= !U(P;Pl,Pa'P2; k2' k 1) = etc. 

Similar constructions are true for Fi(P), Ft(P), all J.o;; , 
and all P;. 

The normal-ordered expressions for F;(P), Lt, and 
P; contain an infinite number of terms, as required by 
the equations of motion. That is, after substitution of 
the F;(P), L; , or P; into the corresponding equations 
of motion, those equations must be normal ordered in 
order that coefficients of like linearly independent 
(j-particle operators may be equated. This process 
would lead to equations of the symbolic form 

(j+ + (j+(j+(j = (j+ + (j+(j+(j + (j+(j+(j+(j(j 

if a finite number of terms were used for F;(P), Lt, 
or P;. The expansion to an infinite number of terms 
for the boson operators avoids this difficulty and, 
furthermore, assures that the solution of the equations 
of motion will be solutions to all sectors. We will, of 
course, only be able to solve for the lowest sectors, 
the lowest terms of the series. 

Consider (j~(P). Examination of Eqs. (2.10) shows 
that Eqs. (2.10a) and (2.lOf) decouple from the rest. 
In fact, Eq. (2. lOa) is completely separate and allows 
solution for Fi(p) by itself. It is obvious that substi­
tuting Eq. (2.12) for Fi(P) results in an infinite series of 
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the symbolic form 

Fi(p) ,...., 0+ + 0+0+0 + 0+0+0+00 + .. " (2.l3) 

each term of which must have a total energy wp' But 
in the limit A-+- 0, we expect Ft(P) = O+(P), and all 
other F~(p) = O. Therefore, as an initial condition at 
A = 0, the value 

Fj(p) = O+(p) (2.14) 

shall be imposed. Equation (2.10a) is independent of 
A, however; therefore, Eq. (2.14) represents Ft(P) for 
all A. 

Note that Eqs. (2.10d), (2.10e), and (2.10f) may be 
added together to give 

wp<Ft(p) + Ft(p) + pt(p» 

= [HII , Ft(p) + Ft(p) + pt(p)L· (2.15) 

Setting initial conditions in a manner similar to the 
treatment of Ft(p) above, 

Ft(p) + Ft(p) + Ft(p) = 0 (2.16) 

will be demanded for all A. It is thus possible to 
concentrate on Ft(P) -+- Ft(P). 

Substituting the general forms for Ft(P) -+- Ft(P) 
into Eqs. (2.10), using Eq. (2.14), and taking appro­
priate matrix elements yields for the lowest coefficients 

Aj(Wp ) 

where (2.18) 

D+(wp ) = (wp + M" - me + A2 

f dqj2(Wq) ) 
X (wq + mN - M" - Wp - iE) 

in the limit E -+- O. (2.19) 

In this derivation, +iE was added to wp in the 
realization that Ot;, (p) will be used in the construction 
of the N-O scattering state. It is, of course, the same 
+iE which is inherent in the retarded Green's function 
of a Yang-Feldman definition of the in-field. 8 Note that 
because of Eqs. (2.4) and (2.6), Ot;,(p)N1t 10) is the 
N-O scattering state. Since the scattering amplitude 
is proportional to (O+N+ I Ot;,Nt;), we expect the 
amplitude to be contained in the constructed Ot;.(p); 
and, indeed, 15.1 (p; PI) is (aside from kinematical 
factors) just this amplitude. The b(wp - wp) term 
which would ordinarily appear on the left-hand side of 
Eq. (2.18) has been dropped. The equations of motion, 

8 See Ref. 1. 

Eqs. (2.10), do not yield a unique solution for the 
coefficient of this term; setting it equal to zero is 
consistent with the normalization 

(NinO"t,(p) I O"t,(k)Ni;,) = b(p - k). (2.20) 

It was not found possible to proceed any further 
with the formation of Ot;.(P); the equations of motion 
appear too complicated simply to separate and allow 
solution of higher terms of Ft(P), Ft(P), pt(P), or 
Ft(P). When the equations are decoupled, extremely 
involved integral equations appear. But considering 

0in""" 0+ + V+N + O+N+N, 

it is clear that 0t;.(P) is known completely within the 
N-O sector. 

Now consider the ~t field; because Eqs. (2.11a) and 
(2.11d) decouple from the rest, it is possible to solve 
for Lt and Lt alone. Substituting the constructions 
analogous to Eq. (2.12) into these equations, normal 
ordering, and, where necessary, taking matrix ele­
ments, we get 

M" - m" = A2f j2(Wq
) dq (2.21) 

M" - mN - Wll 
and 

In Eq. (2.22), t'l.l is arbitrary. An appropriate t'1,1 
may be found by requiring 

(2.23) 
This yields 

1t'1.112 = (1 + A2f dqj2(wq) 2)-1. (2.24) 
(M" - mN - wq ) 

Both the constant t'l.l of Eq. (2.24) and the eigen­
value equation for M", Eq. (2.21), are expressions 
which would also result from the usual calculation of 
the physical V-particle state 1 V)p by the solution of 

H IV)p = Mv IV)p. (2.25) 

Demanding normalization of 1 V)p above gives the 
renormalization constant Z, which is just 1t'1.112. In­
deed, the usual calculation yields 

(2.26) 

This result was to be expected, of course, from Eq. 
(2.5). Similarly, Ot;.(P) 10) = 1 O+(P» , and, as will 
appear, Nt;, 10) = IN+). In what follows Mv == mN 

for convenience. 
By taking matrix elements of Eqs. (2.11a) and 

(2.11d), it is possible to write the general equations for 
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the nth terms of Lt and Lt. These are 

nt4•n(PI, ... ,Pn; kl ,' .. , kn- l) = A(Wkl + ... + Wkn_l - wpl - ... - wPn + iE)-l 

x [tl,n(PI' ... , Pn-l ; kl' ... , kn_1)f(wp) + tl.n(PI, ... , Pn-2, Pn ; kl' ... , kn-l)f(wPn_l 

+ ... + tl,n(P2' P3, ... ,Pn ; kl' ... , kn_l)f(wp)] + C(Wk1 ' ... , Wkn_
1 

; wPl ' ... , wPn) 

X c5(Wkl + ... + Wkn_l - wp1 - ... - wPn) (2.27) 

and the integral equation 

tl.n(PI, ... ,Pn-l; kl' ... , kn- l) = [A/(n - l)][D+(Wkl + ... + Wkn_1 - wPl - ... - wPn_1)]-1 

X [t4 •n- I(PI,···, Pn-l; k1,"', kn- 2)!(Wkn_) + .,. + t 4 •n- 1(P1,···, Pn-1; k2 ,"', kn_I)!(Wk)] 
- A2[D+(Wkl + ... + Wkn_l - wPl - ... - wPn_l)]-1 

X f dqf( waHtl,n(P1' ... , Pn-2, q ; k1 , ... , kn-l)f( wPn_1) + ... + tl,n( q, P2 , ... , Pn-1 ; kl , •.. , kn_l)!( wp1) 

(wa + wPI + ... + wPn_l - Wk1 - ... - Wkn_l - iE) 

+ A f dqC( Wkl ' ... , Wkn_l ; wPl ' ... , wPn_1 ' wq)c5( Wk1 + ... + Wkn_l - wPl - ... - wPn_1 - wa)!( wq). 

Here [similar to Eq. (2.18)] +iE was added to Mp 
because of the future use of Vit to construct the 
scattering states. The coefficient C( Wkl ' ... , Wkn_l ; 
wPl ' ... , wPJ may be set equal to zero. For n = 2 
Eq. (2.28) reduces to 

P ( • k) = -A
2
Z!f(wp)f(wk) X'i(wp) 

V1.2 p, D+( ) D+( ) wp Wk - Wp Wk - Wp 

X f dqf(wa)t1•2(q; k). , (2.29) 
(w q - Wk + wp - IE) 

which is exactly that integral equation which arises 
(by use of the Lippmann-Schwinger equation) for the 
amplitude for V-O scattering. While Eq. (2.29) has 
been solved by several authors, 9-12 we shall not now be 
concerned with its solution. The present work shall 
be restricted to the N-O sector. 

A better understanding of Eq. (2.28) is gained by 
observing that, for n = 3, the solution represents that 
part of the V-OO scattering amplitude which is inde­
pendent of the V-O scattering. The appearance of 
scattering amplitudes in the Vii; field is not surprising, 
for such amplitudes are proportional to 

Hence, Vit should intrinsically contain scattering 
amplitudes; we expect that the equations for higher­
order coefficients will be just those which would arise 
from a consideration of higher-sector scattering. 

• R.P. Kenschaft and R. D.Amado, J. Math. Phys. 5,1340 (1964). 
10 A. Pagnamenta, J. Math. Phys. 6, 995 (1965). 
11 C. M. Sommerfield, J. Math. Phys. 6, 1170 (1965). 
11 E. Kazes, J. Math. Phys. 6, 1772 (1965). 

In solving for Vii; and for Nii;, the symmetry 

Lt = - Lt , pt = -11, 
L1 = - Lt, 11 = -11 

(2.28) 

(2.30) 

is required to llll sectors. A detailed proof will be given 
in the Appendix. The Nii; field may be solved for in 
exactly the same manner as Vit. Here, again, relevant 
scattering amplitudes appear. 

All the in-fields can now be written: 

0+( ) = 0+( ) + Af(wp)V+N + A"l(Wp) 
m P P D+(wp) D+(wp) 

f

!(WPl)O+(PI)N+N 
x , (2.31) 

wp - wPl + iE 

Vin = (Z)l{v+ - V+N+N + Aff (WP1)O+(P1)N+V+V 
wPl 

- AI f(Wp)O+(P1)N+}, (2.32) 
w Pl 

N!- = Af!(Wk)O(k)V+ _ ;,ff(Wk)O(k)V+N+N 
m D+( wk) D+( wk) 

- (1 + A2f f(wp)f(wk)O+(p)O(k) ) N+V+V 
D+(Wk)(Wk - wp + i€) 

+ (1 + A2f f(wp)f(wk)O+(p)O(k) )N+ 
D+(Wk)(Wk - wp + i€) , 

(2.33) 
where repeated variables are integrated over. 

These fields are all known to the N-O sector; 
indeed, because 

Vin = LtV+ - LtV+N+N - LtN+V+V + LtN+, 
Nin = ptV+ - PtV+N+N - PtN+V+V + ptN+, 

(2.34) 
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the two central terms of Vii; and Nii; are known to 
even higher sectors. This form is demanded by the 
equations of motion. 

One su~prising result of Eq. (2.34) is the inability 
of these m-fields to create a state with the IN+V+) 
quantum numbers. In fact, from Eq. (2.34), 

Ntn vtn = VtnNtn = O. (2.35) 

And such a state may not be created by the com-
b· . O+N+N+ . matIon in in in' smce Nii;Nit = O. Thus the 
operators Nit, Vii;, and O~ do not create a complete 
set of states. 

What has been overlooked is the fact that N+V+ it­
self is an eigenfield satisfying 

[H, N+V+L = (mN + m,,)N+V+. (2.36) 

T~is in-field may, of course, be multiplied by any 
sUItable quantum-numberless combination of 0+ and 
o operators. The resulting in-field 

(2.37) 

would obey 

[H, RN+V+] = MRN+V+, (2.38) 

where R is a boson operator with the quantum num­
bers of the vacuum and M is an energy. Investigation 
of Eq. (2.38) shows that the equation of motion for 
R is independent of A. Thus, similar to the discussion 
concerning Eq. (2.14), R may be set equal to 1 for all 
A; with this choice, Eq. (2.36) holds. 

It may be noted that Eq. (2.35) should follow inde­
pendently of the equations of motion or of the explicit 
form either of the Hamiltonian or of V+ or N+ Thl'S In In' 

is because, regardless of the properties of any other 
field, N+V+ exists as an in-field [obeying Eq. (2.36)] 
for the Lee model. Therefore, the state IN+V+) is a 
physical state with an energy of mN + m". Were 
NitVit (or VitNit) nonzero, then the state IN+V+) 
( I 

+ + In In 
or VinNin» would also exist, but with an energy 

mN + M". In the limit of A -- 0, of course, only the 
first state would be present. There seems to be no 
physical reason why this state should, upon the 
introduction of an interaction, split into two states of 
the same quantum numbers but different energies. 
The impossibility, then, of having two such states is 
reflected in Eq. (2.35). Furthermore the state IN+V+) , In In 

cou!d be expected not to exist, since its energy would 
be Just the sum of the energies of the two physical 
particles which make it up, implying the absence of 
an interaction energy. 

Now it is possible to express the Lee-model 
Hamiltonian in terms of in-fields. Using Eqs. (2.24), 
(2.19), (2.31), (2.32), and (2.33), along with the 

dispersion relation for D(z), 

1. _ ~ A2f dqf2(Wa) 
D(z) Z ID+(waW (wa _ z)' (2.39) 

yields exactly 

H = f dkwkOtn(k)Oin(k) + mNNtnNin 

+ M"VtnVin + (mN + m,,)N+NV+V, (2.40) 

where the last term is the energy of the N+ V+ field. 
The scattering states of this Hamiltonian are obvious. 

Consider, now, the algebra of the in-fields. Because 
these fields are not known to all orders, the commuta­
tion (or anticommutation) relations are not expected to 
be known exactly. Nor, in general, will they be known 
up to even the N-O sector. This can be seen, for 
example, with the aid of the commutator 

[Oin(k), Otn(p)L = Oin(k)Otn(P) - otn(P)()in(k). (2.41) 

We may insert complete sets of states 

[Oin(k),Otn(P)]-

= I 0inCk) Im)(ml otnCP) - I otnCP) Im)(ml Oin(k). 
m m 

(2.42) 

Considering a matrix element of the commutator 
then, is equivalent to considering a matrix element of 
O~(p) [or Oin(k)] between 1m) and some other state' 
if 1m) belongs to a higher sector than N-O th~ 
original matrix element of the commutator cann'ot be 
determined from the solutions given in Eqs. (2.31), 
(2.32), and (2.33). Thus, the choice of commutator 
matrix elements which should be correct is narrowed 
extremely: only those elements which do not connect 
to higher sectors may be considered. 

For the commutator of Eq. (2.42) this restriction 
allows only the (0110) and (NIIN) elements to be 
known exactly. Using Eqs. (2.31) and (2.39) results in 

[Oin(k),Otn(P)]_ 

= o(p - k) + (incomplete higher sector terms). 

(2.43) 

Therefore, to the lowest sector, the O~(P) field obeys 
boson commutation relations. 

The commutator of O~(P) with other in-fields may 
be investigated. Consider 

[N+V+, O;n(p)L 

= - [Ft(p) + Ft(p) + Ft(p)]N+V+ = 0 (2.44) 
to all orders in the O-particle operators; this follows 
from Eqs. (2.7) and (2.16). And similarly, 

[VN, O;n(p)L = [Ft(p) + Ft(p) + Ft(p)]VN = 0 

(2.45) 
to all orders. 
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Considering the lowest-order terms for which it is 
possible to know the matrix elements, it is found that 

[Ntn' fJtu(p)J_ = 0, (2.46) 

[Nin , 0tn(p)L = 0, (2.47) 
and 

[Vin , Otn(p)J- = 0. (2.48) 

[Vlt, O~(P)L has no matrix elements which lie in a 
low enough sector to be known. 

The algebra for the fermion fields is found to be 

{Vin' vtn}+ = 1 - NtnNin - NTNV+V, (2.49) 

and 

{VN, N+V+}+ = 1 - NtnNin - VtnVin (2.51) 

to the lowest correct orders. These anticommutation 
relations are not those of free-fermion fields. The physi­
cal and formal reasons for this algebra will be dis­
cussed in Sec. 3. 

3. ASYMPTOTIC FIELD ALGEBRA 

In this section we shall consider more closely the 
unusual anticommutation relations exhibited by the 
fermion asymptotic fields of the Lee model [Eqs. 
(2.49), (2.50), and (2.51)]. In order to do so, the 
general properties of these fields will first be examined. 

The fermion in-fields may be said to obey a general 
Pauli exclusion principle (GPEP) to all sectors. In the 
present context this statement means that any two 
creation operators, for the same or different in-fields, 
when multiplied together yield zero: 

(a) NtnNtn = 0, (f) N+V+Vtn = 0, 

(b) vtnvtn = 0, (g) vtnN+V+ = 0, 

(c) N+V+N+V+ = 0, (h) N+V+Ntn = 0, (3.1) 

(d) NtnVtn = 0, (i) NtnN+V+ = 0. 

(e) VtuNi;. = 0, 

This result follows from Eqs. (2.2) and (2.34). 
The fermion in-fields are also subject to an orthog­

onality condition to all sectors. This will mean that 
the state created by any fermion in-field of the Lee 
model is orthogonal to a state created by any other 
fermion in-field. This condition is expressed by the 
equations 

(a) VinNtn = 0, (d) NinVtn = O,} 
(b) VNVtn = 0, (e) VinN+V+ = 0, 

(c) VNNtn = 0, (f) NinN+V+ = 0, 

(3.2) 

where Eqs. (3.2d)-(3.2f) are the Hermitian conjugates 
of Eqs. (3.2a)-(3.2c) and have been written here for 

completeness. The proof of Eqs. (3.2) is given in the 
Appendix to all sectors; it will later be shown (in the 
proof of Theorem I in this section) that the GPEP 
follows as a consequence of orthogonality alone and is 
actually independent of Eqs. (2.34). 

The further consequences of the GPEP and orthog-
onalityare 

(a) {vtn' vtn}+ = 0, (d) {vtn' Ntn}+ = 0, 

(b) {Ntn' Ntn}+ = 0, (e) {vtn' N+V+}+ = 0, 

(c) {N+V+, N+V+}+ = 0, (f) {Ntn' N+V+}+ = 0, 

{Vin, Ntn}+ = NtnVin =;!= 0, 

{Yin, N+V+}+ = N+V+Vin =;!= 0, 

{Nin' N+V+}+ = N+V+Nin =;!= 0. 

(3.3) 

(3.4a) 

(3.4b) 

(3.4c) 

Using the orthogonality conditions, the anti­
commutation relations, Eqs. (2.49), (2.50), and (2.51), 
may be written, respectively, as 

{Yin, vtn}+ = (1 - NtnNin)(1 - N+NV+V), (3.5) 

{Nin , Ni;.}+ = (1 - vtnVin)(1 - N+NV+V), (3.6) 

{VN, N+V+}+ = (1 - NitNin)(1 - VitVin)' (3.7) 

And these equations yield 

Vinvtn = NinNtn = VNN+V+. (3.8) 

The fermion-asymptotic fields of the Lee model, 
then, because of the GPEP, are fields which create 
individual states; no two of them may be combined to 
form a third state. These fields, furthermore, can be 
used to express the original Hamiltonian in a diagonal 
form, Eq. (2.40). And they do not have a free-fermion 
field algebra. 

Some insight into the origin of these properties may 
be gained by considering the general diagonal repre­
sentation for any Hermitian Hamiltonian: 

H = 2 Em Im)(ml, (3.9) 
m 

where the sum is over all orthonormal eigenstates of the 
Hamiltonian, Em being their energies. 

It is clear that a solution to the eigenvalue equation 

[H, AiL = EiAi, i = 1,2,3, ... , (3.10) 

is the operator 

At == li)(O/, Ai == /O)(i/, (3.11) 

where 10) is the ground state (zero-energy state) of H. 
Other operators exist which satisfy Eq. (3.10) (e.g., 

/i)(m/, if we take E; == Ei - Em), but the At of Eq. 
(3.11) is one which will not destroy /0). At can thus be 
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called an eigenfield. The set of all A+ is complete in that 
it can create a complete set of states from the ground 
state 10). In what follows i ¥= 0; the zero-state projec­
tion operator 10)(01 will be discussed in detail later. 

Because the eigenstates are orthonormal, the eigen­
fields obey orthogonality as well as a general Pauli 
exclusion principle: 

(3.12) 

and 

Ai At = 0, for every i, j. (3.13) 

Furthermore, it is apparent that 

H = I EmA!Am· (3.14) 
m 

There is a connection between orthogonality and the 
general Pauli exclusion principle for all operators, 
such as Ai, regardless of their representations. As will 
later become apparent, the in-fields Vit, Nj;, and 
N+V+ correspond to Ai; the connection between 
Eqs. (3.2) and (3.1) will be made clear in the proof 
of the following theorem. 

Theorem 1: If a set of creation operators B+ exists 
and is complete in that it can create a complete set of 
states of different quantum numbers (from the 
ground state 10», then the existence of a GPEP 
between the operators implies orthogonality, and 
conversely. 

Proof (a) GPEP implies orthogonality. This state­
ment may be proved by a consideration of the oper­
ator BJJj (i ¥= j). It is obvious, because of the GPEP, 
that this operator has no nonzero matrix elements 
between any states (kllm), where 1m) == B-:;' 10). The 
element (01 BiB; 10) is zero because all operators 
create states of different quantum numbers. The set of 
states 1m) is complete; therefore 

BiBt = 0 for all i,j, i ¥=j. 

(b) Orthogonality implies a GPEP. The proof is 
similar to that above. Because of orthogonality and the 
fact that (01 Bt = 0, the operator BtBt has no 
nonzero matrix elements except possibly (il BiB; 1m). 
This last matrix element is zero from a consideration 
of quantum numbers. Therefore 

BtBt = 0 
for every i,j. Q.E.D. 

Note that the presence of ()t;,(P) makes the Lee­
model fermion-asymptotic fields an incomplete set. 
The first part of this theorem, then, does not apply, 
but the second part can be used, and the statement 

made previously is proved: orthogonality does imply 
the GPEP for the fermion-asymptotic fields of the 
Lee model. 

It is possible to show the connection between the 
GPEP (and orthogonality) and the algebra of the 
operators B+. 

Theorem 2: If a set of creation operators B+ exists 
and is complete in that it can create a complete set of 
orthonormal states of different quantum numbers 
(from 10» and obeys a GPEP (or,equivalently,orthog­
onality), then it has the algebra 

{Bn' B~}+ = 1 - I B-:;'Bm = IT (1 - B!Bm)· 
m*n m*n 

(3.15) 
(No summation is intended on left-hand side.)· 

Proof This theorem may be proved by expanding 
the operator BnB;; in a complete set of states. A shorter 
method consists of simply noticing that, because of 
the GPEP, the only nonzero element in the matrix 
representation of BnB~ is 

(01 BnBt 10). 

If the set B+ creates orthonormal states, then 

(a) (01 BnBt 10) = 1 for any n. 

There is another operator with this matrix representa­
tion and that is 10)(01. Thus the two operators are 
identical. Now 

(b) 10)(01 = 1 - I Im)(ml = 1 - I Bri; 10)(01 Bm , 
m m 

where the sum is over all states but 10). The equation 
above is an integral equation for 10)(01, the first 
iteration of which yields a solution: 

(c) 10)(01=1-~B!(1-~ln)(nl)Bm 
= 1- IB!Bm 

m 

by the GPEP. Therefore, 

(d) BnBt = 1 - I B!Bm = IT (1 - B-:;'Bm), 
m m 

where the second equality results from orthogonality. 
Thus 

(e) {Bn' Bt}+ = 1 - I B-:;'Bm = II (1- B-:;'Bm). 
m*n m*n 

Q.E.D. 

It is now possible to show that any set of operators 
B+ which creates a complete set of states (Bt 10) = 
Ii» and which obeys a GPEP (BtB~ = 0) is identical 
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to the set A+. Consider 

Bt = Bt I In)(nl = Bt 10)(01 = li)(OI = At, 
n=O 

where the sum is over all states including the ground 
state. 

Similarly, one can show that any set of operators 
B+- which obeys orthogonality and which creates 
orthonormal states is identical to the set A+. Consider 

n=O n=O 

where the sum is over all states including the ground 
state. Therefore, by Theorem 2, 

Bt = li)(OI (1 - ~B!Bm) = li)(OI = At. 

Thus the operators At obey the field algebra of 
Theorem 2 (and of the Lee model). This, of course, 
can be proved by direct computation using Eq. (3.11). 
Note that everything which has been said about At 
applies for any Hermitian Hamiltonian, irrespective of 
the question of second quantization (it can apply to 
the hydrogen atom, for example). Operators have 
been found which have a definite asymptotic field 
algebra and which diagonalize the Hamiltonian. 

To relate the eigenfields to field-theoretical concepts, 
consider the harmonic oscillator 

H = liwat-a, (3.16) 

where 

[a, at-]_ = 1. (3.17) 

Now 

At = ~~;:: 10)(01 = li)(OI. (3.18) 

The operator 10)(01, which destroys every state but 
10), may be expressed in terms of at- and a. The result, 
which is proved in the Appendix, is 

00 

10)(01 = 1 + I(-I)j(a+)j(a)j/j!. (3.19) 
j=l 

And, therefore, 

At = (~+Y(1 + ~(-lr(a+)j(a)jfj!). (3.20) 
(I I)! j=l 

Conversely, the operator a+ may be expressed in 
terms of At. Since 

00 

a+ = I In + 1)(nl (n + 1)1, (3.21) 
n=O 

then 
00 

a+ = At + L At+IAn(n + 1)1. (3.22) 
n=1 

The two expressions, Eqs. (3.20) and (3.22), can be 
shown to each obey the correct field algebra [Eqs. 
(3.15) and (3.17)]. It is apparent, then, that boson 
operators as well as fermion can have the anticom­
mutator algebra of Eq. (3.15). The Hamiltonian of 
Eq. (3.16) can be recast into either of the two diagonal 
forms: 

H = I nliwAtAn = liwa+a. (3.23) 
n=1 

Thus there are clearly two types of eigenfields: 

(3.24) 
and 

[H, AtL = nliwAt. (3.25) 

Before presenting the analogous problems in the 
Lee model, a discussion of the simpler considerations 
arising for a model Hamiltonian with two bosons 
seems appropriate. Consider the Hamiltonian 

H = m1a+a + m2b+b, (3.26) 
where 

[a, at-L = 1 = [b, b+L, 

[a, b+L = [b, a+L = O. (3.27) 

The results are 

and 

10)(01 = (1 + j~l( -1)j~~+)j(a)j) 

X 1 + I "'--""""----'~~:....-
( 

00 (-1)m(b+)m(b)m) 

m=l m! 

A:'8 = (a+rcb+y 10)(01, 
(r!)1(s!)1 

(3.28) 

(3.29) 

where rand s are not both zero. Also 

00 

a+ = I A~I.8Arjr + 1)t, (3.30) 
r=O 
8=0 

where, for the r = s = 0 term, At,o is meant, and 

00 

b+ = I A;'8+lAr . .<s + 1)t, (3.31) 
r=O 
8=0 

where, for the r = s = 0 term, At.1 is meant. The 
Hamiltonian may be written in the diagonal form 

H = I (r mi + sm2)A;'8Ar.8' (3.32) 
r=O,s=O 
(r=s;"O) 

Carrying out this program for the Lee-model 
Hamiltonian in the absence of interactions and for a 
static boson 

H = mNN+N + mvV+V + liwa+a, (3.33) 

with the usual commutation and anticommutation 
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rules, results in 

10)(01 = (1- N+N)(1 - V+V)( 1 + 1~1( _l)i~~+)'i(a)} 
(3.34) 

Labeling the eigenfields At in accordance with their 
quantum numbers and indicating the numbers of 
bosons in a field by the subscript n, we have 

V+ == (a+t V+ 10)(01 
m.n (n !)! 

= (a+t (V+ - V+N+N) 
(n!)! 

x 1 +L ' ( 
(_1)i(a+)'(a)l) 

i=l j! 

_ (a+t + 
Nin n = -1 N 10)(01 

. (n!)~ 

= (a+t (N+ - N+V+V) 
(n!)! 

x 1 +2 . ' ( 
(_l)i(a+)i(a)i) 

1=1 J! 

(N+V+). == (a+t N+V+ 10)(01 
m.n (n!)! 

= (a+)n N+V+(1 + L( _1)I(a+)I(a)i) , 
(n!)! 1=1 j! 

+ _ (a+) 
()in n = -! 10)(01 

. . (n!) 

= - 1 + 2 ~~--'--'---'--(a+t ( (-1)I(a+)'(a)l) 

(n!)! 1=1 j! 

x (1 - N+N)(1 - V+V), (3.35) 

from Eqs. (3.34) and (2.2). We may express the bare 
particle operators in terms of the above eigenfields; 
for example, similar to Eq. (3.21), 

N+ = 2 Nt..n()in.n + 2 (N+V+)in.n Vin.n (3.36) 
n=O n=O 

or, rewriting the term at n = 0, 

N+ = Nin + (N+V+)inVin + 2 Nin.n()in.n 
n=l 

+ 2 (N+V+)in.nVin.n, (3.37) 
etc. n=1 

I t is possible to consider the case of nonstatic bosons 
for the Lee model without interaction. In that case 
the result, which is proved in the Appendix, is 

10)(01 = (1 - N+N)(l - V+V) 

x [1 + i(-:1)ifdP1'" dpi 
1=1 J! 

X ()+(P1) ... ()+(Pi)O(P1) ... ()(Pi)} (3.38) 

Note that this equation is expected to hold even in the 
presence of interactions, for the state 10) is both the 
physical and the bare vacuum state. 

We now have the explanation for the algebra of the 
fermion-asymptotic fields of the Lee model. In the 
absence of the interaction there are two eigenfields: 
the elementary particle field operators and the fields 
corresponding to At. If either orthogonality or a 
general Pauli exclusion principle is to be satisfied by 
the in-fields, only At will do; then an algebra such as 
the one found for the full Lee model results. 

For the full Lee model with interaction, the double 
choice is not present: the fermion in-fields can 
correspond only to At and not to the bare particle 
operators. To see this better, consider A. --+ 0 in Eqs. 
(2.32), (2.33), and N+V+: 

lim Vin = V+ - V+ N+ N = V+(1 - N+ N)(1 - V+V), 
),-+0 

(3.39) 

),-+0 

(3.40) 

),-+0 

(3.41) 

The right-hand sides of these equations contain the 
fermion part of the 10)(01 operator; thus, aside from 
boson terms, the in-fields above are the At of Eq. 
(3.11 ). 

The fact that the asymptotic fields do not go to the 
free-particle operators in the limit of A. --+ 0 is perhaps 
surprising, but it is not a condition unique to the Lee 
model. Consider, for instance, the model Hamiltonian 

H= Ho + Hz, (3.42) 

Ho == mU+U + mW+W, (3.43) 

Hz == A.1U+W + A.1W+U + A.2W+WU+U, (3.44) 

where U+ and W+ are fermion fields of the same 
quantum number, obeying 

(3.45) 

and 

{U+, U+}+ = {W+, W+}+ = 0 

= {U+, W+}+ = {U, W+}+. (3.46) 

The eigenfields for this model, o~, may be found by 
considering 

[H, otl- = MnOt, n = 1,2,3. (3.47) 

If the O~ are constructed in the same manner as the 
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Lee-model in-fields, 

a+ == R+ U+ + R+ U+W+W n l.n 2.n 
+ Rt.nW+U+U + Rt.nW+, 

n = 1,2 (Rtn are c numbers), (3.48a) 

at = U+W+, (3.48b) 

then 

at = (2)-t(U+ - U+W+W - W+U+U + W+), 

(3.49a) 

at = (2)-t(u+ - U+W+W + W+U+U - W+) 

(3.49b) 

results. The eigenfields of Eq. (3.48a) have single­
fermion quantum numbers, while a; can create the 
two-fermion state. The eigenstates of Hare (2)-t 
X (U+ ± W+) 10) and U+W+ 10). It is apparent, since 
10)(01 = (1 - U+U)(1 - W+W), that 

at = (2)-!(U+ + W+) 10)(01, 

at = (2)-t(U+ - W+) 10)(01, 

at = U+W+ 10)(01, 

(3.50a) 

(3.40b) 

(3.50c) 

where the (2)t is from normalization. The eigenvalues 
are 

Ml = m + AI' 

M2 = m - AI, 

Ma=2m+A2' 

(3.5Ia) 

(3.5Ib) 

(3.5Ic) 

The a-:; obey orthogonality and a GPEP. They have 
the algebra of the Lee-model asymptotic fermion 
fields. And the Hamiltonian of Eq. (3.42) can be 
written in the diagonal form 

n=a 
H = LMna-;;an. (3.52) 

n=1 

In the limit of Al -- 0, .1.2 -- 0 the free-particle fields 
are not retrieved; the fields a-:; remain the same. Only 
the eigenvalues change; all the algebraic conditions 
are unaltered. Therefore, this simple model, Eq. 
(3.42), repeats what had been found for the Lee 
model; the eigenfields a-:; are the At of Eq. (3.11). 

It must be noted that the fields Nit, Vit, and N+V+ 
of Sec. 2 are not exactly equivalent to At, except in the 
fermion subspace. There are several reasons for this. 
One is that, in solving the equations of motion, Eqs. 
(2.11), for L-:; or P;; , only those solutions which had 
no <5 functions of energy were sought [see the discus­
sion of Eqs. (2.27) and (2.28)]. Since the boson terms 
of Eq. (3.38) correspond to such <5 function terms, 
this would remove the boson subspace from the 
10)(01 part of Vi~ and Nit. Another reason is that 
boson expressions were definitely disregarded in 

setting the initial conditions for the N+V+ asymptotic 
field [see the discussion after Eq. (2.38)]. Thus, the 
fermion in-fields are independent of the boson terms 
of 10)(01. 

Similar reasons account for the failure of O"fu(P) to 
exhibit orthogonality or a GPEP with the other 
asymptotic fields. The initial conditions for O"fu(P) 
[Eqs. (2.14) and (2.16)] were specified in such a way 
as to leave off the boson summation term in the 
expression for 10)(01. This automatically removes the 
boson subspace. The fermion subspace was deleted by 
dropping a functions of energy in the solution for 
!S(P;Pl), the coefficient of N+N [see the discussion 
concerning Eqs. (2.18) and (2.20)]. Hence, that fer­
mion part of 10)(01 which lies within the N-O sector 
is missing from Ofu(P). The conditions chosen were, 
therefore, just those necessary to make the boson 
field operator behave as an elementary-particle 
operator. 

4. CONCLUSIONS 

The Lee-model asymptotic fields were constructed 
by an expansion in terms of bare particle operators. 
This expansion led to equations of motion [Eqs. 
(2.10) and (2.11)] which have certain novel features: 
the eigenvalue equation, Eq. (2.21), appears imme­
diately as do the integral equations for scattering 
processes. These result without considering the 
Lippmann-Schwinger or Low equations and therefore 
represent new derivations of the scattering ampli­
tudes. Also, the Vit and Nit fields contain terms 
(V+N+N and N+V+V) which have no matrix elements 
in the N-8 sector, but which nevertheless can be solved 
for. The Vit field thus agrees with that found by Ezawa2 

(except for normalization) in the N-O sector; Ezawa 
did not find the V+N+N or N+V+V, terms which are 
vital. 

Perhaps the most interesting result of this study was 
the discovery that the fermion in-fields of the Lee 
model do not obey a free-fermion algebra. These 
in-fields represent operators which create states, not 
particles, and they obey a general Pauli exclusion 
principle and orthogonality. As such, they correspond 
to the operator At ofEq. (3.11). Therefore, they have 
the algebra of Eq. (3.15) and, in the limit of .1.--0, 
they do not go into the free-particle operators. These 
eigenfields do diagonalize the Lee-model Hamiltonian, 
however, as shown by Eqs. (2.40) and (3.14). For 
the Lee model this diagonalization is complete, and 
Eq. (2.40) is exactly equal to the Hamiltonian of 
Eq. (2.1), even though the in-fields are known only 
up to the N-O sector. The discussion and examples of 
Sec. 3 shows that these results are not peculiar to the 
Lee model. 
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It was found that the ()"fu(P) fields of the Lee model 
exhibit a freedom which the fermion fields do not 
have. It was possible to choose initial conditions such 
that the boson in-field has neither the fermion nor the 
boson terms of 10)(01. The ()tn(P) is thus not the At 
of Eq. (3.11); it obeys canonical commutation rules 
and is not subject to a general Pauli exclusion principle. 
The states 

1 ()tn(PI) , ()tn(P2»' l()tn(PI)' ()tn(P2)' ()tn(P3»' ... , 

l()tn(PI)' ()tn(P2)' Yin), 

l()tn(PI)' ()tn(P2), ()tn(P3), Yin), ... , 

etc., may therefore be created by successive application 
of the one asymptotic field. A similar freedom was 
found for the boson terms of the 10)(01 part of the 
fermion in-fields: they may be set equal to the c 
number 1. 

The equations of motion demand that the fermion 
part of the 10)(01 operator be present for Vit, N~, 
and N+V+, however. The fundamental cause for this 
restriction on the form of the fermion in-fields for 
both the Lee model and the Hamiltonian ofEq. (3.42) 
remains unknown. It is certainly an object for future 
study. However, the mere presence of such a restriction 
indicates that additional conditions must be satisfied 
when constructing asymptotic fields by the use of the 
Yang-Feldman equation. Furthermore, a field-theo­
retic model may have to obey special conditions in 
order to escape having asymptotic fields of the form 
found here, for the dyadic li)(OI is one that can exist 
for any model which has both eigenstates and a 
ground state. 
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APPENDIX: PROOF OF SYMMETRY TO ALL 
SECTORS, EQ. (2.30) 

A proof Eq. (2.30) for the lowest sectors for L! can 
be obtained by considering those equations which 
result from adding Eq. (2.l1a) to Eq. (2.11b) and 
Eq. (2. 11 c) to Eq. (2. 11 d) : 

(Mv - mv)(Lt + Lt) 
= [He, Lt + LtL + A(Lt + Lt)G, (Ala) 

(Mv - mN)(Lt + Lt) 
= [He, Lt + LtL + A(Lt + Lt)G+. (Alb) 

Expanding the operators At == Lt + Lt and Bt == 
Lt + Lt in the most general combination of boson 
operators gives 

At = IXI + I 1X2(P, k)()+(p)()(k) + ... , 

Bt = f (31(P )fJ+(p) 

+ I (32(PI, P2 ; kIWt (PI)()+(P2)fJ(kl ) + .... 
(A2) 

Substituting Eq. (A2) into Eq. (AI) and taking 
appropriate matrix elements yields 

1X2(P, k) = 0, 

(31(P) = o. 
(A3) 

Therefore, to the lowest sector, Eq. (2.30) is true. 
In order to prove symmetry to all sectors, write 

Eqs. (2.11) in the following form: 

Lt = 1 [He, LtL + 1._ GLL 
(Mv - m,,) (Mv - mt,) 

(A4a) 

Lt = 1 [He, L1L 
(Mv - mv) 

+ 1 (-A[G, LtL + ALtG), (A4b) 
(Mv - mv) 

Lt = 1 [He, LtL 
(Mv - mN) 

+ 1 (-A[G+ L+]_ + AL:t-G+) (A4c) 
(M _) , I 2, 

v mN 

(A4d) 

Each of these equations is characterized by having the 
commutator of the unknown boson term with Ho on 
the right-hand side plus an inhomogeneous term which 
is an algebraic combination of other boson operators. 

We may iterate Eqs. (A4) , using the inhomogeneous 
terms which appear. Define, for any operator Q, 

X [He,' .. , [He, Q]_ .. ·In. (AS) 

where the symbol N on the left-hand side stands for 
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the bare mass of the N particle, mN' Thus we get 

Lt = ). v(Hr, GLt), (A6a) 

Lt = -). v(Hr, [G, Ltt) + )'v(Hr, L!G), (A6b) 

L! = -). N(Hr, [G+, Ltt) + ). N(Rr, LtG+), (A6c) 

Lt = ). N(Hr, G+Lt)· (A6d) 

It is possible to substitute Eq. (A6d) into Eq. 
(A6a) for Lt and to get 

Lt = ).2 v(Hr, GN(Hr, G+Lt». (A7) 

Substitution ofEq. (A6d) into Eq. (A6b) for Lt and of 
the resulting equation into (A6c) for Lt leads to 

Lt = -). N(Hr, [G+, Ltt) 

+).2 N(Hr, v(Rr, L!G)G+) 

_).3 N(Hr, v(Hr, [G, N(Rr, G+Lt)L)G+). 

(AS) 

Now use of Eq. (A 7) to reexpress the last term in 
Eq. (AS) as 

-). N(Hr, LtG+) +).3 N(Hr, v(Hr, N(Hr, G+Lt)G)G+) 

and rearrangement of terms results in 

L! = ).2 N(Hr, v(Hr, LtG)G+) 

+ N(Hr, { - )'G+Lt + ).3 v(Rr, N(Rr, G+ Lt)G)G+}). 

(A9) 

The second term on the right-hand side of Eq. (A9) 
may be defined as n, and thus 

Lt = N(Hr,).v (Hr, )'LtG)G+) + n. (AlO) 

It is now possible to iterate this equation using n; 
this procedure results in 

L! = n~l {N(Rr,). v(Hr, ).nG)G+)f + n, (All) 

where an obvious notation has been used for the 
iterative series. Rewriting n in terms of its original 
definition and realizing that the iterative process is 
distributive allows one to cancel terms. This yields 

The equations for the boson terms of the N~ field, 
P~, have the same structure as those for L~, and 
therefore can be treated in exactly the same manner. 
The fact that the physical Nt;,. mass is equal to the bare 
N+ mass mN does not lead to difficulty; we may con­
sider a Lee-model interaction Hamiltonian with an 
extra term IJN+N. The physical mass would then be 
mN + /j and the structure of the equations of motion 
would remain unchanged. It would then be possible 
to carry out the proof of Pi = -Pi, Pi: = - Pt with 
the limit /j ~ 0 being taken in the end. 

Proof of Orthogonality to All Sectors, 
Eq. (3.2) 

Most of the equations of orthogonality [Eqs. (3.2b), 
(3.2c), (3.2e), and (3.2f)] can be shown to all. sectors 
merely by substituting the proper Eq. (2.34) into the 
corresponding field and using the bare fermion algebra 
of Eq. (2.2). Equations (3.2a) and (3.2d) may not be 
proved this way, however, and must be looked at in 
greater detail. 

Consider the term in Eq. (3.2a), VinNi~; substituting 
Eq. (2.34) and the proper Hermitian conjugate 
equation into it leads to 

VinNtn = <I> - <I>N+N - <I>V+V + <I>N+NV+V, 

(AI4) 
where 

(AIS) 

The boson operator <I> may be investigated by proper 
manipulation of the equations of motion, Eqs. (2.11). 
One obtains 

(mN - Mv)L1Pt 

= [Ho, L1Pt] - )'L4G+Pt + )'L1GPt, 

(mN - M v)L4pt 
= [Ro, L 4Pt] + )'L4G+Pt - AL1GPt. (A16) 

Referring to the manner in which Eqs. (A4) were 
treated shows that an iterative solution of Eqs. (AI6) 
leads to 

Lt = -). N(Rr, G+L1)· 

A comparison with Eq. (A6d) shows 
(AI2) and thus 

(A13) 

to all sectors. If Eq. (A13) is substituted into Eq. 
(A6b) for Lt, 

Lt = -). v(Rr, GLt) 

results. A comparison with Eq. (A6a) then shows that 

Lt = -Lt· 

Thus Eq. (2.30) is proved to all sectors for the L!. 

VinNtn = 0 

is proved to all sectors. The final equation of orthog­
onality, Eq. (3.2d), is just the Hermitian conjugate 
of the above. 

Proof of Eq. (3.19) 

In order to prove this equation, realize that the 
desired operator 10)(01 obeys 

10)(01 In) = 0, 

10)(0110) = 10), 

(AI7) 

(AIS) 
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where In) is the n-boson state (n > 0). Thus 10)(01 
must be of the form 

00 

10) (01 = 1 + ! f3i(a+)i(a)i, (A19) 
;=1 

where 
00 

! f3j(a+);(a)i In) = - In). (A20) 
i=1 

The coefficient f3i must now be determined. 
If we consider 

! f3 .(a+)i(a)i(~ 10») = - (L 10»), 
;=1 ' (1 !)! (1 !)! 

(A21) 

where the quantity in parenthesis is the 11) state, then 
all terms in the summation, except the first, yield zero. 
This follows from 

j> n, 

= n! (a+t 10), j ~ n, 
(n - j)! 

(A22) 
which is a result of Eq. (3.17). 

Thus we see that f3I = -1. It is now possible to 
reason by induction and to assume 

( _1)N-1 
f3N-1 = (N _ I)! . 

Demanding that Eq. (A20) be true for n = N, using 
Eq. (A22) , and taking matrix elements yields 

1 ;=N-1 (-1); 
f3N = - - - !. . (A23) 

N! ;=1 J! (N - J)! 

The summation on the right-hand side of this equation 
may be evaluated by using a well-known series for 
binomial coefficients13 : 

1- N! + N! 
1!(N-1)! 2!(N-2)! 

( -l)NN! - ... + = O. (A24) 
N!(N - N)! 

Thus 

f3N = (-1)N/N!, 

and Eq. (3.19) is proved. 

(A25) 

18 L. B. W. Jolley, Summation of Series (Dover Publications, Inc., 
New York, 1961), p. 210 (no. 1102). 

One should also note that Eq. (3.19) is an explicit 
solution of the integral equation 

00 

10)(01 = 1 - ! B;;; 10)(01 Bm , (A26) 
m=1 

where 
B;;'IO) = [(a+)m/(m!)!] 10). (A27) 

This fact is readily seen by the substitution of Eq. 
(3.19) into Eq. (A26) and the use of Eq. (A24). 

Proof of Eq. (3.38) 

Here we are interested only in the boson terms of 
Eq. (3.38). The fermion terms are obvious and shall 
be suppressed in the work following. The proof is 
similar to that of Eq. (3.19); we may construct 
10)(01 of the form 

00 

10)(01 = 1 + IrJ.; 
;=1 

x f dP1 ... dp/)+(P1) ... (J+(P;)O(P1) ... (J(p;). 

(A28) 

The series on the right-hand side of this equation must 
be an operator which has the eigenvalue -I when 
applied to a state containing any number (not zero) 
of (J particles of any momenta. We realize that, because 

[(J(k), (J+(P)L = b(p - k), (A29) 

the only terms in the series which will survive when 
applied to a state containing n(J particles are those for 
which j :::;; n. The term with j = n can be seen to obey 
the eigenvalue equation 

rJ.n I dP1 ... dPn(J+(P1) ... (J+(Pn) 

X (J(P1) ... (J(Pn) 1(J+(q1) ... (J+(qn» 

= n! rJ.n 1(J+(q1) ... (J+(qn». (A30) 

Using Eq. (A29), each term withj < n can be shown 
to obey an equation similar to that above, but with 
eigenvalue [n!/(n - j)!]rJ.n • Thus we wish the rJ. j to 
obey 

n n' 
IrJ.; '. =-l. 
;=1 (n - J)! 

(A31) 

We may use Eq. (A24) to determine that rJ.j = (-IY /j. 
Thus Eq. (3.38) is proved. 
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The problem of diffraction of a plane-polarized electromagnetic wave incident on a right-angle 
dielectric wedge is formulated as a singular integral equation in k space. A solution of the singular integral 
equation is constructed as a power series in the index of refraction. This series converges when the index 
of refraction is near unity. Using this solution, the electric-field amplitude at the tip of the wedge is 
examined. We also prove as incorrect a closed-form analytic expression claimed in the literature to be a 
global solution of the problem considered here. 

1. FORMULATION 

As shown in Fig. 1, we consider a piecewise-homo­
geneous, isotropic, conducting, dielectric medium of 
infinite extent referred to rectangular Cartesian 
coordinates (Xl' X 2 , xa). The 900 wedge occupying 
the region Xl ~ 0, Xz ~ 0, IXal ::::;; 00 is characterized 
by a constant electrical conductivity ad' a constant 
magnetic inductive capacity #d' and a constant 
electric inductive capacity Ed. The medium external 
to the 900 wedge is similarly characterized by different 
constant parameters a", #", E". It will be further 
assumed that both regions have the magnetic inductive 
capacity of free space, that is, #d = #v = #0' and 
that the relative dielectric constant of the 900 wedge 
is unity or greater so that Ed/EV ~ 1. 

In terms of (1.4) the constitutive equations 
medium are 

D(r, t) = E(r)E(r, t), 

J(r, t) = a(r)E(r, t), 

B(r, t) = /loH(r, t). 

For a harmonic time dependence of the form 

EJr, t) = E(r) exp (-iwt) 
and 

H(r, t) = H(r) exp (-iwt), 

Maxwell's equations yield 

V x H + iw~(r)E = 0, 

V x E - iW#oH = 0, 
where 

~(r) = E(r) + ia(r)w-l • 

of the 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(LlO) 

Our starting point is to derive an integral equation 
from Maxwell's equations relating the electric- and 
magnetic-field intensities E(r, t) and H(r, t) with the 
electric displacement D(r, t) and magnetic induction 
B(r, t) at the point r and time t. Maxwell's equations 
in the MKS system are 

VXE+oB=O V·B=O, 

Now taking the curl of (1.9) and using (1.8) yields 

{V'2 + w2#o~v}E = VV· E - W2#0~"[(~/~") - I]E, 

"(1.11) 

ot ' 
aD v x H - at = J, V· D = p, (Ll) 

with a continuity equation relating the charge density 
p and the current density J given by 

V. J + op = o. 
at (1.2) 

We define piecewise-constant electrical inductive 
capacity and conductivity functions by 

E(r) = Ed' Xl ~ ° n X 2 ~ ° n IXal ::::;; 00, 

= E", Xl::::;; 0 U Xz ::::;; 0 n IX31 ::::;; 00, (1.3) 

a(r) = ad' Xl ~ 0 n Xz ~ 0 n IXal ::::;; 00, 

= a", Xl ::::;; 0 U X 2 ::::;; 0 n IX31 ::::;; 00. (1.4) 

1340 

FIG. 1. Planewave incident on a dielectric wedge. 
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where 
(1.12) 

With the aid of the divergence of (1.8) we can express 
VV· E as 

VV· E = -VV· [(~(r)/~v) - I]E, (1.13) 

and using this in (1.11) gives 

{V'2 + £02,uo~v}E = -{VV. +£02,uo~v}[(~(r)/~v) - 1]E. 

(1.14) 

We shall restrict our considerations to electric fields 
which are polarized parallel to the vertex of the wedge, 
i.e., along the X3 axis, and which do not depend on 
the X3 coordinate. For such fields given by 

E(XI' X2) = [0,0, E(XI' X2)], (1.15) 

Eq. (1.14) reduces to the scalar two-dimensional form 

{V'2 + £02,uo~v}E(XI' X2) 

= -£02,uo~.,[(~(r)/~v) - 1 ]E(XI' x2). (1.16) 

It is convenient to define complex wave vectors k(r), 
k"" and kv by 

k\r) = £02,uo~(r) 
= k~, Xl ;;::: ° n Xa ;;::: ° n IX31 :::;; co, 

= k!, Xl :::;; ° u Xz :::;; ° n IX31 :::;; 00, (1.17) 

in terms of which (1.16) becomes 

(V'z + k!)E(xl , xz) = -{k\r) - k!}E(xl , x2). (1.18) 

Equation (1.18) immediately yields the basic integral 
equation for E(x l , x 2): 

E(XI' x2) = EO(XI, X2) + ~ (k~ - k;) 
4 

X L 00 L 00 H~I)(kv[(XI - x~)Z + (xz - x~)Z]!) 

X E(x~, x~) dx~ dx~. (1.19) 

Here Eo (Xl , X2) represents the electric field incident on 
the wedge Xl;;::: ° n X2 ;;::: ° n IX31 :::;; co and Eo 
satisfies the equation 

(V'z + k;)Eo(xl , x2) = 0. (1.20) 

The kernel in (1.19) is a Hankel function of the first 
kind of order zero, and kv and k", are chosen to have 
positive imaginary parts 

1m (kv) > 0, 1m (k",) > 0. (1.21) 

Our problem now is to solve the singular integral 
equation (1.19). In order to do this we shall first 
convert (1.19) into a singular integral equation for 
the Fourier transform of E(XI' X2). 

2. SINGULAR INTEGRAL EQUATION FOR THE 
FOURIER TRANSFORM OF THE 

ELECTRIC FIELD 

Let (1.19) be multiplied by exp (ikIXI) and the 
integral S ~ 00· •• dXI taken. With the aid of the relation 

~ L: H~l)(kv[(XI - x~)Z + (x2 - x~)Z]!) 

where 

X exp [ikl(XI - x~)] dXI 

= exp [-y IX2 - x~i], (2.1) 
2y 

y = (ki - k;)t, Re (y) ~ 0, (2.2) 

Eq. (1.19) yields, on interchanging orders of integra­
tion, the result 

E+( kl , xz) + R_( kl , xz) 

= E~)(kl' xz) + (k~ - k!) 

xi
ood ,exp [-y Ixz - x~I]E (k ') 

Xz + 1> X 2 • 
° 2y 

(2.3) 

The functions E+(kl , x2), R_(kl' x2), and E!:)(kl , x 2) 

are defined by 

E+(kl , xz) = Loo E(XI, X2) exp (iklxl) dXI, (2.4) 

R_( kl' x2) = LOoo exp (i kIXI) 

X {E(XI' X2) - EO(xl , xz)} dxl , (2.5) 

E!:)( kl , xa) = L 00 Eo( Xl, X2) exp (iklxl) dXI . (2.6) 

Each of the integrals (2.4)-(2.6) will converge 
uniformly for kl restricted to a certain half plane 
determined by asymptotic behavior assumed for 
E(XI' x2) and EO(XI, X2) when IXII--+ co. Recalling 
that the time dependence is e)!:p (-i£O/), the reflected 
field {E(XI' x2) - Eo (Xl , X2)} is assumed to have the 
asymptotic form 

{E(xl , x2) - Eo (Xl , X2)} = O{exp (-ibixi - ib2x2)}, 

(2.7) 

for Xl --+ - 00 or X2 --+ - co. Similarly, it is assumed 
that the incident field has the asymptotic form 

EO(xl , x2) = O{exp (ialxl + ia2x2)}, (2.8) 

for Xl --+ + 00 or X 2 --+ + 00, and that the transmitted 
field decays for large positive Xl or X 2 more rapidly 
than does the incident field, i.e., 

E(XI' X2) = o{exp (ialXI + ia2x2)}, (2.9) 
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for Xl ~ + 00 or X 2 = + 00. It now follows from 
(2.4)-(2.9) that E+(k1 , x2) and Ef!)(k1 , X2) are analytic 
in the half plane 1m (k1) > -1m (al ) and that 
R-(k l , X2) is analytic in the half plane 1m (k1) < 
1m (hI)' These three functions (2.4)-(2.6) share the 
common strip of analyticity 

-1m (al) < 1m (kJ < 1m (bJ. (2.10) 

Multiplying (2.3) by exp (ik2X2) and calculating 
J~oo' .. dX2 with the aid of (2.11), 

foo exp [ik2(X2 - x0 - I' Ix'!. - xm dX2 
-00 21' 

1 
(2.11) 

yields 

E++{k1 , k2) + R...+(kl , k2) + R __ (kl' k2) + Rr-(kl , k2) 

(0) (k~ - k!) = E++(kl> k2) + 2 2 2 E++(klo k2), (2.12) 
(k l + k2 - k,,) 

where 

E++(k1 , k2) = Loo LooE(Xl' X2o) 

x exp [iklx l + ik2X2] dXl dx2, 

R-+(kl , k2) = looJ:oo {E(Xl' x2) - EO(XI' x2)} 

(2.13) 

x exp [iklx1 + ik2X2] dXl dX2' (2.14) 

R __ Ckl' k2) = J:oo J:oo {E(x l , x2) - EO(Xb x2)} 

x exp [iklx l + ik2X2] dXl dX2' (2.15) 

The intersection of these four pairs of half planes i~ 

the tube or pair of strips T(A) specified by 

-1m (aJ) < 1m (kJ) < 1m (bJ), J = 1,2. (2.22) 

Now consider the function 

H(kl' k2.) = l/(ki + k~ - k;), (2.23) 

multiplying E++(kl> kJ on the right side of (2.12), 
This function is analytic and uniformly bounded in 
the tube (pair of strips) defined by 

11m (kJ)1 < BJ , J = 1,2, (2.24) 

(Bi + Bi)! < 11m (k,,)I, (2.25) 
where 

(2.26) 

As a result of (1.20) and (2.8), the numbers al and a2 
appearing in (2.8) and (2.22) must satisfy 

al = k" cos (J, a2 = kl) sin (J; (2.27) 

consequently 
11m (al)1 < 1m (kv), (2.28) 

11m (a2)1 < 1m (kv), (2.29) 
when 

0< () < n/2. 

Since the incident field E~~(kl' k2) specified by (2.17) 
is also analytic in the pair of half planes (2.18), it is 
possible to make (2.22) a common tube of analyticity 
for each term in (2.12) by choosing hJ = BJ where 
B J satisfies (2.25). 

We see that (2.12) is an equation of the Wiener­
Hopf type in two complex variables, valid in the 
common pair of strips (2.22) and requiring for its 
solution the determination of four unknown analytic R+-<k1, k2) =1°

00 

Loo{E(Xl , x2) - EO(xl , X2)} 

x exp [ik1x1 + ik2X2] dXl dx2, 

E~o;.(k1> k2) = Loo So 00 EO(Xl' X2) 

( ) functions E++, E_+, R __ , R+_, in terms of the kernel 
2.16 H(kl , k2) and the given incident field E~~(kl' k2)' 

Our approach to solving (2.12) will be to convert it to 
a singular integral equation in two complex variables 

x exp [iklx l + ik2X2] dXl dx2 • (2.17) which can be solved by a Neumann series. To do this, 

Arguments based on the assumed asymptotic forms 
(2.7)-(2.9) show that the four functions (2.13)-(2.16) 
are analytic, respectively, in the four pairs of half 
planes 

we shall assume and justify a posteriorithat E++(kl ,k2) 

has a bounded L2 norm in the tube (2.22); in other 
words, 

(++): 1m (k1) > -1m (al ), 

IIE++1I2 = {I: I:IE++(kl , k2)1
2 

dk1 dk2t < 00 

1m (k2) > -1m (a2), (2.30) 

(2.18) when 1m (kl ) and 1m (k2) lie in the tube (2.22). It 
(- +): 1m (k l ) < 1m (hI), 1m (k2) > -1m (a2), follows from (2.26)-(2.29) that H(kb ka) is both 

(2.19) analytic and bounded in the tube (2.22) provided 

1m (b2), 

(2.20) 

1m (b2). 

(2.21) 

bl=B1 , b2 =B2 • (2.31) 

Therefore, the product H(kl' k2)E++(kl , k2) must 
also be in L2 because of (2.30) and we have 

(2.32) 
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Now, by a slight modificationl of a remark due to 
Bochner, z we can assert that the function H(kl' k2) X 

E++(k1 , kz), which is analytic and of bounded Lz 
norm in the tube (2.22), has a unique additive decom­
position into the sum of four functions analytic and 
bounded, respectively, in the four pairs of half planes 
(2.18)-(2.21) intersecting to form the tube (2.22). 
These four functions are uniquely determined and 
are representable by Cauchy integrals. 

On decomposing the last term in (2.12) by 
Bochner's theorem and equating the (+ +) parts on 
both sides of (2.12) (because of uniqueness), we 
immediately obtain the required singular integral 
equation for E++: 

E+t-(k1 , kz) 

= E(Ol(k k) + (k: - k;) 
+t- 1, Z (27Ti)2 

f 00 f 00 E+t-(Zl, Zz) dz! dz2, 
X -00 -00 (zi + z~ - k;)(Zl - k1)(zz - kz) , 

(2.33) 

where 1m (k1) 2 0 and 1m (k2) 2 O. If we can obtain 
a solution of (2.33) which belongs to Lz, then 
additively decomposing H(kl' kz)E++(k1 , k 2) by means 
of Cauchy integrals yields unique expressions for the 
remaining unknowns R_+(k1 , kz), R __ (kl' k 2), and 
R+_(kl' k 2) by virtue of Bochner's theorem. In other 
words, we need only compute E++(k1 , kz) to com­
pletely solve the two variable Wiener-Hopf problem 
(2.12). 

3. SOLUTION OF THE SINGULAR 
INTEGRAL EQUATION 

We begin our discussion of (2.33) by allowing 
1m (k1) -+ 0+ and 1m (ks) -+ 0+ to obtain 

E++(k1 , kz) 

(0) (k~ - k;) { = E+t-(kl , k2) + 4 H(kl' k2)E++(k1 , k2) 

+ P fOO Hez!, kz)E+t-(Zl, k2) dz 
7Ti -00 (Zl - k1) 1 

+ P fOO H(kl' zz)E+t-(kl , Zz) dz 
7Ti -00 (Z2 - kz) z 

+ P f'" dZ l .!: 
7Ti -00 (Zl - kl) 7Ti 

foo H(Zl, Zz)E+t-(Zl, Zz) d } 
X Zz, 

-00 (Z2 - k2) 
(3.1) 

1 E. Kraut, S. Busenberg, and W. Hall, Bull. Am. Math. Soc. 74 
372 (1968). ' 

• S. Bochner, Am. J. Math. 59,732 (1937). 

which is the singular integral equation we shall solv( 
Equation (3.1) can be written in a more compac 
operator form by introducing the singular commutin 
operators3 Si defined by 

in terms of which (3.1) becomes 

E+t- = E~~ + tA(I + Sl)(l + Sz)(HE++), (3.3 

where I is the identity operator and A = (k: - k;). 
In deriving (2.33) it was assumed in (2.30) that th 

Lz norm of E+t- is bounded. It will be shown next that 
when the L2 norm of the incident field E~ is bounded 
then, because H(kl' k z) is bounded in the tube (2.22) 
it is possible to choose (k~ - k~) such that (2.3"0) i 
satisfied. 

Theorem 1: Suppose that 

IIE~112 < 00, (3.4 
and that 

0< max IH(kl • k2)1 == max IHI < 00; (3.5 
1m (k)=O 

then there exist values of A with 0 < IAI < 00, suc1 
that the function E++(k1 , k2) satisfying (3.3) has , 
bounded L2 norm 

(3.6 

Proof" Application of Minkowski's inequality t( 
(3.3) yields 

IIE++112 ~ IIE~~112 + t IAI {IIHE+t-liz + II S1HE++112 

+ II S2HE++1I2 + II SlS2HE++ II 2}' (3.7: 

Observe now that the principal-value operator S, 
gives the Hilbert transform of the function on whicl1 
it operates and that the Hilbert transform is a bounded 
linear operator in L2 satisfying' 

IISiHE++112 = IIHE++llz' i = 1,2. (3.8) 

The double principal-value integral appearing in the 
last term in (3.1) is taken with respect to two different 
variables; hence 

II SlS2HE++ II 2 = IISzHE++llz = IIHE++llz. (3.9) 

Because of (3.5), 

IIHE++1I2 < max IHIIIE++1I2' (3.10) 

3 F. D. Gakhov, Boundary Value Problems (Pergamon Press, Inc., 
New York, 1966), pp. 70-72. 

, E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals 
(Clarendon Press, Oxford, England, 1948), 2nd ed., p. 122. 
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and combining (3.8), (3.9), and (3.10) with (3.7) yields and 

liE II < IIE~1I2 (3.11) 
++ 2 - (1 - 1.1.1 max IHI) 

(3.18) 

The choice 

1.1.1 < {max IHI}-l 
from (2.23). In other words, the convergence criterion 

(3.12) (3.12) shows that the iterative solution of (3.1) 
converges for 

establishes (3.6) and proves the theorem. 

Arguments similar to those used to prove Theorem 
1 will now be employed to show that A may be chosen 
small enough so that the integral equation (3.3) is a 
contraction mapping with respect to the L2 norm. 
Consequently, (3.3) has a unique solution E++ in L2 
which can be obtained as a limit of successive approxi­
mations converging in the L2 norm to E++. 

Theorem 2: For 0 < 1.1.1 < {max IHI}-l and E++ in 
the complete normed linear space L 2 , 

T(E++) = E~~ + tA(I + Sl)(I + S2)(HE++) (3.13) 

is a contraction mapping with respect to the L2 norm. 
Hence, the integral equation 

(3.14) 

has one and only one fixed point belonging to L2 • 

This fixed point is the limit of a sequence of successive 
approximations converging in L2 norm to E++ . 

Prooif.· Let E(2) and E(I) be members of the L2 . ++ ++ 
function space; we have 

II T(Ei~) - T(E~t)112 
= ! 1.1.111(1 + Sl)(I + S2)H(E~~ - E~~)1I2' (3.15) 

(3.19) 

Let p be a complex relative index of refraction defined 
by 

p = kd/k". (3.20) 

In terms of p, Eq. (3.19) becomes 

A maximum value on the right side of (3.21) is taken 
on when k" = Ikvl exp (hr/4) and the iterative solution 
of (3.1) will converge in this case for wedges whose 
complex relative dielectric constant satisfies 

o ~ Ip2 - 11 < 1 
or 

1 ~ Ipl < vi 
The successive approximations to the solution 

E~(kl> k2), E~(kl' k2), ••• , E~(kl' k2) 

take the form 

E(n+1)(k k) - ECO)(k k) ++ l' 2 - ++ 1, 2 

(3.22) 

(3.23) 

+ Hk~ - k~)(I + Sl)(I + S2)(HE~), 
(3.24) 

Expanding the operators (l + Sl)(l + S2) on the 
right side of (3.15) and using Minkowski's inequality where n = 0, 1,2," " 1m (k1) = 0, 1m (k2) = 0, 
and (3.8)-(3.10) yields and (k: - k;) satisfies (3.19). The solution of (3.1) 

for real k1 and k2 is the limit of the sequence (3.24): 
IIT(Ei~) - T(E~)1I2 ~ 1.1.1 max IHIIIE~~ - E~112' 

(3.16) 

This shows that T(E++) is a contraction mapping with 
respect to the L2 norm, provided 1.1.1 is restricted as in 
(3.12). The remainder of the theorem is then a con­
sequence of Banach's fixed-point theorems and the 
observation that the normed function space L2 is 
complete. 

The results we have just obtained apply immediately 
to (3.1) with 

(3.17) 

• W. Pogorzelski, Integral Equations and Their Applications 
(Pergamon Press, Inc .. New York, 1966), Vol. I, p. 197. 

E++(k1 , k2) = lim Eir:/.(k1 , k2)' 
n .... oo 

4. ELECTRIC FIELD AT THE VERTEX 
OF THE WEDGE 

(3.25) 

The electric-field amplitude at the vertex of the 
wedge is given by 

E(O, 0) = lim E("')(O, 0), (4.1) 
n .... oo 

where 

E(n)(o 0) - lim _1_ J"" Joo E1n)(k k) 
, - "'1 .... 0+ (2?l"? -00 -00 ++ 1, 2 

~2-+0+ 

X exp ( - ik1x1 - ik2x2.) dk1 dk2.' (4.2) 
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In performing the Fourier inversion (4.2), it is con­
venient to use the relation 

lim -1-2foo foo E~(kl' k2) 

:1:1-+0+ (27Ti) -00 -00 
.:ts-+o+ 

X exp ( - ik1Xl - ik2h) dk1 dk2 

. 1 f 00 f 00 kl k2E~( Zl' Z2) dZl dZ2 
= hm -- , 

Im(kl)-++OO (27Ti)2 -00 -00 (Zl - k1)(za - k2) 
Im(k2)-++00 (4.3) 

obtained with the aid of 

Equations (4.2) and (4.3) now give 

E(nl(o,O) = -lim klk2E<:~(kl' k2), (4.5) 
1m (kl)-+OO 
1m (k2)-+00 

for the nth-order approximation to the electric field 
at the vertex of the wedge. To first order in (ka - kv), 
using (3.24) and (2.33), 

E~(kl> k2) 

= E(O)(k k) + (k: - k~) 
++ 1, 2 (27Ti)2 

fOO fOO E~(Zl' Z2) dZI dZ2 
X 2 2 2 

-00 -00 (ZI + Za - k,,)(ZI - k1)(Z2 - k2) 

(4.6) 

and, from (4.5), 

E(1)(O 0) = E (0 0) _ (k: - k~) 
, 0 , (27Ti)2 

foo foo E~(Zl' Za) dZl dz2 • (4.7) 
X 2 2 2) 

-00 -00 (ZI + Z2 - k" 

When the incident field Eo(xl' xa) is a plane wave of 
the form 

Eo(xl' x z) = Eo exp [i(alxl + a2x.)], (4.8) 
where 

al = k" cos 0, a2 = k" sin 0, (4.9) 
then 

E~(Zl' zJ = -EO/(Zl + a1)(z2 + aJ (4.10) 

and (4.7) becomes 

E(1)(O 0) = E {1 + (k: - k;) 
, 0 (27Ti)2 

A short calculation yields 

E(1)(O 0) = E {1 _ (k: - k~) [00 ~ d~ 
, 0 27Tk; Jo (1 + e)'l. 

( 
sin (J + cos (J )} 

X (~2 + cos2 (J)t (~2 + sin28)t ' 
(4.12) 

for the first-order field at the wedge tip. For the case 
of grazing incidence where 8 = 0 or 8 = 7T/2, Eq. 
(4.12) becomes 

E(1)(O,O) = Eo{l - i(P2 - I)}, (4.13) 

where p = ka/kv' To second order in (k: - k!), the 
field at the wedge tip is given by 

E0aJ(O,O) = E(I)(O, 0) + (k: - .~~)2 Eof"" fOO 2 dZ l :Z2 2 

(2m) -00 -00 (ZI + Z2 - kv) 

fOO fOO d'l d'2 . 
X 2 2 2 • 

-00 -00 al + '2 - k,,)al + a1)('2 + aJ({1 - Zl)({2 - zJ 
(4.14) 

5. COMPARISON WITH OTHER INVESTIGATIONS 

The dielectric-wedge problem has also been investigated by Radlow6 and by Kuo and Plonus.7 Radlow6 

gives what he claims is a closed-form global analytic solution of the problem. His solution, given in Eqs. (5.1) 
and (5.3) of his paper,6 becomes in our notation 

-~ 1 
E++(k1, ka) = (5.1) 

(kl + a1)(k2 + all) K++(k1 , k 2)K-+( -ai' k2)K __ C -aI' -aJK+-(k1 , -a2) 
where8 

K (k k) - _1_ f"" foo dZ l dZa I [k: - (z~ + Z~)J 
++ 1 , 2 - exp . 2 og 2 2 2' 

(2m) -00 -00 (Zl - k1)(za - k2) kv - (Zl + z2) 
• J. Radlow, Intern. J. Eng. Sci. 2, 275 (1964). 
7 N. H. Kuo and M. A. Plonus, J. Math. & Phys. 46,394 (1967). 
8 E. A. Kraut, J. Math. Phys. 9,1481 (1968). 

(5.2) 
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with 
1m (k1) > 0, 1m (k2) > 0. (5.3) 

The other three factors K_+, K.. _ , and K+_ are defined 
exactly as in (5.2) except that, instead of (5.3), one 
has 1m (k1) < 0, 1m (k2) > 0; 1m (k1) < 0, 1m (k2) < 
0; and 1m (k1) > 0, 1m (k2) < 0, respectively. It is 
asserted in Ref. 6 that (5.1) is the unique solution of 
the singular integral equation (2.33). One of us has 
pointed out9 that an expression of the form (5.1) 
satisfies (2.33) only if the branch line integrals associ­
ated with the branch cuts in 14+ , K_+ , K+_ cancel one 
another out when the double integral in (2.33) is 
evaluated. We shall show, by directly substituting 
(5.1) into (2.33) and explicitly evaluating the double 
integral, that (5.1) does not satisfy (2.33) and is there­
fore not a solution of the problem. Contrary to our 
results, Kuo and Pion us indicate' that they believe 
that (5.1) is the correct solution of (2.33). However, 
they claim that (5.l) is too complicated to be inverse 
Fourier-transformed and therefore they suggest the 
use of approximate methods to solve (2.33). In Eqs. 
(6.4) and (6.5) of Ref. 7, the determination of approxi­
mate expressions for E++(k1 , k 2) and E(Xl, x 2) (when 
the dielectric constant is near unity) is reduced to 
single quadratures. These quadratures, however, 
were not carried out, nor was the validity of the 
approximate decoupling scheme used to obtain them 
critically examined. 

After showing that (5.1) does not satisfy (2.33), 

we shall compute the inverse Fourier transform of 
(5.1) at the wedge tip and compare the result with 
(4.12)-(4.14). 

We begin by observing that (2.33) can be written 
in the form 

1 foo fOO (zi + z~ - k!)E++(Zlo z2) dZl dz'J. 
27Ti)2 -00 -00 zi + zi - k; (Zl - kl )(Z2 - k2) 

where the kernel 
= E!:1-(k1 , k2), (5.4) 

K(ZI' Z2) = (z~ + z~ - k~)/(zi + zi - k;) (5.5) 

can be factorized in the forms 

K(Zl' Z2) 

= 14+(zl' z2)K_+(Zl, z2)K __ (Zl' z2)K+_(Zl, Z2), 

(5.6) 

with the K's determined as mentioned in connection 
with (5.2). It is possible, for example, to write down 
pairwise products of factors in (5.6) algebraically by 
inspection: 

Zl + i(zi - k!}t 
K++(Zl' z2)K+_(Zl, Z2) = !' (5.7) 

Zl + i(z~ - k~) 

This observation permits us to write KE++ in (5.4) 
with E++ given by (5.1) as the product of a function 
analytic in 1m (k1) < 0, 1m (k2) < 0, and a function 
having explicit algebraic singularities in 1m (k1) < 0, 
1m (k2) < 0. Thus (5.4) becomes 

1 foo foo [Zl - (k~ - Z~)*][Z2 - (k~ - zil][al + (k; - z~)*J[a2 + (k; - zi)f] 

(27Ti)2 -00 -00 [Zl - (k; - z:)lJ[z2 - (k; - zi)l][al + (k~ - zi)lJ[a2 + (k~ - zi)*] 

where 

(5.9) 

(5.10) 

Our procedure now is to expand I(kd , k,) in a Taylor series of the form 

J(kd' kv) = I(kv' kv) + (ka - kv)(iJI_\ + tcka - kv)2(iJ2~ + ... == 0. (5.12) 
okakd=k. Ok~Jkd=k. 

If (5.12) vanishes identically for arbitrary ka and kv. then each and every coefficient in the Taylor series 

• E. A. Kraut, Bull. Seism. Soc. Am. 58, 1083 (1968). 
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expansion (5.12) must vanish. We shall show that 

I(k" , k,,) == 0, (5.13) 

(~) =0 
akd kd=k. - , 

(5.14) 

but that 

(a
21) ¢ 0 (5.15) 

Since (a'Fjakd)kd=k. is analytic in 1m (k1) < 0, 
1m (k2) < 0, the contribution from this term arises 
from the residues at the poles Zl = -ai' Z2 = -a2, 
provided 1m (a1) > 0 and 1m (a2) > O. However, 
since the constant term in the Taylor series expansion 
of 'F(Zl' Z2' kd' k,,) about Zl = -ai' Z2 = -a2 is 
unity, independent of the choice of kd and k" , 

ak~ kd=k. ' 

and consequently (5.1) does not satisfy (5.4) or (2.33). 
Equation (5.13) follows immediately on noting that 
f(zl' Z2) == 1 and 'F(Zl' Z2) == 1 when' kd = k". To 
obtain (5.14) we observe that 

(::1d=k. = (2:i)2 L: L: { (:(t=k. + (~~L=J 
dZl dZ2 x ----------~--~---------

(Zl + a1)(z2 + a2)(zl - k1)(Z2 - k2) 

(5.16) 

(5.17) 

and therefore 

From (5.11), 

( 
af) - k" {II} k" {II} 

akd kd=k. = (k; - z~)t Z2 - (k; - zi)t + a2 + (k; - zi)1- - (k; - z~)t Zl - (k! - z~)t + a1 + (k; - zi)t ' 

(5.19) 

where the first term in brackets in (5.19) is analytic for 1m (Z2) < 0 when 1m [(k; - zi)t] > 0 and the second 
term in brackets is analytic for 1m (Zl) < 0 when 1m [(k~ - zi)t] > O. The integral (5.18) may now be 
performed by closing the first term of (5.19) in the lower Z2 half plane and the second term of (5.19) in 
the lower Zl half plane. The residues at Z2 = -a2 and Zl = -a1 are zero and (5.14) follows. 

To establish (5.15), we note that 

(
a
21\ 1 100 100 

{ay a
2
'F af a'F} dZl dZ2 

ak~t=k. = (217i)2 -00 -00 ak: + ak: + 2 akd akd kd=k. (Zl + a1)(z2 + a2)(zl - k1)(Z2 _ k2)· (5.20) 

The last two terms in (5.20) separately integrate to zero because of (5.17) and (5.19), and one has 

(
a
21) 1 foo foo (a"l) dZl dZ2 

ak: ka=k. = (217i)2 -00 -00 ak~ kd=k. (Zl + a1)(z2 + a2)(zl - k1)(Z2 - kJ . 
(5.21) 

Using (5.11) gives for (5.21), after some algebra and analytic continuation to the imaginary axes, 

(aa2~\ = ~ Iioo Iioo dZl dz22k;F(Zl' Z2)' 
k;}kd=k. (2m) -ioo -ioo 

{F(Zl' Z2) = {(Zl - k1)(Z2 - k2)(k; - zi)t(k~ - ZDt[Zl - (k; - z~)t][Z2 - (k; - z~)]t[a1 + (k; - z;)t] 

x [a z + (k~ - z~)t]}-l 

where 0 < arg (kJ < 17/2 and 0 < arg (a;) < 17/2, i = 1,2. (5.22) 

Next, we compute that 

(5.23) 
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Now let Zl = iTl and Z2 = iT2 in (5.23) to obtain 

It now follows, from the fact that (5.24) does not vanish identically, that 

( 0
21) ¢ 0 

ok! kd~kv • 

(5.25) 

This proves (5.15) and establishes that (5.1) is not a solution of (5.4) or (2.33). 
We conclude our paper with the computation of the inverse Fourier transform of (5.1) at the vertex of the 

wedge. It follows from (4.2)-(4.5) and (5.1) and (5.2) that 

Analytically continuing (5.26) to the imaginary axes and transforming to polar coordinates noting (4.9) 
reduces (5.26) to 

{
-Ir

OO 
~d~ 1 (~2+l)( sinO COSO)} 

E(O,O) = Eo exp 27TJO (1 + e) og e + 1 (e + cos2 0)t + (e + sin20)! ' 
(5.27) 

where p = ka/kv' 
We now wish to compare the field at the vertex of wedge as computed correctly to second order in 

(k! - k;) in (4.14) with the corresponding terms obtained from (5.26). Power-series expanding the 
exponential in (5.26) yields 

E(O 0) = E {I __ 1_ foo foo dZl dZ2 I (k; - (zi + Z~») 
, 0 • 2 ) og 2 2 2 

(2m) -00 -00 (Zl + al)(z2 + a2 kv - (Zl + Z2) 

1[ 1 foo foo dZl dZ2 (k~ - (zi + Zi»)J2 } + - -- log -'" 
2 (27Ti)2 -00 -00 (Zl + a1)(z2 + a2) k; - (zi + z~) , 

(5.28) 

and power-series expanding the logarithm for ka sufficiently near kv gives 

10 a 1 2 _ a v _ _ a v + . . . (529) 
(

k2 _ (z2 + Z2») (k2 _ k2) 1 ( (k2 _ k2) )2 

g k; - (zi + z~) - k! - (zi + z~) 2 k; - (zi + z~)' . 

When (5.29) and (5.28) are combined and compared with (4.11) and (4.14), the first-order terms in (k~ - k!) 
are seen to be identical, but the second-order terms in (k~ - k;) differ. In particular, to second order, (5.29) 
and (5.28) yield 

E(2)(0 0) = E(1)(O 0) + (k~ - k;)2 E fOO fOO dZl dZ2 + (k~ - k!)2 E 
, '2(27Ti)2 0 -00 -00 (Zl + a1)(z2 + a2)[k; - (zi + zm2 2(27Ti)2 0 

x L~i 5:00 LOOoo (Zl + a1)(z2 +d::~~! _ (zi + zmr (5.30) 

which should be compared with (4.14). This constitutes an independent proof that Radlow's result (5.1) is 
incorrect. Finally, we remark that for grazing incidence, 0 = 0 or 0 = 7T/2, Eq. (5.27) can be evaluated 
exactly and yields 

(5.31) 

This the reader will recognize as the square root of the transmission coefficient for a planewave normally 
incident on a dielectric half space. 
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The possibility of formally translating the interaction of charges from charge +-> field +-> charge to 
charge +-> charge, where the orbits satisfy Newtonian (second order in t), yet covariant, equations of 
motion, is exploited for the Wheeler-Feynman interaction. A method for computing the forces on the 
charges correct to second order in the coupling constant e' is presented, and ten constants of the motion 
correct to e' are found. The integration is effected via the Noether theorem with the inhomogeneous 
Lorentz group as symmetry transformations. An important result is that a well-known correction to the 
Coulomb interaction which accounts for the uniform motion of charges is revealed to be, to first order 
in e2, a frame-invariant expression. The consequent corrected Coulomb dynamics admits first-order 
integrals identical to those of the Wheeler-Feynman dynamics. 

I. INTRODUCTION 

Recent interest in the two-body problem of electro­
dynamics, which after almost eighty years! continues 
to defy solution, has prompted a critical reexamination 
of the objections against a purely Newtonian de­
scription of the interaction, that is, an instantaneous 
action-at-a-distance formulation. The objections have 
been found to be invalid. 

Close inspection discloses that the relativistic 
proscription of instantaneous causal connections in 
nature does not logically debar equations correlating, 
with respect to some Lorentz frame, the state of a 
system of particles and the coincident acceleration of a 
member. Further, though Lorentz transformations 
properly describe the transformation of world points, 
the same set of world points would not be used in 
phrasing such correlations in different Lorentz frames. 
If, in addition to the Lorentz transformations, in­
variance of world lines of particles is demanded, the 
result is a transformation, not of particle variables at 
a fixed set of world points, but between the simulta­
neous particle variables of one frame and those of 
another. If one then enforces the requirement that 
dynamical equations be form invariant under such 
transformations, an explicit condition on the func­
tional form of the forces results. For the case of two 
particles, the condition has been deduced independ­
ently by both HilJ2 and Currie. 3 

* This work forms part of a dissertation presented for the Ph. D. 
at the University of Delaware in 1967. 

t Present address: Theoretical Physics Institute, The University 
of Alberta, Edmonton, Alberta, Canada. 

1 The problem'S importance goes back to Heaviside's introduction 
in 1889 of the Lorentz force law, subsequently appended to Max­
well's equations by Lorentz to provide a theory in which electro­
magnetic e~ects derived from the dynamics of moving charges. For 
a compendiOUS history of action-at-a-distance theories in physics, 
see M. B. Hesse, .Forces.and Fields (Philosophical Library, New York, 
1962). For the Immediate background to this present work, plus 
further documentation, see Footnotes 2-8 below. 

• R. N. Hill, J. Math. Phys. 8,201 (1967). 
3 D. G. Currie, Phys. Rev. 142, 817 (1966). 

Special relativity, in uther words, far from legislating 
against instantaneous action-at-a-distance formula­
tions, rather provides the guidelines within which such 
formulations are viable. 

For two particles interacting in any way, electro­
dynamically, mesonically, etc., the import of this 
revelation is that it is not, in principle, vain to seek a 
description of the interaction via Newtonian-order 
equations of motion (in the single independent 
variable t) whose solutions are twelve-parameter 
families of world lines. A Hamiltonian formulation, 
canonical in all Lorentz frames, may then be sought. 
Previously, the existence of such a Hamiltonian was 
thought to be denied by the zero-interaction theorem,4 
but it has since been found5 that, if one does not insist 
that physical position variables be canonical, an 
essentially unique Hamiltonian formulation ensues 
with the inhomogeneous Lorentz group6 canonically 
represented. Finally, quantization could perhaps be 
approached in the usual manner. The problems here, 
not yet fully appreciated as this is only a prospectus, 

4 D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. 
Phys. 35, 350 (1963); D. G. Currie, J. Math. Phys. 4, 1470 (1963); 
J. T. Cannon and T. F. Jordan, J. Math. Phys. 5, 299 (1964); H. 
Leutwyler, Nuovo Cimento 37, 556 (1965). 

5 R. N. Hill and E. H. Kerner, Phys. Rev. Letters 17, 1156 (1966). 
See also E. H. Kerner, J. Math. Phys. 6, 1218 (1965). Note that one is 
not 'prevented from fi~d!ng Hamiltonian formulations with physical 
pOSitIOns canOnical; It IS necessary only to relinquish the demand 
th.at the formulation be (canonically) equivalent in different Lorentz 
frames in order to do so. The difficulty is that the resulting quantum 
theory is thereby vitiated. The nonrelativistic version of this situation 
is gra~hicall'y illustrated by co~sidering a single particle moving in 
one dimenSIOn m the potential ",(x). Multitudes of canonically 
inequivalent Hamiltonians can be found, but the only one admitting 
a consistent quantum theory is that for which the Galilei trans­
formations are canonical. For remarks about such classical-valid 
quantum-invalid Hamiltonians, see P. Havas, Bull. Am. Phys. Soc: 
1,337 (1956); F. J. Kennedy and E. H. Kerner, Am. J. Phys. 33 
463 (1965); 34, 271 (1966). ' 

6 "Inhomogeneous Lorentz group" throughout this paper means 
the usual group of space rotations and space and time translations, 
plus pure Lorentz transformations in the sense of Hill and Currie­
ord.inary Lorentz tra~sformations plus world-point shifts along in-
vanant world hnes (Just compensating for the noncovariance of 
simultaneity). See Sec. III, Eqs. (17d). 
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would probably entail methodological difficulties, as, 
for instance, how to Hermitize uniquely the Hamil­
tonian. But the conceptual framework would remain 
Newtonian; the procedure, presumably, would be 
basically on the same ground as that of quantizing a 
nonrelativistic two-body problem, but the issue would 
be the relativistic quantum theory of the interaction. 
In short, the different behavior of relativistic and 
nonrelativistic particles at both classical and quantal 
levels might possibly be accounted for at the classical 
outset, not by different formalisms, but by only one­
the Newtonian. 

This present work, confined to the classical rudi­
ments of the program just outlined, focuses on the 
force law and constants of the motion for a particular 
two-body problem. Because of its utility and mathe­
matical tractability, the Wheeler-Feynman inter­
action7 of electrodynamics has been chosen for 
investigation. This half-advanced + half-retarded in­
teraction, the time-symmetric character of which 
readily admits an action principle, is equivalent, under 
certain well-defined conditions, to the ordinary 
damped and retarded interaction of charges. Its 
investigation is therefore bound to reveal important 
characteristics of the forces, energies, etc., of high­
energy charges interacting in the customary purely 
retarded way. 

The first stage of this problem has already been 
attacked. Kerners has invented a formal scheme for 
educing Newtonian equations of motion compre­
hending the full Wheeler-Feynman orbits from the 
field-particle oynamics. The method, briefly, is this: 

A Lagrangian for one charge is assembled in the 
usual way, the potentials being expressed in terms of 
the other charge's kinematical behavior at times 
advanced and retarded with respect to time t reckoned 
at the first charge. Expansion of the second charge's 
motion about t yields a single-time Lagrangian which, 
however, because of the expansion, involves all orders 
of time derivatives of that charge's motion. When the 
steps are repeated with the charges exchanged, the 
final result is a pair of equations of motion which are 
themselves of infinite order. Further, it turns out that 
the interaction term of each of the one-charge 
Lagrangians can be symmetrized, thus providing a 
single two-charge Lagrangian and casting the infinite­
order dynamics into formal canonical form. 

The hypothesis is then made that all solutions of the 
dynamical equations are spurious, save those con­
tinuous with free-particle motions in the zero-inter­
action limit. There results an algorithm for extracting 

7 J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157 
(1945); 21, 425 (1949). 

8 E. H. Kerner, J. Math. Phys. 3, 35 (1962); 6, 1218 (1965). 

from the infinite-order equations of motion a second­
order Newtonian set. The equations of motion finally 
emerge as infinite series in the coupling constant e2 or, 
alternatively, in c-2 , the first of which is the more 
interesting because of the appearance of that param­
eter in the perturbative calculations of quantum 
electrodynamics. 

In the first part of this paper the mathematical 
details of Kerner's method are recalled and departed 
from slightly. The departure is only one of procedure: 
If the basic (infinite-order) equations of motion are 
rewritten so that the forces appear as complex inte­
grations about certain time singularities, some of the 
combinatorial frustrations, which otherwise haunt the 
method, disappear and terms beyond the opening 
(simple) e2 term can be found in closed form. The 
computation is alternative, but equivalent, to the 
iteration of Hill's integrodifferential equation for 
the determination of the forces. 2 

The principal part of this discussion begins in the 
third section. Here the Noether theoreni9 for an 
infinite-degree-of-freedom dynamics is developed. 
After establishing that the inhomogeneous Lorentz 
group is canonically represented with respect to the 
two-charge Lagrangian assembled in Sec. II, applica­
tion of the theorem produces three three-vector and 
one three-scalar constants of the motion. These are, 
of course, the momentum and energy-corresponding 
to the form invariance of the dynamical equations 
under space and time translation, the angular momen­
tum-under space rotation, and the center-of-mass 
constant-under pure Lorentz transformation. Order 
reduction of these integrals by the method applied to 
the forces gives the integrals to first order in e2 of the 
Newtonian equations of motion. It is then shown that 
these constants have the expected transformation 
character in shifting from one Lorentz fram~ to 
another. 

Following this, in the fourth section, the connection 
between the results of the present investigation and the 
classical dynamics of charges interacting in the con­
ventional retarded manner is examined. It develops 
that, since the equations of motion are identical to 
first order in the coupling constant for both the time­
symmetric and purely retarded interactions, all first­
order results derived for the former are just as valid 
for the latter. As a consequence, some new light is 
shed on an old result of classical electrodynamics. 

II. EQUATIONS OF MOTION 
Order Reduction 

These opening remarks are a brief recapitulation 
of Kerner's scheme.s 

• E. L. Hill, Rev. Mod. Phys. 23, 253 (1951). 



                                                                                                                                    

FORMULATION OF CLASSICAL ELECTRODYNAMICS 1351 

Imagine that two charges interact by half the sum of 
advanced and retarded fields. The Lagrangian for one 
of these, e1 say, can be written as 

Ll = -mlc
2(1 - vi/c2)! 

~ D~P (1 VI • vz) 2p-l (1) - e1 e2 k, - -- r 
p=0(2p)!c2P 

C
Z 

by expanding about t the advanced and retarded 
Lienard-Wiechert potentials at the location of e1 due 
to the motion of e2 • D2 is the time derivative of e2's 
variables only and r is the distance between the 
charges. 

The equations of motion of e1 are given by the 
Euler-Lagrange derivative of (1): 

D m1v1 = _e2(~ - D ~) 
(1 - vi)! ar1 aVl 

00 DiP 2p-l 
X L -- (1 - VI • v2)r , 

p=o (2p)! 

where, of course, D means total time derivative 
Dl + D 2 ; e2 is e1e2 , and the speed of light has been 
set equal to unity. The left-hand side may be written 

(1 - vi)-~[(1 - vi)1 + V1V1] • m1v1 , 

and the dyadic inverted to yield the system 

m1vl = e2(1 - vi)!(1 - V1V1) 

(D a a ) ~ D~P ( ) 2p 1 • - - - ..c., -- 1 - VI' V2 r -, 
aVl ar1 p=0(2p)! 

mzvz = e2(1 - v~)!(1 - V2V2) 

• (D ~ - ~) i DiP (1 - VI' v2)r2P- 1. 
avz arz p~0(2p)! 

(2a) 

(2b) 

This result is merely a rewrite of the field-particle 
dynamics. In the same way one derives the corre­
sponding system of equations for the completely 
retarded interaction. The distinction between the two 
is marked by the appearance of even-order derivatives 
only in the Wheeler-Feynman case, a consequence of 
its time-symmetric nature. 

A further consequence of the time symmetry is that 
the individual (one-charge) Lagrangians may give way 
to a joint (two-charge) Lagrangian. This is easily seen 
by writing D~P = D~(D - D1)P in L1, for instance. 
Then D~P = (- DI D2)P + exact derivatives. As usual, 
the latter may be neglected, thereby symmetrizing the 
interaction term. The joint Lagrangian is 

L = -mi(1 - vi)! - mz(l - vD! 

- e2 i( - D1 D2Y (1 - VI' v2)r2P- 1 • (3) 
p=o (2p)! 

It is easily established that the equations of motion (2) 

will now follow by application of the generalized 
Euler-Lagrange, or "Ostrogradsky," operator to L. 

The ambiguities associated with the infinite degrees 
of freedom of the interaction become quite manifest 
in its mechanical formulation. It would seem, for 
example, that the initial data riCO), vi(O), vi(O) ... for 
the problem amount to nothing less than the solution 
itself, so that the system (2), rather than being equa­
tions of motion, is merely a constraint on the motion. 
To deal with this extravagance it is hypothesized that 
admissible orbits continue to be determined by the 
specification of twelve parameters and tend smoothly 
towards straight lines as the interaction is shut off. 
[Or, in other words, the admissible solutions of 
(2) satisfy a pair of Newtonian-order equations with 
the forces expansible as a power series in e2

.] Such a 
system may be extracted from (2) by arranging its 
right-hand side as a multinomial expansion in time 
derivatives of the velocities as, for instance, 

(4) 

The v~i) (the ith derivative of vk ) are then computed in 
terms of all the other derivatives via (2) itself, sub­
stituted in (4), and the result again arranged in the 
form of (4). The upshot of this process, when continued 
ad infinitum, is that the right-hand side of (2) is 
replaced with an infinite series in e2 whose coefficients 
are functions of positions and velocities; the solutions 
of this reduced system are among those of (2) but 
analytic at e2 = O • 

Although criteria of convergence, if any, have yet 
to be elaborated, it will be seen that the validity of the 
calculations to come do not hang upon the converg­
ence of the e2 expansions; they are meaningful even if 
these expansions are asymptotic. 

The Forces to Order e4 

One of the difficulties in effecting the reduction has 
been the summation of the infinite number of pieces 
going into a given multinomial term. Thus, the only 
easily obtained term has been the opening one, giving 
the equations of motion 

m1v1 = e2(1 - vi)!(1 - V1Vl) 

(1 2) i-VI X (i x V2) + 4 • - Vz e ... (5a) 
r2[1 - (i X V2)2]~ , 

m2V2 = -e2(1 - v~)!(1 - V2V2) 

(1 2/ - V2 x (i x VI) + 4 
• - VI r2[1 _ (i X Vl)2]~ e' . " (5b) 

a familiar result (to be discussed in Sec. IV). These 
first terms are just what the forces on each charge 
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would be if the other were constrained to move 
uniformly, whence the name "straight-line approxi­
mation" for the opening terms alone. 

Here we develop a formal summation of the forces 
from which the individual e2 terms can be recovered 
systematically, at least in low orders. The calculations, 
which will be illustrated to e4 order, are equivalent to 
the iteration of Hill's integrodifferential equation.2 

This latter equation, satisfied by the forces, derives 
from the fact that the entire force can be induced from 
a knowledge of the opening e2 (or c-2) term by 
the strictures of Lorentz covariance alone, whereas the 
idea to be presented now comes straight from the 
Lienard-Wiechert potentials. 

The primitive dynamics (2) is first re-expressed 
(working with just the first charge) as 

mlvl = e2(1 - v~)!(1 - VlVl) 

00 1 i 1 
'P~o 271'i J (z - t)2P+l 

X {[V2r· V2 + VI X (r x V2) - r] 

X (2p - 1)r2P- 3 - v2r 2P
-

l
} dz, (6) 

where charge-2 variables in the integrand are functions 
of z. This comes about by carrying out the Euler­
Lagrange operation in (2), and representing the D2's 
by the Cauchy integral formula 

D2'i( ) - (2p)! f f(rl - r2(z), VI' vlz» d 2 r, VI, V2 - z. 
271'i (z - t)2P+1 

If it is assumed that the order of integration and sum­
mation may be switched, the series in (6) may be 
summed with the result 

mlvl = e2(1 - v~)!(1 - V1Vl) 

• _1 [i (z - 1)(3r2 - (z - t)2) 
271'i J r3[(z - t)2 _ r2]2 

X (v2r • v2 + VI X (r x v2) - r) dz 

i (z - t)V2 d ] 
- J r[(z - t? _ r2] z . 

Next, with the change of variable s = z - t, charge-
2's argument is shifted; the finite-shift operator is then 
introduced, and the equations of motion of the first 
charge become finally 

mlvl = e2(1 - vi)!(1 - VlVl) _1_ 
271'i 

Thus, once again, all charge variables are functions 
oft. 

The problem of summing the individual multi­
nomial terms of (2) is now replaced with the more 
tractable one of summing such terms in the finite­
shift operator. The ordering, or "disentangling," of 
such operators has already been investigated by 
Feynman,lO whose operator calculus may be applied 
here with the result that 

(8) 

The details of this expansion are found in Appendix A. 
Here, linear terms giving no contribution in (7) have 
already been discarded. 

The recovery of the e2 forces of (5) from (7) pro­
vides a simple illustration of the computations. To 
this order t~e accelerations in (7) and (8) are put to 
zero and (7) becomes simply 

m1 VI = e2(1 - vD!(I - VlVl) _1_ 
271'i 

i s[3(r - V2S)2 - S2] 

J Ir - v2s1 3 [S2 - (r - V2S)2]2 

X [v2r. v2 + VI X (r x v2) - r + v2s(1 - v~)] ds. 

The integration encircles both roots of [S2 - (r - V~)2], 

that is, Sl and S2 where 

Then the integral may be written 

1 ;)2 i s[3(r - V2S)2 - S2) 

(1 - v~) OSlOS2 J Ir - v2s1 3 (s - Sl)(S - S2) 

X [V2r. V2 + VI X (r x v2) - r + v2s(1 - vDJ ds 

and rapidly evaluated. (Notethatsl .2 = ± Ir - v2sl.21, 
and that these relations are used after the differentia­
tion with respect to s1,2.) The equations of motion of 

10 R. P. Feynman, Phys. Rev. 84,108 (1951); W. L. Miranker and 
B. Weiss, SIAM Review 8, 224 (1966). 
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the first charge emerge as 

• 2 4(1 - v~)t (I ) 
m1v1 = -e 2 3 - V1V1 

(1 - V2)(SI - S2) 
• {2[v2r • V2 + VI X (r x v2) - r] 

+ v2(1 - V~)(SI + S2)}' 

which upon substitution of the roots (9) is found to be 
identically (Sa). This is the gist of the method. 

The second-order term is given by 

e
2
(1 - vNI - V1V1) 2~i . {f [exp (SV2 • o~J ] 

x [i 8 

r~ v2(t+.;).~d';d1]+r· v2(t+';).:.0 d';] 
~=oJs=o or2 Js=o uVs 

s(3r2 - S2) 
X a-2 22[v2r.v2 +v1 x(rxv2)-r]ds 

r (s - r) 

- 1 exp (sv2 • ~) sV2~t + :) dS}. 
J or2 res - r) 

The calculation is not essentially different from that of 
the first order, but there are a few cautionary points 
that it would be well to emphasize. The sequence of 
operations is: (a) derivatives with respect to r 2 and 
V2 , excepting the finite shift; (b) then the finite shift; 
(c) v2 is evaluated at t + .;, but since it is of order e2 

itself and the calculation is to be of order e4
, this 

amounts to replacing r with r + v.; in the first-order 
equations (5). Note that v2(t + ~) is not an operand 
in steps (a) or (b). At this point there remains no 
ambiguity; there is just the indicated single and 
double integrals of v2(t + ~) and evaluation of the 
complex integrals. The poles turn out to be the same 
as those in the example above but of higher order. 

III. CONSTANTS OF THE MOTION 

The infinite-order equations of motion (2) can be 
integrated to yield constants interpretable as energy, 
momentum, and so on, even though such a step seems 
purely formal. The order of the system is not reduced 
as with a pair of finite-order equations; one merely has 
a new relation among, again, an infinitude of time 
derivatives. Nevertheless the integrals of (2) are 
important, for they contain the integrals of the order­
reduced Newtonian equations determining the ad­
missible solutions of (2). The latter integrals are just 
those of (2) delimited by the relations among the 
time derivatives implied by the Newtonian equations 
themselves. 

Two ways thus appear for integrating the Newtonian 
dynamics: Work out the forces term by term, as in 
Sec. II, and integrate directly; or integrate the ante-

cedent infinite-order dynamics and extract the New­
tonian constants as special cases. The second way seems 
the more circuitous at first sight, but, since it happens 
that the delimitation of the infinite-order integrals 
may be effected by order reduction, the Newtonian 
constants may be secured without prior determination 
of the force law. Moreover, unlike the case for the 
second-order equations of motion, a Lagrangian (3) 
is already in hand for the infinite-order system, and 
this alone makes available the most efficacious of 
integration schemes, namely Noether's theorem.9 

In what follows, Noether's theorem is developed 
for an infinite-degree-of-freedom dynamics and is 
applied to the system (2). There results ten constants 
of the motion, corresponding to the ten parameters of 
the inhomogeneous Lorentz group, which order 
reduction then renders Newtonian. This last step is 
carried out only to terms of order e2 so that the final 
products are constants (to e2

) of the equations of 
motion in straight-line approximation. 

Noether's Theorem 

Let there be equations of motion 

~ (- D,)n oL(D,lr;) = 0 i = 1 2 (9') 
k :'(D,n ') , , , 

n=O U r i 

following from the action principle 

b LbL(D'lr;> dt' = 0 (10) 

in which the Lagrangian is explicitly independent of 
the time. If the equations of motion are form invariant 
under the infinitesimal transformations 

r; = r i + eflr j , Vi' t), 

t' = t + eg(rj, Vi' t), (11) 

then the equations of motion in unprimed coordinates 
are just (9') without primes, which means that (10) 
written without primes necessarily holds. 

Now, the transformation rule for time derivatives 
is quickly induced from (11): 

D,nr; = Dnri + e[Dn(fi - vig) + gDnv;1. 

Introducing this in (10) and expanding to first order in 
e, one finds 
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where c and d are the transformed, but still fixed, 
limits. As pointed out above, the lowest-order piece 
vanishes owing to the form invariance of (9). Further­
more, the first and last terms in the E piece go together 
to make the exact time derivative D(Lg), the variation 
of which is identically zero. Result: A necessary and 
sufficient condition that (11) are symmetry transforma­
tions of the equations of motion is 

(13) 

The Lagrangian and the transformations cooperate 
in deciding how this happens. When the integrand of 
(13) is an exact derivative, (13) is an identity, and the 
transformations are, by definition, canonical. In any 
more general case the vanishing is conditional; for 
example, the integrand could itself be any Lagrangian 
for the system, with the equations of motion being the 
condition. But for the present purpose the important 
and relevant case is the former, wherefore 

which may be called the "canonicity condition" for 
the infinitesimal symmetry transformations (11). 

Assuming that (14) is satisfied, the equations of 
motion (9'), without primes, are dotted with (f; - Vig), 
summed on i from 1 to 2, and the result subtracted 
from the left-hand side of (14), giving 

I. {+ . Dn(fi - Vig) 
n.' o(D r;) 

- [( - D)n O(~:ri)J . (fi - Vig)} = DO.. (15) 

By the rule 

n 
D I (D'HB) • (- D)!A = A· Dn+1B - B· (- D)n+1A, 

!=o 

the curly braces on the left-hand side of (15) contain 
an exact derivative. The integral 

immediately results. This constitutes Noether's theo­
rem for a system containing all orders of time deriv­
atives-one constant for each canonically represented 
symmetry transformation of the equations of motion. 

The association is not one-to-one, however, as the 
replacing of f; and g with fi + vih and g + h, with h 
arbitrary, leaves the constant unchanged. 

Infinite-Order Integrals 

The dynamical equations (2) implied by the La­
grangian (3) have no explicit time dependence, have 
relative coordinate dependence only, and are three­
vector equations. They are thus form invariant under 
the following: 

time translation (TT): r~ = ri , t' = t + E, (17a) 

space translation (ST): r; = ri + ED, t' = t, (17b) 

space rotation (SR): r~ = r; + EO X ri , t' = t, 

(17c) 

respectively, where the unit vectors are fixed in the 
directions of translation and rotation. An 0. exists for 
each of these cases and can be found from (14), al­
though for these particular symmetries, it is easier to 
refer back to (12). The Lagrangian is manifestly in­
variant under the above transformations (being a 
time-independent, relative-coordinate-dependent sca­
lar), so that the E piece in the integrand of (12)-not 
only its variation-vanishes; since that piece is just 
D(Lg + 0), then 0. = -Lg, and, by comparing (II) 
with (17), the three o.'s follow as 

OTT = -L, 

o.ST = 0, 

OSR = O. 

(l8a) 

(18b) 

(18c) 

Finally, the transformation between infinitesimally 
different Lorentz frames is2,3,6 

r; = r2 - EDt, (17d) 

t' = t - ED·r2, 

where ED is the velocity of the primed with respect to 
the unprimed frame. Though it is not so obvious that 
an 0. exists, the transformations (17d) are canonical 
with respect to the Lagrangian (3), and the result of 
the computation of 0. from (14), carried out in 
Appendix B, is 

o.LT == -mID' r1(1 - vi)! - m2D' r2(1 - v~)t 
e2 co (-D D)1> - - I 1 2 (1 - v • v )r2

1>-
l fl. (r + r ). 

2 p=o (2p)! I 2 1 2 

(18d) 
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The corresponding integrals are 

CTT = L - ~ ,i( Dn-1Vi ) • ( - D)l aL, (19a) 
n,i 1~0 a(Dnv;) 

CST = ~ C-D)n4, (19b) 
n,; a(D Vi) 

CSR = ~ ,iCDn-Zr;) x (- D)Z ~, C19c) 
n,i 1~0 a( Dnv;) 

CLT = ~ ![Dn-Z(r;v; -It)].(-D)Z~ - nLT , 
n,i Z~O aCDnvi ) 

(19d) 
where Q LT = nLT • n. 

The first of these but for the sign can be recognized 
as the extension to the infinite-degree-of-freedom case 
of the usual energy. The last three vector integrals are 
the linear momentum, angular momentum, and the 
so-called "center-of-mass" constant, the generaliza­
tion of MRcm - Pt going with the Galilei transforma­
tion in the nonrelativistic case. 

To complete the computation the integrals must be 
rendered functions of the primitive variables. The 
expression for the derivative of the Lagrangian with 
respect to DnVi [Eq. (B3) in Appendix B-just shift n 
to n + 1] is substituted in each of the constants and 
the results simplified. For example, for the linear 
momentum, 

~here j = 2 when i = 1, and vice-versa. The counting 
III the second term may start with n = -1 since the 
term vanishes at that number. Then shifting the index, 
n - n + 1, and using the counting rule 

leads to 
P = ~ miv;(1 - v~)-! 

i 

e2 (D )2(P+1) 

+ D~(2; + 2)!(2
p + 1) 

X (1 - VI • v2)r
2P-\ri - r;) 

+ e
2 ~ (D ;)21' 21'-1 

£., vir, 
p.i C2p)! 

where, in addition, the binomial expansion 

(_D;)k = CDi - D)k = i (k)C-D)nD~-n 
n~O n 

has been used in the last two terms. In the middle 
term, however, this last step can only be effected if 
~he term is first differentiated ("multiplied" by - D); 
It must then be integrated, here represented as division 
by D. The representation is unambiguous since D can 
be factored out of the middle term and the previous 
expression recovered, a fact more visible when the 
above is summed on i: 

P = m1v1(1 - vi)-! + m2v2C1 - v~)-! 

+ e2! (2p - 1) 1.. (D~ - mp)(1 ~ VI • v2)r2P-3r 
P~O C2p)! D 

co 1 + e2 ~ -- (D2Pv r21'- 1 + D21'v r21'- 1) 
~ (2)' 2 2 1 1 • p-o p. 

(20a) 

The other integrals may be similarly expressed, and 
are found to be 

E = m1(1 - vD-! + m2(1- v;)-! + e2I _1-CDiP + D;P)r2P- 1 
p~oC2p)! 

co 1 1 
- e2 ~ -- - (D 2P+1 + D2P+1)(1 _ V • v) 2p-1 

p-:-o(2p)!D 1 2 1 2 r , (20b) 

L = mir1 x vl )(1 - vi}-! + m2(r2 x v2)(1 - v~)-! + e2~0 (2~)! [DiP(rl x v2)r2P- 1 + DiP(r2 x v1)r2p- 1] 

+ 2~ _1_ 1 (D2P D2P)[( ) 2p-l e p~0(2p)! D 1 - 2 VI X v2 r + (2p - 1)(1 - VI' v2)(rl x r2)r
2P- 3], (20c) 

K = ml r l (1 - vir! + m2r2(1 - v;r! - Pt 

2~ 1 1 { 2 2 1 + e p"::o (2p)! D rl D2
P[Dl r P- + D2(Vl ' v2)r

2P- l
] + r2DiP[D2r2P-1 + D1(V1 • V2)r2P-l]} 

co 1 1 co 1 1 + e2~ (2 )' D (DiPvlr2P-l + D;Pv2r2P-l) + e2~ -- - (D;P - DiP)(2p - 1)(1 - V • V )r2P- 3r (20d) 
P~O p. p~o(2p)! D2 1 2 • 
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As in the linear momentum, the inverse D's cancel 
the numerator D's and are therefore integrations. It 
will presently be seen, however, that actual integration, 
attempted order by order in e2

, is ambiguous due to 
the possibility of adding any term whose derivative is 
of order e2n+2 to the integral computed to e2n accuracy. 
A test of the admissibility of such additive pieces is to 
reintroduce the speed of light into (20) wherever it 
dimensionally belongs [in (20a) , for example, c-2P 

follows each summation sign, c2 divides each quad­
ratic velocity term], and then to compare the expansion 

in c-2 powers of the direct integration result with the 
c-2 expansion of (20). The latter is unique owing to 
D's explicit and remainderless division into the oper­
and following it. 

Newtonian Integrals To Order e2 

The order depression proceeds exactly as before, 
with the first step the expression of the constants in 
complex integral form. Just as was the force law, the 
linear momentum (again singled out for illustration) 
may be written 

P = mlvl(l - v~r! + m2v2(1 - v~)-! + e2 ~1- ~ ! [exp (SD2) - exp (sDl)] (1 ~ VI· :2) ds 
27T1 D ar Y res - r ) 

+ e2 ~ ! [exp (sD2) 2 V2 2 + exp (SDl) 2 VI 2 Js ds. (21) 
2m Y res - r ) res - r ) 

To find P correctly to order e2 , the finite-shift 
operators are adequately represented by the first term 
in the expansion (8). Thus, the only complex integrals 
that appear are of the type 

1 exp (sv i • ~) 2 S 2 ds, (22) Y ar j res - r) 

which, for j = 2 say, is 

27Ti [Sl S2 ] 
(1 - V~)(SI - S2) Ir - v2s11 - Ir - vas21 ' 

just matching the analogous force computation. The 
roots SI and S2 are as before (9) and, again, the de­
nominators in the square bracket are, respectively, 
SI and -S2. The integral is therefore 

27Ti 
(23) 

The gradient of this quantity is 

2 
. i - V2 x (i x V2) - 7TJ----~~--~ 

r2[1 - (i x V2)2]! ' 

and the time integral of the gradient, needed in the 

second term of P, may be written 

- 27Til t 
ro + vt - v2 x [(ro + vt) x va] dt (24) 

to {(ro + vt)2 - [(ro + vt) x va]2}! ' 

that is, r is considered to change uniformly. A more 
accurate calculation would contribute terms at least of 
order e2 in the integral or of order e4 in the momen­
tum. The integration is straightforward. It is guessed, 
and confirmed later by the final form of P, that the 
result vanishes at to, so that upon eliminating ro (by 
ro = r - vt), one has for (24) 

- 27TiNr-l{ (i x V)2 - [(i x VI) x (i x va)]a}-I 

where 
X [1 - (i x V2)2]-i, (25) 

N = r[i • V - (i x va) • (VI x va)] 

+ Vl[1 - (i x va)2] 

+ ~2[1 - (i x VI) • (i x v2)]. 

Finally, these fragments, (23) and (25) for j = 2, 
along with their exchanged-subscripts counterparts, 
are assembled according as they appear in (21). The 
result is to order e2 the linear momentum associated 
with the admissible solutions of (2): 

P = mivi + m2v 2 + ~[ VI + V2 ] + e
2
(1 - VI • v 2) 

(1 - v~)i (1 - v~)t r (1 - ,u~)t (1 - ,u~)i r[(ltl - 1t2)2 - (It I X 1t2)2] 

X (. 1 ! {vI(1 - ,u~) - v2(1 - Itl • 1t2) - i[i • v - 1t2 • (VI x v2)]} 
(1 - ,u~) 

+ 1 2 t {V2(1 - ,u~) - vtCl - Itl· Ita) + i[i . v - Itl • (VI x vam) , (26a) 
(1 - ,ul) 
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in which f X Vl = (.LI, f X V2 = (.L2 for short, and v 
is the relative velocity Vl - v2 • 

An expansion of P (after putting c back in) in 
powers of c-2 is identical with the same expansion of 
(20a) with velocities held constant, thereby ratifying 
the choice of lower limit. 

The other constants of the motion are handled in 
the same way. The only little puzzle in each case 
concerns the proper choice of to in the time-integration 
step, there apparently being no systematic way for 
knowing what it should be ahead of time. The simplest 
guess, that the time integral should vanish at the 
lower limit, works for the linear momentum and also, 
as it turns out, for the energy; but it fails for the 
angular momentum and for the center-of-mass con­
stant. These latter two are each distinguished by 
requiring among their time integrations a type signifi­
cantly different from the form of (24). For integra­
tions in which the curly-braced expression appears 
just as in (24), in the denominator and to the t power, 

the above rule for to applies-the integral vanishes at 
the lower limit. In all other cases that curly-braced 
expression occurs also in the denominators, but to the 
! power. Then, although the vanishing rule fails, a 
factor of the form 

In [{ (ro + vt)2 - [(ro + vt) x V2]a}! 

+ t[va _ (VI x V2Y~]! + ro· V - (ro x va)' (VI x va)], 
[v 2 

- (VI x va)2]f 

arising when each of these remaining time integrations 
are evaluated, hints at another simple to, namely, 
that which gives zero for the curly brace itself. The 
conjecture is reinforced when elimination of ro, as in 
(25), results in the logarithm's argument being a 
function constant to e2 with no explicit time depend­
ence, and is established by a c-2 expansion test of the 
final Land K. 

The energy, angular momentum, and center-of­
mass constant are, to e2 order, respectively, 

(26b) 

(26c) 

(26d) 
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A direct check by time differentiation verifies that 
this set of functions (26) is indeed constant in straight­
line approximation, the accelerations being deter­
mined by the opening terms in (5). 

Lorentz Transformation of the Newtonian Integrals 

It should finally be noted that, to within their order 
of accuracy, the constants of the motion (26) have the 
required transformation character when passing from 
one Lorentz frame to another. The quantity p2 - E2 
is a four-scalar, and K and L are the components of 
an anti symmetric four-tensor, the transformation rule 
for infinitesimally distinguished frames being 

L' = L + Efi x K, 

K' = K - Efi x L. 

(27a) 

(27b) 

These statements may be tested by brute-force trans­
formation or, more elegantly, in the same way that 
(5) may be proven covariant,2.3 by developing certain 
necessary and sufficient conditions that they be true. 
For example, by direct transformation, using (17d), 

L' = L(r~, r~; v~, v~) 
= L[rl + E(VID' r - fit), r 2 - Efit; 

VI + E(VIO • VI - 0 + VIO • r), Vz + E(V20 • V2 - 0)], 

which to first order is 

L(rl' r2 ; VI' V2) + E[(Vlfi • r - ot) • oL 
orl 

,,)oL (" "+'0. )OL - (nt • - + vln· VI - n VIII' r .-
or2 OVI 

+ (v2fi. V2 - 0)' OLJ. 
oV2 

Equating this to the right-hand side of (27a) gives 

II' r VI' - + VI' - + n· VIVl'-0. ( oL . OL)" oL 
orl OVI OVI 

+ fi • V2V2 • - - fi· - + -oL (OL OL) 
oV2 oVI oV2 

_ (ot) • (OL + OL) = fi x K. 
orl or2 

This result may be reduced further by factoring out 
the fi. When Land K are introduced from (26), one 
has a dyadic equation in which sixteen linearly inde­
pendent pieces can be identified, all of which, upon 
the substitution ofVl from (5a), have been found to be 
satisfied to order e2• 

The transformation rules for all the constants have 
been tried out in this manner, the error in each case 
being a term of e4 order. 

IV. CONVENTIONAL ELECTRODYNAMICS 

The treatment so far has been a sort of paper-and­
pencil experiment attempting to see some of the 

actual features of a covariant Newtonian dynamics. 
In this last section we briefly comment on the overlap 
of the results of the "experiment" with what ought to 
result from the conventional retarded interaction of 
two charges. 

The overlap can be perceived in the Eqs. (5); The 
right-hand side of each, to first order, is the force on 
one charge in time-symmetric interaction with its 
uniformly moving companion. But that same term is 
also, and independently, the force [excepting the 
relativistic factor (1 - VDf(1 - ViVi)] on the one 
charge in retarded interaction with the other, moving 
uniformly-a commonplace calculation,u 

In this present context, the latter result can be 
retrieved by repeating the steps of the first section 
starting with fully retarded potentials. The outcome 
will be an e2 expansion of the forces differing from the 
time-symmetric case in every term but the first. Im­
portant consequences are as follows: 

(a) The well-known extension of Coulomb's law to 
include uniform motion of charges yields an interaction 
approximately covariant in the sense already men­
tioned. 

(b) Although like constants of the motion (energy, 
etc.) will differ in the two interactions, their coupling 
constant expansions will be identical to first order. 
Consequently, the integrals to e2 of the dynamics 
which result from replacing Coulomb's law with its 
straight-line extension are just those presented in the 
last section, Eqs. (26). 

Of course, as they contain no power of the coupling 
constant already neglected in the forces, it is just the 
approximate integrals of the corrected Coulomb 
dynamics which are physically consistent. Nevertheless 
it is interesting to regard that dynamics-the system 
(5) with e4 and higher terms dropped-as exact, and to 
seek exact integrals; an example of this is a kind of 
internal angular momentum 

,2- rxv 
- (1 - vDf(1 - vi)f . 

Because the coupling constant is missing, ,2 also 
happens to be an approximate integral of the full 
dynamics. When terms beyond e2 are included in the 
forces, its time derivative will be of order e4• 

What can be said about the domain of validity of 
the approximation to the completely retarded dynam­
ics by the straight-line equations of motion? 
Unhappily, little at present, but reflection on this 
concluding question raises interesting possibilities. 
One can see by dimensional analysis that, when the 

11 R. Becker, Electromagnetic Fields and Interactions, F. Sauter, 
Ed. (Blaisdell Publ. Co., New York, 1964), Vol. I, pp. 267-271. 
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masses are the same, the expansion in e2 of either 
time-symmetric or completely retarded forces is 
(excepting a common factor of e2/r2) in fact an 
expansion in powers of the classical charge radius ro 
divided by the separation of the charges. 

Then, because approximations to the fully retarded 
forces obtained by truncating the e2 series depend 
upon both the size of c compared with charge speeds 
and ro with charge separations, the error introduced 
by keeping the opening term alone [which is also the 
opening term of (5)] of each charge's force will be 
minimized only by an appropriate set of restrictions 
on the charges' speeds and closest-approach distance. 
The meaning of "appropriate" will become clear 
when the behavior of higher-order terms at various 
speeds has been understood; so far, it has only been 
established2 that, for the one-dimensional case, the 
second and third terms in the force law have logarith­
mic branch points, but no poles, at the speed of light. 
The implication is that the opening term of (5) might 
successfully comprehend the dynamics of such events 
as the collision of high-energy charges, the sole con­
dition being the specification of some minimum impact 
parameter. 

V. SUMMARY 

For a pair of charges, application of the criterion 
that the world lines should straighten out as the 
ccupling constant is turned off leads to frame­
invariant Newtonian equations of motion, thus 
singling out a twelve-parameter set of world lines from 
among the infinitude admitted by classical electro­
dynamics. 

The computation of the forces to e4 order has been 
reduced to the evaluation of certain integrals. Either 
completely retarded or time-symmetric interactions 
may be treated, but as the latter both follow from an 
action principle and are form invariant under the 
inhomogeneous Lorentz group, Noether's theorem 
applies and delivers ten constants of the motion. The 
time-symmetric case has therefore been investigated 
here and the integrals presented explicitly to first 
order in e2• 

The equations of motion are covariant and the ten 
integrals are possessed of their characteristic trans­
formation rules only approximately, that is, consistent 
to their degree of approximation in e2• Only when 
terms of all orders in e2 are summed will the dynamics 
be completely consistent with the principle of rela­
tivity. 

All of the results, however, remain formal because 
the question of convergence of the expansions in e2 is 
still unresolved. Until the problem is settled the whole 
regime is tentative; in the meantime such facts as the 

opening terms in the c-2 expansion of the forces being 
the Coulomb and Darwin interactions, respectively, 
suggest that the e2 terms also have perturbative 
significance and that the expansions in that param­
eter might at least turn out to be asymptotic. 

The opening term in the e2 expansion of the forces 
for the fully retarded and time-symmetric cases is 
identical and is, furthermore, the classical result 
(multiplied by a relativistic kinematical factor) of 
computing the force on one charge via the retarded 
fields of a second whose velocity is fixed. This straight­
line correction to Coulomb's law is then seen to be 
rather more significant than ordinarily remarked. 
It correctly approximates to e2, in a frame-invariant 
way, the force on one of a pair of charges in retarded 
interaction. Finally, owing to the coincidence of all 
first-order results, the constants of the motion of the 
corrected Coulomb dynamics are just those of the 
time-symmetric equations. 

A Hamiltonian formulation, with the inhomogene­
ous Lorentz-group canonical, of the dynamics sketched 
in this presentation is known to exist and to be 
unique. The next major step will be its construction. 
One can already anticipate from the approximate 
covariance of the theory that even to order e2 the 
injunction of the zero-interaction theorem will only be 
short-circuited by eliminating physical positions as 
candidates for the q/s. Although a commutation-rule 
puzzle then looms, it was not expected that the 
marriage of the canonical formulation of the instan­
taneous interaction of charges with the special theory 
of relativity would take place gratuitously. We just 
hope that the union proves fruitful. 
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APPENDIX A: ORDERING OF exp (sD2) 

It has been shown10 by Feynman's calculus for the 
noncommuting operators A, B that 

exp [seA + B)] 

= exp (sA) + s i~oexp [(1 - oc)sA]B exp (ocsA) doc 

+ s2L~oexp [(1 - ,8)sA]B 

x i~oexp [(,8 - oc)sA]B exp (ocsA) doc d,8 + ... , 
(AI) 

where s is a c number. 
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Now, if D2 = A + Band 

i:i 
A=v·-

2 i:i ' r 2 

n being the order of the time derivative, the com­
mutation rule 

B exp (ksA) = exp (ksA) (kSV2 • ~ + B) (A2) 
i:ir2 

is obeyed (k is another c number). Using (A2) in 
(AI) gives 

exp (SD2) 

= exp (sA) + exp (SA)Sl
l 

(IXSV2 ' ~ + B) dlX 
a~O i:ir2 

+ exp (SA)S2l
l 

l
P 

(f3SV2' ~ + B) 
P~O a~O i:ir2 

X (IXSV2' ~ + B) dlX df3 + . . . . (A3) 
i:ir2 

When each of the integrands is expanded, the result 
can be arranged in a multinomial series in time 
derivatives of the velocities. The contribution to the 
linear terms by each integrand in (A3) is easily found 
by induction and is 

in which the order of the time derivative n is also 
equal to the number of products in the integrand; or, 
in other words, (A4) is the linear term for the inte­
grand of sn in (A3), whence 

exp (sD 2) 

= exp (SA)[l + sl
l 

(IXSV2' ~ + B) dlX 
a~O or2 

+ S2 e l P (IXSV~2). ~ 
Jp~o a~O i:ir2 

(2) a) ] + V2 • i:iv
2 

+ . .. dlX df3 + . " . 
Integration gives 

exp (SD2) 

= exp (SA){1 + s(~ sV2' ~ + B) + S2[~ SV~2) • ~ 
2! or2 31 i:ir2 

I (2) i:i (3) i:i ) ] } + - v2 • - + v2 • -. +... + .. '. (A5) 
2 i:iv2 i:iv2 

The coefficients of oji:ir2 and i:i1i:iV2 are 

.1 S2V +.1 S3V(2) + ~ S4V(3) + ... 
2! 2 3! 2 4! 2 

and 

SV + 1. sV2) + .1 sV3
) + ... 

2 2! 2 3! 2 , 

which are, respectively, 

and 

i~OV2(t + ~) d~. 
The remaining terms in the { } of (A5) are 

S (V(2) • ~ + ... + VClH) • ~ + ... ) 2 ::I' 2 i:i (!) 
UV2 v2 

+ .1 S2 (V(3) • ~ + ... + vU+2) • ~ + ... ) + ... 
2 ' 2 i:i' 2 i:i (I) , . v2 v2 

which may all be written 

I v~n)(t+ s) • - - v~n) • -- . <XJ ( i:i a ) 
n~l ov~n) OV~n) 

Thus, to terms linear in the time derivatives of the 
velocities, 

exp (SD2) = exp (SV2'~) 
i:ir2 

X [1 +18 [" v2(t + ~) ".~ d~ d1J 
,,~o J~~o i:ir2 

+ v2(t + ~). - d~ 1
8 i:i 

~~o i:iV2 

+ Jl(v~n)(t + s) - v~n» • o~nJ (.1\:6) 

In the present application the operand of (A6) 
contains no time derivatives of v2 beyond the first. 
Therefore, only n = I appears in (8). 

APPENDIX B: COMPUTATION OF .QLT 

It is first necessary to find an expression for the 
derivative of the Lagrangian (3) with respect to Dnri • 

By the Cauchy integral formula, with the trans­
formation z = s + t, the Lagrangian may be written 

L = -mil - v~)l - m2(1 - v~)l 
_ e2! (- D2Y J!l 

p=o (2p)! 27Ti 

X f [1 - V2S'p:~(S + t)] Irl(s + t) - r212P- 1 ds. 

(BI) 
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The form (Bl) is suitable for taking the derivative 
with respect to D"rl : 

_o_L_ _ mlVl l5 
(1 _ v~)l "I 

_ e2 i: ( - D2)1l (1?l1_1_ 
1l=0 (2p)! 27Ti j S1'+l 

X {[I - V2 • vb + t)](2p - 1) s" 
n! 

x [rl(s + t) - r2] Irl(s + t) - r2121J- 3 

_ v
2 

S,,-l Irl(s + t) - r2121J- l} dS), 
(n - 1)! 

(B2) 

where the last term in the curly braces is zero for 
n = O. Retransforming to z and again using the inte­
gral formula gives for the term in parentheses 

p! (2p - 1)lJin(l - VI' V2)r21l- 3r 
n! (p - n)! 

The first term is the exact derivative of 

Also, with 

(DOLT)I = - D[mlfi • r l (l - vDl] 

So, with factorials of negative numbers denoting 
vanishing terms, (B2) becomes 

~ _ m1v1 l5 
o(Dnrl) - (1 _ v~)l nl 

_ e2 i: (- D2)1l Dr-
n 

(2p - 1) 
1l=n (2p)! 

x (:) (1 - VI • v2)r21l-~ 

+ e2 i (- D2)1l Dr-
n
+

l 
( p ) v2r

21l-\ 
1l=n-1 (2p)! n - 1 

(B3) 

which is the desired expression. The derivative of L 
with respect to D nr 2 follows by exchange of indices. 

Now, in the equation for the determination of any 
0, Eq. (14), it suffices to treat i = 1; then, with fi and 
g given by (17d), 

(DOLT)i_1 = i ~ . Dn(vlfi. rl - fit). (B4) 
n=O o(Dnrl) 

Substituting (B3) in (B4) gives 

(B5) 

the sum rule 

and shifting the index from n - 1 to n in the last 
term, (B5) becomes 

- ; i i( -( D2Y (2p - l)(P) [D~-n(1 - VI' v2)r21J-3r ] , D~(Vlfi, r 1) 
1J=0 n=O 2p)! n 

+ e2 i: i (- D2)1l(P)V2(m-nr21J-l) • D~+1(Vlfi 'r1) 

1l=0 n=O (2p)! n 

+ e2i;C-D2)1lDf-l p(2p - 1)C1 - v
1

,v2)r1J- 3r. fi - e2IC-DlD2)1J V2 ' fir21l- l . 
1J=1 (2p)! 1l=0 (2p)! 

using Leibniz' rule 

D~(A. B) = i (P)(Dr-nA). D~B. 
n=O n 

(B6) 

The term containing t explicitly has been dropped; 
being antisymmetric in the charge indices, it is 
cancelled by its opposite number upon addition of 
(DOLT)2. The remaining pieces may now be simplied Further, if the index p is shifted in the fourth term so 
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that counting begins at zero, the interaction pieces of 
(B6) become 

2 ~ (- DI D2)1' {(2 1)(1 ) A 2:p-3 -e """ p - - VI' V2 r • vln· rlr 
p=o (2p)! 

- r2p-1 DI(VI • V2fi • rl) 

+ tD2 [(1 - VI' v2)r. fir2:P-I] + V2' fir2:P-I}, 

the curly brace of which is equal to 

DI[(l - VI • v2)fi • rlr
2:P-I] - fi • vr2v-

1 

(B7) 

+ !D2 [(1 - VI' v2)fi. rr2V- I]. (B8) 

The piece involving the relative speed is antisymmetric 
and can be discarded. 

JOURNAL OF MATHEMATICAL PHYSICS 

The interaction part of (DOLT)2 will be just (B7) 
with an index-exchanged curly brace. Then the inter­
action terms of DOLT will be (B7) with a braced term 
the sum of (BS) and its exchanged counterpart, easily 
seen to be 

!CDI + D2)[(1 - VI' v2)r2V- lfi • (rl + r2)]. 

The right-hand side of (14) is thus an exact derivative 
for Lorentz transformations. The expression may be 
integrated to give 

nLT = -mlfi· rl(1 - v~)t - m2fi • r2(1 - v~)t 

e
2 ~ ( - DI D2Y ) 2v-1 A ( ) - - """ (1 - VI • v2 r n· rl + f2 . 

2 v=0 (2p)! 
(B9) 
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Degenerate perturbation theory is employed to discuss the motion of a charged particle in a constant 
magnetic field on which is superimposed a weak, transverse, spatially periodic magnetic field. A first­
order solution of the equations of motion is presented. It is shown that the secular motion is periodic 
in time. The significance of this result with.respect to the stability of protons in the inner Van Allen belt 
is discussed. 

1. INTRODUCTION 

In a previous paperl (henceforth cited as I) we 
presented a new formulation of classical perturbation 
theory. There we illustrated the nondegenerate form 
of this theory by discussing the van der Pol equation. 
The van der Pol equation has, of course, been ade­
quately discussed by many authors using a variety of 
techniques. In the present paper, however, we 
discuss a problem which has not been adequately 
treated in previous publications. Here we employ 
degenerate perturbation theory to discuss the inter­
action between a charged particle and a constant 
magnetic field on which is superimposed a weak, 
transverse, spatially periodic magnetic field. 

ThiS interaction has played an important role in 
recent discussions of the stability of protons in the 
inner Van Allen belt. For example, Dragt2 and 
WentzeP have argued that a resonant interaction 

• Supported in part by the National Science Foundation. 
t Present address: EGG, Inc., Arlington, Virginia. 
1 T. P. Colfey and G. W. Ford, J. Math. Phys. 10, 999 (1969). 
• A. J. Dragt, J. Geophys. Res. 66, 1641 (1961). 
a D. Wentzel, J. Geophys. Res. 66, 359 (1961). 

between the charged particle and a periodic magnetic 
field would cause a breakdown of the adiabatic 
invariance of the particle's orbital magnetic moment. 
They further argue that such a breakdown of the 
adiabatic invariance of the magnetic moment would 
destroy the magnetic trapping effect. This reasoning 
has led them to assert that a periodic disturbance 
(produced, for example, by a hydromagnetic wave) 
on the geomagnetic field is responsible for the removal 
of protons, which would otherwise be trapped, from 
the inner Van Allen belt. 

In what follows we obtain a complete first­
order solution of the equations of motion in the case 
where the periodic field is a sinusoid. We find 
that the secular changes produced by such a field are 
of bounded variation. In particular, the "average" 
magnetic moment is a periodic function of time. The 
relative fluctuation in the "average" magnetic moment 
depends upon the ratio of the particle's cyclotron 
radius to the wavelength of the periodic disturbance: 
the fluctuation is large when the ratio is small and 
small when the ratio is large. The essential point is that 
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a resonant interaction between the particle and the 
periodic field is not sufficient to cause large changes 
in the magnetic moment. 

Aside from its application to the question of 
stability of protons in the inner Van Allen belt, 
the example which we discuss is an interesting 
mathematical exercise. It illustrates quite nicely many 
of the phenomena which are characteristic of non­
linear oscillatory systems. For example, the ideas of 
secular growth, stability and instability, and syn­
chronous and nonsynchronous behavior arise in a 
very natural way. The example also illustrates that a 
nonlinear resonance is considerably more com­
plicated than a linear resonance. 

Our program is as follows: In Sec. 2 we derive 
Hamilton's equations of motion which describe the 
interaction between the particle and the field; in 
Sec. 3 we introduce the appropriate perturbation 
theory and obtain the differential equations which 
describe the secular motion; in Sec. 4 we perform a 
phase-plane analysis in order to characterize the 
secular motion; in Sec. 5 we obtain an explicit solution 
of the differential equations which describe the secular 
motion; in Sec. 6 we discuss the behavior of the 
secular motion under resonance conditions. The final 
section summarizes the main conclusions of the paper. 

2. THE EQUATIONS OF MOTION 

In the Cartesian reference frame x, y, z the magnetic 
field is taken to have the form 

B = [Bl sin kz, 0, Bo]. (2.1) 

This field can be described by the vector potential 

A = [-BoY, (BI/k) cos kz, 0]. (2.2) 

The nonrelativistic Hamiltonian H which describes 
the system is 

where 

H = (1/2m){p - (e/c)AY 

= (l/2m){[p", + mwoy]2 

+ [Pu - (mwl/k) cos kZ]2 + p~}, (2.3) 

(2.4) 

In order to prepare the system for perturbation 
theory, we introduce the new canonical momenta J, 
Pr' P z and their conjugate coordinates tp, r, and Z as 
follows: 

x = r - (2J/mwoii cos tp, p", = Pr' 

y = -(l/mwo)Pr + (2J/mwo)! sin tp, 
py = (2mwoJ)! cos tp, 

z = Z, pz = Pz . (2.5) 

The quantities r, Pr/mwo, and Z are the Cartesian 

coordinates of the guiding center. In the unperturbed 
state the particle gyrates about this center with 
angular velocity Wo in a circle of radius (2J/mwo)!. 
We measure the time in units of the rotation 
period. To do this we introduce a new independent 
variable 

(2.6) 

It is straightforward to show that the Hamiltonian h 
which is appropriate to the new variables is 

h = J + (1/2mwo)P~ - (e/k)(2mwoJ)! cos tp cos kZ 

+ (e2mwo/2k2) cos2 kZ, (2.7) 
where 

(2.8) 

Hamilton's equations of motion are found from Eq. 
(2.7) to be 

J' = -(e/2k)(2mwoJ)! 

x [sin (tp + kZ) + sin (tp - kZ)], (2.9a) 

P'z = -(e/2)(2mwoJ)! 

x [sin (tp + kZ) - sin (tp - kZ)] 

+ (e2mwo/k) cos kZ sin kZ, (2.9b) 

kZ' = kP z/mwo , (2.9c) 

tp' = 1 - (e/2k)(mwo/2J)! 

X [cos(tp + kZ) + cos(tp - kZ)], (2.9d) 

where, for example, 
J' = dJ/dT. (2.10) 

The system of differential equations (2.9) is in the 
standard form to which the perturbation theory of I is 
applicable. The parameter of smallness is e = Bl/Bo. 
We see from Eqs. (2.9) that the sum angle tp + kZ 
contributes only small amplitude, rapid fluctuations 
to the motion. However, the difference angle tp - kZ 
can give rise to secular motion when tp' - kZ' = O( e). 
The system (2.9) must, therefore, be treated by de­
generate perturbation theory. We carry out this 
treatment in the next section. 

3. PERTURBATION THEORY 

In this section we perform first-order per­
turbation theory according to the formalism pre­
sented in I. Our object is to separate the rapidly 
fluctuating motion from the secular motion. In order 
to do this we introduce new variables U, V, K, and 
4> as follows: 

kZ = KU + eDl(U, V, K, 4» + O(e2
), 

Pz = V + eEl(U, V, K, 4» + O(e2
), 

J = K + eFl(U, V, K, 4» + O(e2
), 

tp = 4> + eGl(U, V, K, 4» + O(e2
), 

(3.1a) 

(3.lb) 

(3.1c) 

(3.1d) 
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where D1 , E1 , F1 , and G1 are required to be periodic 
functions of 1> and of kUwith period 217. The variables 
U, V, K, and 1> are to contain the secular motion and 
D1 , E1 , F1 , and G1 are to contain the rapidly fluctu­
ating motion. In order to guarantee that U, V, K, and 
1> represent the secular motion, we require that 

kU' = (kV/mwo) + €01(U, V, K, 1» + 0(€2), (3.2a) 

V' = €b1(U, V, K, 1» + 0(€2), (3.2b) 

K' = €A 1(U, V, K, 1» + 0(€2), (3.2c) 

1>' = 1 + €B1(U, V, K, 1» + 0(€2). (3.2d) 

The functions ai' b1 , AI' and Bl are to contain only 
those combinations of U and 1> which can give rise to 
secular motion. The precise manner in which this 
choice is made is fully described in I. 

If we substitute the ansatz (3.1) and (3.2) into 
Eqs. (2.9) and retain only terms through first order in 
€, then we obtain the following set of equations: 

Al + 6F1 = -(1/2k)(2mwoK)![sin (1) + kU) 

+ sin (1) - kU)], (3.3a) 

b1 + 6E1 = -(t)(2mwoK)![sin (1) + kU) 

- sin (1) - kU)], (3.3b) 

al + 6D1 = (k/mwo)E1 , (3.3c) 

Bl + 6G1 = -(1/2k)(mwo/2K)![cos (1) + kU) 

+ cos (1) - kU)], (3.3d) 

where the operator 

6 = (kV/mwo)ojokU + 0/01>. (3.4) 

The difference angle () = 1> - k U can give rise to 
secular behavior when it is slowly varying. In order 
that U, V, K, and rp contain all of the secular 
motion, we must absorb the () dependence into the 
functions AI, ai' b1 , and B1 • We therefore choose 

Al = -(lj2k)(2mwoK)! sin (), (3.Sa) 

Bl = -(lj2k)(mwo/2K)!cose, (3.Sb) 

al = 0, 

into Eqs. (3.2), we find that 

K' = - (€j2k)(2mwoK)! sin e, (3.8a) 

V' = (€/2)(2mwoK)! sin e, (3.8b) 

e' = I - (kV/mwo) - (€/2k) (mwo/2K)! cos e, 

(3.8c) 

where e' = 1>' - kU'. It follows from Eqs. (3.8a) and 
(3.8b) that 

K + (V/k) = I, (3.9) 

where I is a constant. The system of Eqs. (3.8), there­
fore, reduces to two equations relating the two vari­
ables K and e. In the next section we use these 
equations to obtain some general information con­
cerning K and e without producing an explicit solution. 

4. PHASE-PLANE ANALYSIS 

We begin this section by introducing the new 
variables a and b whiCh are defined by the equations 

a = R cos e, b = R sin e, (4.1) 
where 

(4.2) 

The quantity R measures the ratio of the cyclotron 
radius to the fundamental period of the disturbance. 
The equations of motion for a and b are found from 
Eqs. (3.8) to be 

a' = -(1 - C + R2j2)b, 

b' = (1 - C + R2j2)a - €/2, 
where 

(4.3a) 

(4.3b) 

(4.3c) 

is a constant. These equations give rise to the differ­
ential form 

[1 - C + (R2j2)]b db 

+ {[I - C + (R2/2)]a - (€/2)} da = O. (4.4) 

This is an exact differential whose integral is 

R4 + 4(1 - C)R2 - 4€a = M, (4.5) 
b1 = (t)(2mwoK)! sin e. 

(3.Sc) 

(3.Sd) 

With this choice of AI, B1 , ai' and b1 we find that 
'where M is a constant. Equation (4.5) expresses the 
conservation of energy through first order. It follows 

(3.6a) from the Hamiltonian (2.7) that, to first order in €, Dl = (k/2w~)(2K/mwo)! sin (1) + kU), 
El = (lj2w~)(2mwoK)! cos (1) + kU), 

Fl = (1/2kw2)(2mwoK)! cos (rp + kU), 

G1 = -(1/2kw2)(mwo/2K)! sin (rp + kU), 

where 

(3.6b) 

(3.6c) 

(3.6d) 

(3.7) 

When our choice for Al , Bl , ai' and b1 is substituted 

(4.6) 

The important aspects of the motion can be illus­
trated by plotting Eq. (4.5) in the a-b plane. Before 
doing this, it is useful to examine the points where 
a' and b' are simultaneously zero. These are the points 
of equilibrium and are usually termed singular points. 
It follows from Eqs. (4.3) that the singular points are 
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to be found from the equations 2.0 'b 

b =0, 

a3 + 2(1 - C)a - e = 0. 

(4.7a) 

(4.7b) 

If e is sufficiently small, the cubic equation will have 
three real roots; we assume this to be the case. 
These roots, which we call aI' a2' a3' are 
approximately as follows: 

al = 2[-2(1 - C)j3]t[(!)t - t'Jj6] + O(e2
) > 0, 

(4.8a) 
a2 = 2[-2(1 - C)j3]t[-(!)t - t'Jj6] 

+ O(e2
) < 0, (4.8b) 

a3 = 2[-2(1 - C)j3]t(t'Jj3) + O(e2
) < 0, (4.8c) 

where 
t'J = -(ej2)[-2(1 - C)j3]-!. (4.9) 

The nature of these singular points can be deter­
mined by examining the behavior of the motion in 
their vicinity. In order to do this we let 

a = ai +~, b = rJ, ( 4.l0) 

where a, is one of the singular points and ~ and rJ 
represent small displacements from this singular 
point. Upon substituting Eqs. (4.10) into Eqs. (4.3) 
and retaining terms through first order in ~ and rJ, we 
find that 

~' = - [1 - C + (a~j2)]rJ, 
rJ' = [1 - C + (3a~j2)]~. 

(4.11a) 

(4. 11 b) 

We seek solutions in the form 

~ = ~oelr, rJ = rJoelT. (4.12) 

These solutions are valid if 

A = ±{-[1 - C + (a;j2)][1 - C + (3a;/2)]}t. 

(4.13) 

When the values of ai as expressed by Eqs. (4.8) are 
substituted into Eqs. (4.13), we find that we can 
classify the singular points as to their stability. This 
classification is given in Table 1. 

Table I shows that the trajectories must close about 
the point aa and they must also close about the point 
al' Furthermore, it follows from Eq. (4.5) that, for 

TABLE I. Classification of singular points. 

Singular Points ;. 

al imaginary 
a. real 
a3 imaginary 

Nature of Singular 
Point 

Center (stable) 
Saddle point (unstable) 
Center (stable) 

-2.0 

-2.0 
FIG. 1. Trajectories of a 50 MeV proton in the a-b plane; 

k = 6.28 X 10-8 em-I, 000 = 370 rad/sec, e = 0.01. 

large values of R, the trajectories have the form 

R4 = const (4.l4) 

and are, therefore, circles centered about the origin. 
The manner in which these requirements are satisfied 
is shown in Fig. 1. The several trajectories are plotted 
for a particular physical situation. The parameters such 
as the energy, background field strength, etc., have 
been assigned values which are appropriate to a 
proton which is moving in the inner Van Allen belt at 
a distance of two earth radii. However, the value of e 

which was used in Fig. 1 was chosen to be about ten 
times larger than what one would expect at two earth 
radii.4 This larger value of e was used to facilitate the 
plotting of the trajectories. 

The trajectories in Fig. 1 consist of a family of closed 
curves. This means that K, and consequently V, is a 
periodic function of time; we obtain the period in 
the next section. The trajectories can be divided into 
two groups: those which are centered about the point 
aa and those which are centered about the point al' 
The motion corresponding to the first group is non­
synchronous, since the difference angle () increases 
without bound. The motion corresponding to the 
second group is synchronous since, for these trajec­
tories, the angle () oscillates between well-defined 
limits. The synchronous and nonsynchronous regions 
are separated by the trajectory, called a separatrix, 
which passes through the unstable point a2 • 

The largest fluctuations in K occur on trajectories 
which pass close to the separatrix. As one moves 

'See Ref. 2. 
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away from the separatrix into the nonsynchronous 
regions, the trajectories rapidly become circles 
centered about the point aa. As one moves away 
from the separatrix into the synchronous region, the 
fluctuations in K and (J become smaller until, at the 
point aI' they vanish. The separatrix, therefore, 
determines the range of values of K and (J for which 
maximum resonance occurs. In the following sections 
we obtain the time dependence of K and we estimate 
the total fluctuation in K under resonance conditions. 

5. TIME DEPENDENCE OF THE MOTION 

In order to find the explicit time dependence of K 
and an expression for the period T, we introduce a 
new variable 

S = R2 = (2k2/mwo)K. (5.1) 

It follows from Eqs. (3.8) that 

Sf = -€R sin (J. (5.2) 

The right-hand side of Eq. (5.2) can be expressed as a 
function of S alone by making use of Eqs. (4.5) and 
(4.6). A straightforward calculation gives 

Sf = _(t)[-S4 - 8LS3 - (8N + 16£2)S2 

- 16(2LN - €2)S - 16N2]i, (5.3) 
where 

L = 1 - C, N = C2 - 2Ch/I. (5.4) 

If we denote the roots of the quartic in the square 
bracket in (5.3) by Sl, S2, S3, and S4, then Eq. (5.3) 
becomes 

Sf = - (!)[(S1 - S)(S - S2)(S - S3)(S - S4)]i. 

(5.5) 

This is a first-order differential equation for S( T) which 
is solvable in terms of elliptic functions. The solutions 
depend upon the nature of the roots S1, S2, S3, and 
S4; we must distinguish the case of two real roots from 
the case of four real roots. 

Case of Two Real Roots 

It should be clear from Fig. 1 that two real roots 
corresponds to motion in the synchronous region. 
We arrange the real roots S1 and S2 such that 
S1 2: S2. The complex roots S3 and S4 may be written 
as 

S3 = m + in, S4 = m - in. (5.6) 

In this case Eq. (5.5) has the solution5 

SeT) = SIB + S2A + (S2A - SIB) cn [(T - To)j4g] 
~ A + B + (A - B) cn [(T - To)j4g] , 

(5.7) 
5 P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals 

for Engineers and Physicists (Springer-Verlag, Berlin, 1954), Eq. 
(259.00), p. 133. 

where 

A2 = (S1 - m)2 + n2, B2 = (S2 - m)2 + n2, (5.8) 

and 
g = (AB)-i. (5.9) 

The function cn (x) is a Jacobi elliptic function. The 
modulus K of the elliptic function is given by 

2 (S1 - S2)2 - (A - B)2 
K = (5.10) 

4AB 

The constant TO is chosen to satisfy the initial con­
ditions. The function cn (x) is periodic in x with 
period 4K, K being the complete elliptic integral of 
the first kind. It follows that SeT), and hence K(T), is 
a periodic function of T with period T given by 

T = 16K(AB)-!, (5.11) 

where the modulus K of the complete elliptic integral 
is given by Eq. (5.10). 

Case of Four Real Roots 

Four real roots correspond to motion in the non­
synchronous region. We consider first the case where 
S1 2: S 2: S2 2: S3 2: S4. In this case the solution of 
Eq. (5.5) is6 

SeT) = S2(SI - S3) - S3(S1 - S2\sn
2 

[(T - To)/4g] , 
SI - S3 - (S1 - S2) sn [(T - To)/4g] 

(5.12) 
where 

g = 2[(S1 - S3)(S2 - S4)]-i. (5.13) 

The modulus K of the Jacobi elliptic sine function is 
given by 

2 (S1 - S2)(S3 - S4) 
K = (5.14) 

(S1 - S3)(S2 - S4) 

The function sn2 (x) is periodic in x with period 2K, 
K being the complete elliptic integral of the first kind. 
It follows that S(T) , and hence K(T) , is a periodic 
function of T with period 

T = 32K[(S1 - S3)(S2 - S4)]-i. (5.15) 

In the remaining case where S1 2: S2 2: S3 2: S 2: 
S4, we find that7 

SeT) = SiSI - Sa) + SiS3 - S4) sn
2 

[(T - To)/4g] 
SI - Sa + (S3 - S4) sn 2[(T - To)/4g] , 

(5.16) 

where g is given by Eq. (5.13) and where the modulus 
K of the Jacobi elliptic sine function is given by 

6 Reference 5, Eq. (256.00), p. 120. 
7 Reference 5, Eq. (252.00), p. 103. 
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Eq_ (5.14). It follows that S(T) is a periodic function 
of T with period given by Eq. (5.15). 

We have now determined the function SeT) in the 
synchronous and non synchronous regions. A knowl­
edge of the function S( T) immediately determines 
K( T), V( T), and cos e( T). These latter functions allow 
us to find the explicit time dependence of 4>(T) and 
kU(T). We do not attempt to do this, since the 
resulting expressions would add little to our under­
standing of the motion. The significant point is that 
K( T) and V( T) are strictly periodic functions of T. In 
the next section we estimate the maximum fluctuation 
inK(T). 

6. BEHAVIOR UNDER RESONANCE CONDITIONS 

Exact resonance occurs when the particle traverses 
a single period of the sinusoidal field in one cyclotron 
period. This exact resonance is nearly fulfilled when 

kVjmwo = 1. (6.1) 

If we substitute condition (6.1) into Eq. (2.7) and 
neglect the first-order term, we find that 

k 2K/mwo = (k2h/mwo) - (t). (6.2) 

Equations (4.5), (4.6), (6.1), and (6.2) allow us to find 
a value of the constant C which corresponds to near 
resonance. The appropriate value of C is found to be 

(6.3) 

where d = k 2h/mwo. With this value of C the quartic 
in Eq. (5.3) becomes 

S4 + (4 - 8d)S3 + (6 - 24d + 24d2)S2 

+ (4 - 24d + 48d2 - 32d3 - 16e2)S 

+ 1 - 8d + 24d2 - 32d3 + 16d4• (6.4) 

The roots of this quartic are approximately as follows: 

Sl,2 = (2d - 1) ± 2(2d - l)!e! + D(e), (6.5) 

S3,4 = (2d - 1) ± i2(2d - l)!e! + D(e). (6.6) 

Since two roots are complex, it follows that the 
trajectory corresponding to condition (6.3) lies in the 
synchronous region. Now, by definition, 

d = k2hjmwo = k2H/mw~, 

where H is the energy. Thus 

2d - 1 = (2k2/mw~)[H - (mw~/2k2)] 

= (2k2/mw~)[(mvlo/2) + (p;pm) 

(6.7) 

- (mw~/2k2) + D(e)], (6.8) 

where v 1.0 is the initial transverse velocity and P'o is 

the initial longitudinal momentum. According to Eq. 
(6.1), 

P'o = mWolk + D(e). (6.9) 

Upon substituting Eq. (6.9) into Eq. (6.8), we find that 

2d - 1 = k2vlolw~ + D(e). (6.10) 

We now define the relative fluctuation 11K in K as 
follows: 

11K = 2(Kmax - Kmin ) = 2(Sl - S2). (6.11) 
(Kmax + Kmin) (Sl + S2) 

Upon making use of Eqs. (6.5), (6.10), and (6.11), we 
find that 

( 6.12) 

If we denote the initial value of K by Ko, then v 1.0 and 
Ko are related by the expression 

mvL/2 = Kowo + O(e). 

It follows that 

kVl.olwo = k(2Ko/mwo)! + D(e) 

= Ro + D(e), 

(6.13) 

(6.14) 

where Ro is 27T times the ratio of the initial cyclotron 
radius to the wavelength of the disturbance. Upon 
substituting Eq. (6.14) into Eq. (6.12), we find that 

11K = 4Roiet + D(e). (6.15) 

Thus the relative fluctuation in K under resonance 
conditions depends not only on e but also on the ratio 
of the cyclotron radius to the wavelength of the 
periodic disturbance. This dependence of the relative 
change in K upon Ro is not surprising. An increase of 
the wavelength of the disturbance requires a corre­
sponding increase in the longitudinal particle velocity 
in order to achieve resonance. Associated with the 
increase in the longitudinal velocity is a decrease in the 
transverse velocity and hence a decrease in absolute 
value of K. This decrease in absolute value contributes 
to the increase in the relative change. 

The ideas developed above are best illustrated 
through an example. We first observe from Eq. (6.15) 
that relative fluctuations of order unity will occur 
when 

(6.16) 

Now consider the trajectories plotted in Fig. 1. These 
trajectories correspond to a 50 MeVproton moving in 
a disturbance whose wavelength is 108 cm (1000 km) 
and to a field strength ratio e = 0.01. It follows from 
Eq. (6.16) that, for e = 0.01, relative fluctuations of 
order unity will occur when 

Ro = (0.16)t = 0.543 (6.17) 
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1.0 b 

-1.0 

FIG. 2. Trajectories of a 50 MeVproton in the a-b plane; 
k = 4.19 X 10-8 em-I, Wo = 370 rad/sec, € = 0.01. 

lies in the resonance region. However, it is clear from 
Fig. 1 that Ro = 0.543 lies well outside the resonance 
region. Thus K(r) for a 50 MeV proton moving in a 
periodic disturbance whose wavelength is 1000 km 
undergoes only relatively small fluctuations. 

Let us now increase the wavelength of the dis­
turbance to 1.5 X 108 cm (1500 km) and hold the 
other parameters fixed. The trajectories in the a-b 
plane for this situation are plotted in Fig. 2. Inspection 
of Fig. 2 reveals that Ro = 0.543 lies in the resonance 
region. Thus, as is evident from Fig. 2, K(r) for a 50 
MeV proton moving in a periodic disturbance whose 
wavelength is 1500 km can undergo relative fluctua­
tions of order unity. Here we have graphic evidence of 
the influence of Ro on the relative fluctuation of K(r). 
We conclude this section with a few remarks relating 
our results to previously published work. 

The average orbital magnetic moment fl( r) is related 
to K(r) by the equation 

(6.18) 

Therefore, what has been said above about K(r) also 
holds for ",(r). This means that fl(r) is a periodic 
function of r. Furthermore, the relative fluctuation in 
",(r) (that is, the fluctuation measured with respect to 
the mean value of ft) depends upon the ratio of the 

cyclotron radius to the wavelength of the periodic 
disturbance. Neither of these results was employed 
by Dragt2 or WentzeP in their discussions of magneto­
spheric scattering. 

The problem of magnetospheric scattering is 
certainly more complicated than the problem which 
we have discussed here. In magnetospheric scattering 
the effects of the mirror fields must be included as 
well as the fact that a particle encounters many 
waves of varying intensity, wavelength, and initial 
phase angle. These variations are typically accounted 
for by assuming that the particle's magnetic moment 
performs a random walk between mirror points.2.3 

The step size in the random walk calculation is found 
by estimating the change in the magnetic moment 
during one cyclotron period and multiplying this 
result by the number of cyclotron periods per transit 
between mirror points. The estimate is made by 
deriving an expression analogous to Eq. (3.8a) and 
integrating this expression by holding the phase angle 
fixed. Such a procedure neglects the subtleties such as 
synchronous and nonsynchronous behavior and the 
dependence of the motion on the ratio of the cyclotron 
radius to the period of the disturbance. These effects 
become increasingly more important the longer a 
particle remains attached to a given wave. It must be 
borne in mind here that the period of the secular 
motion varies as €! and not as E. Thus the time interval 
over which one can employ linear perturbation theory 
is greatly curtailed under resonant conditions. We see 
then that, although the previous analyses may give an 
order-of-magnitude estimate of the change in the 
magnetic moment, they neglect some interesting and 
possibly important effects. 

7. CONCLUSION 

We have shown that the perturbation theory 
presented in I yields a complete first-order solution 
for the motion of a charged particle in a constant 
magnetic field on which is superimposed a weak, 
spatially periodic magnetic field. The significant 
result from a physical viewpoint is the periodic be­
havior of the secular motion. It is hoped that we have 
succeeded in showing that this periodic behavior 
points to some possible deficiencies in previous work 
concerning the stability of protons in the inner Van 
Allen belt. 
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In this paper we consider a system of nonlinear wave equations which admits, in a linear approxima­
tion, a planewave solution with high-frequency oscillation. Then, for the wave of small but finite 
amplitude, we investigate how slowly varying parts of the wave such as the amplitude are modulated by 
nonlinear self-interactions. A stretching transformation shows that, in the lowest order of an asymptotic 
expansion, the original system of equations can be reduced to a tractable, single, nonlinear equation to 
determine the amplitude modulation. 

1. INTRODUCTION 

It was first shown by Gardner and Morikawa1 

that, by means of a coordinate stretching, the system 
of equations for a hydromagnetic wave in a cold 
plasma can be reduced to the Kortweg-deVries 
equation. The extension of the theory to general 
nonlinear systems, dissipative2 as well as dispersive, 
has been established by Gardner and Su3 and Taniuti 
and Wei.4 However, their theories are restricted to the 
propagation of waves of small wavenumber and low 
frequency. For example, if they are applied to a 
nondissipative system, it is required that the dis­
persion relation for linearized equations takes a form 

w = )'k + O(k3) + ... , 
and waves for small k are to be considered, where w 
is the frequency, k the wavenumber, and). is constant. 
This restriction excludes direct applications to systems 
involving oscillations such as are characterized by 
the dispersion relation 

w = Wo + Ak + O(k2). 

In order to establish a theory applicable to like systems, 
in the present paper we consider a system of nonlinear 
partial differential equations, which admits, in a 
linear approximation, a plane wave with high­
frequency oscillation. 

If the amplitude of the wave is small but finite, non­
linear terms give rise to a modulation of the amplitude 
as well as waves of higher harmonics. When the 
amplitude varies slowly over the period of the oscilla-

1 c. S. Gardner and G. K. Morikawa, Courant Institute of 
Mathematical Sciences, New York University, Report No. NYO 
9082, 1960. 

2 A successful application of a stretching transformation to a 
dissipative system was done earlier. See G. K. Morikawa, Comm. 
Pure Appl. Math. 10,291 (1957). 

3 c. S. Gardner and C. H. Su, 1966 Annual Report, Princeton 
Univ. Plasma Phys. Lab., Matt-Q-24, May 1967. 

• T. Taniuti and C. C. Wei, J. Phys. Soc. (Japan) 24, 941 (1968). 

tion, a stretching transformation allows us to separate 
the system into a rapidly varying part associated with 
the oscillation and a slowly varying one such as the 
amplitude. Then a formal solution is given in an 
asymptotic expansion, and we derive, in the lowest 
order of the expansion, an equation to determine the 
modulation of the amplitude, which in certain cases 
becomes the nonlinear SchrOdinger equation. 

2. METHOD OF SOLUTION 

In this paper, we consider a system of equations, 

au + A(U) au + B'U) = 0 (1) at ax ~ , 
where U is a column vector with n components, 
Ul, U2 , ••• , Un' and the n x n matrix A and the 
column vector B are functions of u;'s, being assumed 
sufficiently smooth. Let U(O) be a constant solution, 
satisfying 

B(U(O») = 0, 

and define the matrices Ao and V Bo by 

Ao == A(U(O»), 

(aBo) (v Bo);; = a---..! . 
u j u=u IO ) 

Then Eq. (1) linearized about U(O) takes the form 

au + A au + VB . U = 0 at 0 ax 0 , 

which admits a plane wave 

,-...,exp {±i(kx - wt)} 

subject to the dispersion relation 

(2) 

(3a) 

(3b) 

(1') 

det W±1 == det l~iwI ± ikAo + VBol = 0, (4) 

where I is the unit matrix. Our object is to investigate 
how the plane wave is modulated by nonlinear 

1369 
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effects. For this aim we may restrict ourselves to the 
following case: For any real k, Eqs. (4) admit simul­
taneously at least a single real root w, which changes 
smoothly as k changes so that w(k) is continuously 
differentiable with respect to k. In addition, Iw's 
(l = 0, ±2, ±3, ... ) are not roots of Eqs. (4) when 
w is the root of Eqs. (4), that is, 

det WI ¢ ° for III ¢ 1, (4') 

where WI is the matrix - ilwI + ilkAo + V Bo . 
We now assume the following: In a neighborhood of 

V(O) there exists a solution expanded in terms of a 
small parameter E and of harmonics exp [il(kx - wt)], 

v = LE"V("), 
,,~o 

+00 
Vi,,) = 2 vla)(T,~) exp [il(kx - wt)], ('j, ~ 1; 

I~-oo 

for example, 
+00 

U = V(O) + L LE"vl"\T,~) exp [il(kx - wt)]. 
I~-oo a~I 

(5) 

Here T and ~ are slow variables introduced through 
the stretching 

~ = E(X - At), 

where A is the group velocity, that is, 

A = ow/ok. 

(6a) 

(6b) 

(6c) 

We also note that for the coefficients Vfa) the reality 
conditions 

V (a) - V(,,)* 
I - -l 

hold. (The asterisk denotes the complex conjugation.) 
The idea of the expansion (5) is to include the fast 

local oscillations through the dependence on the 
harmonics, while dependence on T and ~ takes care 
of the slow variation in amplitude. 

The expansion and collection of powers of E is 
straightforward. Substituting the expanded terms 

A = Ao + EV Ao . V(1) + E2{V Ao . V(2) 

+ t "'IV Ao: V(I) V(I)} + ... , 
B = Bo + EV'Bo ' V(I) 

+ E2{VBO' V(2) + !VVBo: V(1)V(!)} 

+ E3{V Bo . V(3) + "'IV Bo: V(!) V(2) 

+ t VVVBo;U(1)V(1)V(!)} + ... 

into Eq. (I) and equating the various powers of E of 

the same harmonics to zero, we get 

Wzvl I
) = 0, (7a) 

oV(l) 
WV(2) + (-u + A )_1_ 

I I 0 o~ 

+ V'A!'V(l) I il'kVl!) exp {il'(kx - wt)}\ 
\ I'~-oo Iz 

+ tV'VBo:(V(1)V(I»1 = 0, (7b) 
OV(2) ov(l) 

W;V(3) + (-u + A )_1_ + _I_ 
I Z 0 o~ OT 

+ V A I. v(1) 0 V(I>\ 
,0\ o~ II 

+ VAo('V(l) L il'kVl;) exp {il'(kx - Wt)})1 

I +00 
+ !VV Ao\ V(1)V(l)I'~ooil'kV:!) 

x exp {il'(kx - wt)})1 

+ V Ao('V(2)I,looil'kV:,l) exp {il'Ckx - wt)} > 
+ "'IV Bo: (V(1)V(2»1 

+ tVVV'B~:(U(I)V(l)V(I»1 = 0, (7c) 

in which the angle bracket ( )1 denotes the coefficient 
of the lth harmonics; that is, for any function in 
Eqs. (7), say Q, 

+00 
Q = 2 (Q)I exp {ilCkx - wt)}. 

I~-oo 

Also we have assumed the notations 

"'lAo' V(1) == i (OA) u?), 
i~I ~Ui u~uo 

VVAo:V(l)u(l) ==~ ( o2A ) u?)u~l), 
'.J OUiOU i u~uo 

and so on. 
In view of the condition (4), Eq. (7a) yields 

V(1) = !p(I)R, (8a) 

and for III ¢ 1, 
vll) = 0, (8b) 

where R is a column vector satisfying 

and !p(!) is a scalar function of T and ~ to be deter­
mined later. Since Eqs. (8) imply 

I\L 2 ull)vl!)fPl'P' exp {i(l + l')(kx - wt)}\1 = ° 
I I' 1 
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for any p and p' assumed zero or positive integer, 
then, from Eq. (7b) with I = 1, it follows that 

W U(2') + (-AI + A \R oq}!) = o· 
1 1 0) o~ , (10) 

hence Eq. (4) requires a compatibility condition for 
this equation to be solved. Introducing a row vector 
L corresponding to R through the equation 

(9') 

and multiplying Eq. (10) by L, we have the explicit 
form of the condition, 

L( -Jd + Ao)R = O. (11) 

It can easily be proved that, by means of the definition 
(6c) , Eq. (11) is satisfied automatically; that is, 
differentiating Eq. (9) once with respect to k and 
multiplying the equation thus obtained by L from the 
left leads directly to Eq. (11). Solving Eq. (10) 
algebraically, one has 

om(l) 
U~2) = cp(2)R + Z( _.Jd + Ao)R ~. (10') 

Here cp(2) is a function of ~ and T to be determined 
in the higher order and Z is a matrix expressed by 

Z _ (ODik) / (OD) 
ik - op P=CfJ op p=o,' 

in which D(p) is (det W1)CfJ=P' e.g., 

D(p) = det l-ipI + ikAo + VBol 

and Dik(p)'s are the cofactors of D(p). The following 
identities, with Eq. (11), prove that Eq. (10') satisfies 
Eq. (10): 

~ W1(p)kjD(p)jq = (jkqD(p), 
j 

~ D(P)kj W1(P)jq = (jkqD(p). 
j 

The latter of these implies D(OJ)kj oc L i , from which 
differentiating with respect to p the former, at OJ, 
yields 

t W1,kjZjq = (jkq - iOJ ~ (jkjDjq(OJ) / (~~) OJ. 

Since det WI -:F- 0 for III = 1, Eq. (7b) allows us to 
determine uniquely U:2

) for III -:F- 1. Noting that 

(U(1)U(l\ = 0, for /1/ ~ 3, 
we get 

U)2) = 0, for III ~ 3; (12a) -
while substituting both Eqs. (8) into Eq. (7b) gives 

U~2) = - W;l[ik{ (VAo • R*)R - c.c} 

+ i(VVB:R*R + c.c)] Icp(1)12, (12b) 

U~2) = -Wa1{ik(VAo.R)R + iVVBo:RR}(cp(l)\ 

(12c) 

U~~ = -W=i{ik(VAoR*)R* + tVVBo:R*R*}(cp(1)*)2. 

(12d) 

We are now ready to determine cp(l). Multiply Eq. 
(7c) for I = 1 by L from the left, and introduce Eqs. 
(8), (10'), and (12) into the equation so obtained. Then, 
by means of Eq. (9'), the first term disappears, and 
thereby Eq. (11) eliminates Ocp(2)/(0~) in the second 
term. In addition, Eqs. (8) imply <U(l)U~2)>t = 0; 
consequently, the terms comprising cp(2) vanish. Hence 
it reduces to an equation for cp(l), such that 

ocp(l) 02cp(l) 
IX - + P -- + Y Icp(l)I 2 cp(l) = O. (13) 

OT 0~2 

Here IX, p, and yare constant, being given as follows: 

IX = L . R, (14a) 

fJ = L( -AI + Ao)Z( -AI + Ao)R, (14b) 

y = L[ik{2(VAo • R*)R~2) 

- (VAo • R~2)R* + (VAo • R~2)R 

+ (VVAo:RR*)R - t(VVAo:RR)R*} 

+ VV Bo: (RR~2) + R *R~2) 

+ tVVVBo:RR*R], (14c) 

where R~2) and R~l) are constant column vectors 
introduced through the equations 

U~2) = R~2)( cp(l)2, 

U~2) = R~2) Icp(l)12; 
for example, 

R~2) = - W21{ik(VAo' R)R + tVVBo:RR}, (15a) 

R~2) = - Wo-1[ik{ (VAo • R*)R - c.c} 

+ t(VVBo:R*R + c.c)]. (15b) 

If IX is pure imaginary and p and yare real, then, in 
terms of real constants p = fJ/11X1 and q = y/IIXI, Eq. 
(13) may be written as 

o (1) 02 (1) 

i --L + P -cp- + q Im(l)I 2 
(1) = 0 ~ or T cp , (16) 

which, for q equal to zero, reduces to the Schrodinger 
equation. In this sense, Eq. (16) may be called the 
nonlinear Schrodinger equation. If, in addition, these 
constants take the same sign, the solution of Eq. (16) 
which tends to zero for I ~I ->- 00 is a solitary wave,5-7 
so that 

cp(l) = (-2y/q)!sech{(-p/y)-!~}exp(-iYT); (17) 

6 P. G. Saffman, J. Fluid Mech. 11, 16 (1961). 
• R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Letters 

13,479 (1964). 
7 T. Taniuti and H. Washimi, Phys. Rev. Letters 21, 209 (1968). 
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hence if I cpll)1 approaches a constant CPo at infinity, the 
solution is given by a plane wave 

97(1) = 970 exp [iCu~ - £-r)], (18) 
where 

E = pft2 - qcp~. 

We note here that the plane wave is not stable but 
subject to the modulational instability.7-9 In order to 
show this we introduce the real functions P and (1 
throughlo.ll 

cp(l) = (p)t exp (J (1d~/2p), (19) 

Substituting Eq. (19) into Eq. (16) gives 

op + o(p(1) = 0 (20a) 
OT o~ , 

0(1 (1 0(1 _ 2 op 2~( -t ~( -t OP)) 
OT + o~ - pq o~ + p o~ p o~ p o~ . 

(20b) 
Since pq > 0, in the long wavelength limit Eqs. (20) 
are equivalent to a hydrodynamic system with 
negative p~essure; in other words, the system becomes 
elliptic. Hence the perturbations modulating a con­
stant amplitude Po and phase (10' 

Po + (Jp exp {i(1(~ - WT)}, 

(10 + (J(1 exp {i(1(~ - WT)}, 

grow for small 1(; that is, 

W = -(1rt ± (-2pqPo)!1( + O(k3), 

provided that Po is finite. A solution for finite-ampli­
tude waves was considered by Kelley12 to account for 
the self-focusing in nonlinear optics. Recently the 
evolution of the instability was investigated by Karp­
man and Krushkal,9 

On the other hand, if p and q take the opposite 
signs, the plane wave is stable. In this case, Eqs. (20) 
satisfy the conditions given in Ref. 4 to be reducible to 
the Kortweg-deVries equation; that is, for the 
expansion in terms of a small parameter ft about the 
constant state, 

P = Po + ftPl + ft2P2 + ... , 
(1 = (10 + ft(1l + ft2(12 + ... , 

the stretching 
~' = ft!(~ - «(10 + (-2pqpO)!)T), 

T' = ft T, 

8 M. J. Lighthill, J. Inst. Math. Appl. 1, 269 (1965); Proc. Roy. 
Soc. (London) A299, 28 (1967). 

8 V. I. Karpman, Zh. Eksp. Teor. Fiz. Pis. Red. 6, 829 (1967) 
[JETP Letters 6,277 (1967)]; V. I. Karpman and E. M. Krushkal, 
Zh. Eksp. Teor. Fiz. 55, 530 (1968) [SOY. Phys.-JETP 28 277 
(1969)]. ' 

10 S. A. Akhmanoy, A. P. SukhorukoY, and R. V. Khokhloy, Zh. 
Eksp. Teor. Fiz. 50, 1537 (1966) [SOY. Phys.-JETP 23,1025 (1966)]. 

11 L. A. Ostroyskii, Zh. Eksp. Teor. Fiz. 51, 1189 (1966) [SOY. 
Phys.-JETP 24, 797 (1967)]. 

10 P. L. Kelley, Phys. Rey. Letters 15, 1005 (1965). 

transforms Eqs. (20) into the Kortweg-deVries 
equation for PI and (11' 

Example 

If A is symmetric and VB is antisymmetric, the 
matrix 

H = kAo - iVBo 

becomes Hermitian. Let the eigenvalues of H be 
Wm (m = 1, 2, ... , n), and denote the corresponding 
left and right eigenvectors by Lm and Rm respectively. 
[The root of Eq. (4), w, is identified with WI'] Then 
we may normalize Lm and Rm, such that 

(Lm• Rm) = icm, 

where Cm is real. On the other hand, the solution of 
Eq. (10), U~2), may be obtained by means of the 
expansion in terms of the eigenvectors {Rm}, which 
yields 

U~2) = -w L (w - Wm)-I 
m~1 0 (1) 

X c~I{Lm( -AI + Ao)RI}Rm.....<L. . 
a~ 

Hence, noting that the constant P is equal to 

L I ( -AI + AO)U~2>j (O~~I) 
= L (w - wm)-lc;.IILm( -).J + Ao)RI12, 
m~1 

we find that P is real. Therefore, Eq. (13) takes the 
form 

097 02cp 
i OT + P 0~2 + (rlcl) Icpl2 cp = 0, 

where p (= Plcl ) is real. 

CONCLUSION 

We finally note a validity of the assumed expansion 
(5) and a physical relevance of the conditions (4'). 
Since Eq. (1) may be a system of hyperbolic type which 
does not admit, in general, unique solutions for all 
time, it seems likely that the expansion (5) does not 
converge for a sufficiently long time. The convergence 
could be connected with a breaking time of the plane 
wave which is supposed to be larger for smaller k. 
Hence Eq. (13) may cease to be valid after a finite time, 
even if it admits solutions for all time. 

The conditions (4'), which exclude the self-reso­
nance, may be considered to be generally valid for 
I ~ 2, However, the condition for I = 0, that is, 
det (V Bo) = 0, is not satisfied in most physical systems. 
In such a case, however, we often find extraneous 
physical conditions to determine u~a), such as bound­
ary conditions and subsidiary conditions, so that the 
method of solution given in this paper is still applicable. 
This will be shown in Paper II by examples. 
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We consider a one-dimensional model with infinite-range interaction, a two-dimensional model, and a 
three-dimensional model, whose free energies can be expressed in terms of the largest eigenvalue of an 
integral equation. High- and low-temperature expansions in powers of the reciprocal of the range of the 
exponential part of the interaction, with the classical Curie-Weiss theory as leading term, are developed 
and studied in the critical region. We find that to leading order in the critical region the resummed high­
and low-temperature expansions are analytic at the classical critical point but are nonanalytic at a dis­
placed critical point. The modified singularities, which are no longer of Curie-Weiss type, give critical 
exponents which are identical with those obtained by Brout and others, and are almost surely not the true 
exponents. The technique, however, suggests a possible general method of successive approximation to 
true critical behavior. 

1. INTRODUCTION 

It is well known that critical behavior predicted by 
classical theories of phase transitions is in disagree­
ment with experiment. On the other hand, Onsager's 
exact results for the two-dimensional Ising model and 
the extensive numerical results for the three-dimen­
sional Ising model have striking similarities with 
experiment. l It is natural, therefore, that the classical 
theories have been neglected in favor of the short­
range, or Onsagerian, theories. 

The first step in the revival of the classical theories 
was taken by Brout, 2 who developed general perturba­
tion expansions in the reciprocal range of interaction, 
with the classical theory as leading term. The hope was 
that the expansions in the critical region could be 
resummed to give results in accordance with the 
Onsagerian theories. Unfortunately, the expansions 
are only valid at temperatures above the classical 
critical point and to get beyond this point additional 
assumptions are required. Recent refinements3 of 
Brout's method have failed to overcome this difficulty. 
A different tack has been taken by studying a class of 
models for which explicit expansions can be worked 

* Present address: Applied Mathematics Department, Massa­
chusetts Institute of Technology, Cambridge, Mass. 02139. Per­
manent address from September 1969: Northwestern University, 
Evanston, Ill. 

1 For comprehensive reviews and references see, for example, C. 
Domb, Advan. Phys. 9, Nos. 34, 35 (1960); M. E. Fisher, Boulder 
Lectures, 1964 (Univ. of Colorado Press, Boulder, Colo., 1965): and 
C. Domb, "Critical Phenomena," N.B.S. Misc. Pub. 273, Dec. 1966. 

2 R. Bcout, Phys. Rev. 118, 1009 (1960). For a review of this and 
later work see R. Brout, Phase Transitions (W. A. Benjamin, Inc., 
New York, 1965). 

3 For example: P. C. Hemmer, J. Math. Phys. S, 75 (1964); J. L. 
Lebowitz, G. Stell, and S. Baer, ibid. 6, 1282 (1965); and G. Stell, 
J. L. Lebowitz, S. Baer, and W. Theumann, ibid. 7, 1532 (1966). 

out at temperatures above and below the classical 
critical point as well as in the critical region. For a 
one-dimensional gas of hard rods attracting each 
other with a potential -Jyexp (-y Ixl) it has been 
shown4 that for finite y there is no phase transition, 
but that in the limit y ----+ 0, the classical van der Waals 
theory results. 5 1t has since been proved6 that for a gas 
with attractive interaction in d dimensions of the form 
ydq;(y Irl), the van der Waals theory results in the limit 
y ----+ O. Similar results hold for the corresponding 
lattice systems and in the magnetic case the y = 0 
limit gives the classical Curie-Weiss theory. 

To avoid the necessity of going to the y = 0 limit 
to produce a phase transition, and in so doing re­
cover the classical theories, a number of two-dimen­
sionallattice models were proposed7 which could be 
reduced in essentially the same way as the one­
dimensional model to the determination of the largest 
eigenvalue of an integral equation. High- and low­
temperature expansions (in powers of the reciprocal 
range of interaction y) were given in Ref. 7 and a 
preliminary study of the critical region (where the 
expansions break down) for one of the models (model 
A) was reported at the 1966 Brandeis summer school. 8 

It was found that for a range of temperature of order 
y log y-l around the classical critical point, the high­
and low-temperature expansions become invalid and 

4 M. Kac, Phys. Fluids 2,8 (1959). 
5 M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 

4,216,229 (1963); S, 60 (1964). 
6 J. L. Lebowitz and O. Penrose, J. Math. Phys. 7, 98 (1966). 
7 M. Kac and E. Helfand, J. Math. Phys. 4, 1078 (1963). 
8 M. Kac, Brandeis Lectures, 1966 (Gordon and Breach Science 

Publishers, New York, 1968). 
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that a simple resummation gives new expansions 
which to first order ["-' y2(log y-l)2] are analytic at the 
"old" classical singularity but yield a Curie-Weiss 
type singularity (i.e., a jump discontinuity in the 
specific heat) at a new "modified" critical point of 
order y log y-l away from the old point. A one­
dimensional model with a bona fide infinite range 
interaction vex), i.e., for which 

loo xv(x) dx = OCJ (Ll) 

independently of y, was studied in the same way with 
essentially the same result. It was also shown that the 
resummation technique, when applied to the one 
exponential model and a one-dimensional model for 
which the integral in (1.1) is finite, yields new ex­
pansions which to leading order are analytic over the 
whole temperature range. It is felt, therefore, that by 
studying such perturbation expansions for various 
models it should be possible at least to "diagnose" a 
phase transition. It has in fact been proved9 that the 
two-dimensional models of Ref. 7 have a phase transi­
tion, and quite recentlyIO.ll that the one-dimensional 
model considered here, for which vex) behaves 
essentially like X-Mal [see Eq. (3.1)], does not have a 
phase transition when a > 1, and does have a phase 
transition when ° < a < 1. There is no proof either 
way for a = 1, but the analysis given in Sec. 3 can be 
easily extended to a = 1 and one finds similar critical 
behavior to the two-dimensional model discussed in 
Sec. 4, suggesting that in this case there is also a phase 
transition. We remark that, contrary to a suggestion 
in Ref. 8, Dysonll has shown that (1.1) is, in general, 
not sufficient for a phase transition. 

Our purpose here is to present calculations on the 
critical regions for a one-dimensional infinite-range 
interaction model, a two-dimensional model A, and 
a three-dimensional model. We carry the resummation 
procedure described in Ref. 8 to next order and find 
that to this order the singularity is no longer of 
Curie-Weiss type and that the specific heat actually 
diverges at the modified critical point. Unfortunately~ 
the new critical behavior is almost surely incorrect. 

9 R. B. Griffiths, J. Math. Phys. 8, 478 (1967). 
10 D. Ruelle, Commun. Math. Phys. 9, 267 (1968). Ruelle shows 

that if v(n) ~ 0 and if 1::'=1 nv(n) < 00, the one-dimensional Ising 
model with interaction potential v(n) has no phase transition to an 
ordered state. 

11 F. J. Dyson, to be published in Commun. Math. Phys. (1969). 
Dyson shows that if v(n) ~ 0 and is monotonically decreasing, there 
is no phase transition if limN_oo (log log N)-l 1::=1 nv(n) = 0, 
extending Ruelle's result (Ref. 10), and if v(n) > 0 and 

00 

1: log log (n + 4)[n3v(n)]-1 < 00, 
n=l 

there is a phase transition. 

For example, in two dimensions one gets a logarith­
mically divergent energy, and in three dimensions a 
square-root specific-heat divergence, which are identi­
cal with the predictions of Brout's (and others) 
resummations.2 

The advantages of the present method over the 
more general methods are these: (i) Low- as well as 
high-temperature expansions can be developed; and 
(ii) resummation shifts the critical point away from the 
classical value, presumably in the direction of the 
true critical point (the singularity in the general 
methods sticks at the classical value). Although our 
methods hint at a general underlying resummation 
scheme, it seems extremely difficult, if not impossible, 
to deduce the true nature of the singularity by such 
methods. 

In the following section, we summarize the method 
used to reduce the problem of evaluating the free 
energy "p for a class of models, to the determination 
of the largest eigenvalue of an integral equation, and 
present high- and low-temperature expansions for "p. 

The critical regions for the one-dimensional model, 
for model A,and for the three-dimensional model are 
studied in Secs. 2, 3, and 4, respectively, and the 
main conclusions are summarized and discussed in the 
final section. 

2. INTEGRAL EQUATION AND HIGH- AND 
LOW-TEMPERATURE EXPANSIONS FOR A 

ONE-DIMENSIONAL MODEL 

Consider a one-dimensional chain of N spins, 
fli = ± I, i = 1,2, ... ,N, with interaction energy 
given by 

E = -Jy 2 p(y Ii - jl)flifl;, J > 0, (2.1) 
l:5,i<;:5,N 

where 
m 

pet) = 2ak exp (-O'k Itl); ak > 0, O'k> 0. (2.2) 
k=l 

The problem is to evaluate the partition function 

QN = 2 ... 2 exp (-EjkT) (2.3) 
1'1=±1 I'N=±l 

with E given by (2.1). 
The simplifying feature in the reduction of (2.3) 

comes from the exponential nature of the interaction. 
Thus consider a set of m independent Ornstein­
Uhlenbeck processes x1(t), ... , xm(t) with zero mean 
and covariance 

(Xk(t)Xk(t + T» = exp (-O'k ITI), 
k = 1,2, ... ,m, (2.4) 

where ( ... ) denotes probabilistic average. Inde­
pendence implies that 

(xk(t)x/(t + T» = 0, for k #- I, (2.5) 
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and using (2.4) and (2.5), we can easily show that the 
stationary, Gaussian process X( t) defined by 

m ! 
X(t) = ~akxit) (2.6) 

k=l 

satisfies 
(X(t)X(t + r» = per), (2.7) 

where per) is given by (2.2). Symmetrizing (2.1), we 
can thus immediately write the partition function (2.3) 
in the form 

QN = exp [-Np(O)vy/2] 

x /l1~; . '/lN~±l(exp (VY)!;~lX(j)ft) 
= {2 exp [-P(0)VY/2]}N(fi cosh [(Vy)iX(j)]), 

(2.8) 
where v is defined by 

'1'= J/kT. (2.9) 

Now, since the vector process x(t) = (Xl(t), ... , 
xm(t» is Markoffian, its joint probability density (by 
analogy with the one exponential modeF) can be 
written as 

N-l 

W(Xl, ... , xN ) = W(x1) IT P/xk I X/c+l), (2.10) 

where 

and 

Py(x I y) 

k=l 

W(x) = fi {exp (-X;/2)/(27T)!} (2.11) 
k=l 

= fi {exp [- (Yk - Xke-
YUk

)2J/[27T(1 _ e-2Y<1k)]1}. 
k=l 2(1 - e-2yak

) 

(2.12) 

The standard iteration argumentS can now be applied 
to (2.8), and one has finally that the free energy 'lfJ 
(in the thermodynamic limit) can be expressed in the 
form 

- ~ = lim 1.. log Q '" 
kT N"'oo N . 

p(O)vy 
= - -- + log 2 + log Amax, (2.13) 

2 

where Amax is the maximum eigenvalue of the integral 
equation 

00 

J .. J K(x, y)cp(y) dYl .•. dYm = Acp(X) (2.14) 
-00 

(x and y denote m-dimensional vectors) with the 

kernel K(x, y) defined by 

K(x, y) = {COSh [(Vy)! I atxk]}! [W(X)]i Pix I y} 
k=l W(y) 

x {COSh [(vy)ik~atYkJr (2.15) 

For small y, it can be shown from (2.14) and (2.15) 
(details can be found in Ref. 8) that to order y2 

Amax = exp (I i: (]k - YEo), (2.16) 
2k=1 

where Eo is the smallest eigenvalue of the differential 
equation 

m a2'lfJ { m 2 2 
~ -2 - 1 ~(]kXk 
k=lOXk k=l 

- ! log cosh [(VY)! I (ak(]k)ixk]}'lfJ = -E'lfJ. 
Y k=l 

(2.17) 

The first thing to note is that in the limit y -'---+ 0 one 
recovers the classical Curie-Weiss theory from the 
above results. A simple calculation shows that the 
minimum of the potential in (2.17) (the term in curly 
brackets) occurs at x = x(O), where 

xkO) = 2(v/y)i[(ak(]k)i /(];] tanh "I (2.18) 

and "I is a solution of the equation 

"I = (2'1''1'0) tanh "I (2.19) 
with 

m a Joo 
'1'0 = ~ ..lE = pet) dt < 00. 

k=l (]k 0 
(2.20) 

The condition '1'0 < 00 is simply a stability condition 
which is necessary to ensure the existence of the 
thermodynamic limit. 2vc = '1';1 is seen immediately 
to be the classical Curie point and in the limit y - 0, 
Eo is just the minimum of the potential. Thus, by 
substituting (2.18) into the potential of (2.17) and 
using (2.16), we have that 

lim Amax = XCv) = 1, 2'1' S vol, 

= exp [log cosh "10 - ('1''1'0) tanh2 "10], 

2'1' > vol, (2.21) 

where "10 is the positive solution of (2.19). 
For small but finite y, standard perturbation theory 

can be applied to (2.17). Thus, for high temperatures 
(21' < VOl), the log cosh function in (2.17) can be 
expanded directly, giving to order y 
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FIG. 1. Eigenvalue solutions of Eq. (2.24). 

The eigenvalues and eigenfunctions of the quadratic 
form in (2.22) are obtained easily by minimizing 

m v[ m ! J2 W m 1 zO"~x~ - - z(akO"k) Xk - - Zx~. (2.23) 
k=l 2 k=l 4 k=l 

One thus finds that the eigenvalues w. are solutions of 
the equation (shown schematically in Fig. I) 

~ =! akO"k , 
2v k=l O"~ - w 

(2.24) 

and the corresponding normalized eigenfunctions are 
a' = (a:" a~, ... , a:"), where 

• _ ~ (akO"k)! . N 2 = ~ akO"k (2.25) ak - 2 ,. £., 2 2 • 
N. (O"k - W s) k=l (O"k - W s) 

Applying the orthogonal transformation 

m 

X k = Za~y., (2.26) 
.=1 

we find that (2.17) becomes 

where 
(2.28) 

and 

qS({Y.}) = Vi({J1a~ys}). (2.29) 

The unperturbed part of (2.27), namely 

m 02 m 2 

S~l oy; - ! "1:1wsY., (2.30) 

is the Schrodinger operator for a set of m uncoupled 
oscillators, with eigenvalues 

A~ = I(ks + i)w~, ks = 0, 1,2, .. " (2.31) 
s=l 

and corresponding normalized eigenfunctions 

Vi~(X1' ... , xm) = f.r [ wI J!Hk.(W}xs) 
s=l (217) ks ! 

X exp (-lw~x~), (2.32) 

where the Hn(x) are Hermite polynomials [note that 
because 2v < vol, it follows from (2.24) that all the 
Ws are positive]. 

In terms of Ag and l{'g, the ground state of (2.27) can 
be written as 

Eo = Ag + A~ + A~ + ... , (2.33) 

where, from (2.31), 

(2.34) 
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and by ordinary perturbation theory 

00 

Finally, combining (2.41), (2.35), (2.34), and (2.33), 
we have, to order y2, 

A.~ = exyf· . ·f [tpg(y)]2 (.i=l NY"\' = 3exyp2, (2.35) m ! J Eo = 1 !w. + 3exypZ - 24(exy)2[T, + 3p2Tz] + ... , 
-00 8=1 

where p is defined by (2.43) 

p = I _1_ , (2.36) where p and Tn are defined by (2.36) and (2.42), 
.~l N 2w! respectively. and , , 

etc. 
x tp~(y) dYl ... dYmr (2.37) 

Making use of the results 

(A.~ - Ag)-l = (Ik8W:fl = [OOexp (-tIk,w:) 
,=1 J Jo 8=1 

and (2.38) 

00 H (x)H (y)e-kT 

exp [-1(x2 + i)]! k k 

ko"O k! (21T)! 

= L(x, y, T) - L(x, y, (0), (2.39) 
where 

L(x, y, T) = [21T(1 - e-2T)r* 
X exp [_(x2 

- 2xye-T + l)/2(1 _ e-2T
)), 

(2.40) 
we have from (2.37) that 

-00 00 

X exp (U~1X,/N:W:)r· J dYl'" dYm 
-00 

X exp (V8~/,/N:W:) 

[ 
m * X !J L(x., Y8' tw,) 

-ft L(x., Y., (0)]<21T)-m/2} 

= -(4! exy)2 X the coefficient of (uv)' in 

exp [lp(u 2 + v2
)] 

X 100 

dt{exp (uv %t-ro}t/N!w:) - 1} 
= -24(exy)2{T, + 3p2Tz}, 

where p is defined by (2.36) and Tn by 

fOO( m I )n Tn = !e-<O' t/N:w: dt. 
o .-1 

(2.41) 

(2.42) 

To develop low-temperature expansions (2'1' ~ VOl), 
the potential in (2.17) must first be expanded around 
its minimum. Equation (2.17) then becomes, after 
making the change of variables (2.26), 

i 02~ _ {! Iw~y: + p'y!(i Y8,)3 + ex'Y(I Y,,)'}cp 8=1 oy, ,=1 8=1 N. 8=1 N. 

= -(E - y-1 10g 3\,(v»cp, (2.44) 

where w~ and N; are obtained from w. and N, by 
replacing V by v', which is defined by 

V' = '1'(1 - 1'//2'1''1'0); 

ex', P' are defined, respectively, by 

and 

(2.45) 

(2.46) 

(2.47) 

and, recalling (2.21), y-1 10g 3\,('1') is just the minimum 
of the potential. 

It follows from (2.45) and (2.24) that w: > 0 when 
2'1' > vol; so straightforward perturbation theory can 
now be applied to (2.44) with the result 

m 

Eo = y-1 10g 3\,('1') + t ! w;! 
,=1 

+ 3ex'yp,2 - 6p'2y[T~ + 13p'2T{] 

- 24(ex'y)2[T~ + 3p'2T~] + .. '. (2.48) 

When 12'1' - '1'01 \ is sufficiently small (depending on 
y), the expansions (2.43) and (2.48) for Eo become 
invalid in the sense that terms of the same order are 
present in all orders of perturbation. We call the 
range of v's for which the expansions are invalid the 
critical region, and this is the subject of the following 
sections. 

3. CRITICAL REGION OF A ONE­
DIMENSIONAL MODEL 

For the sake of definiteness, we take the interaction 
potential pet) in (2.1) to be 

pet) = l\ae-J.,t, dA., a > O. (3.1) 
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Discretized, this becomes 

m 
pet) '" ~(k~A.)a~A.e-(k4).)ltl, ~A. = m-l, (3.2) 

k=l 

i.e., in the notation of the previous section, 

ak = (k~A.)a~A. and (Jk = k~A., (3.3) 

and the free energy is obtained from (2.13) by letting 
m ---+ 00. It is easily verified that 

and 

Vo = 1''' pet) dt = a-I 

LXl tp(t) dt = L\a-2 dA. < 00, a > 1, 

= 00, a < 1. (3.4) 

Since the integral in (3.4) is in some sense a measure 
of the range of interaction, one might expect peculiar 
phenomena for the case a < 1 when the integral 
diverges. In fact, it has been provedll that in this case 
the system exhibits a phase transition. We demon­
strate how this comes about by studying the critical 
region for 0 < a < 1. a > 1 is discussed in Ref. 8 and 
the following analysis can be easily extended to a = 1 
[where the integral (3.4) also diverges]. In this case 
p [Eq. (3.6)] diverges logarithmically at 2v = a, so 
the analysis is almost identical with that given in the 
following section for the two-dimensional model A 
[see Eq. (4.15)]; this suggests that for a = 1 there is 
also a phase transition. (There is as yet no proof that 
this is or is not the case.) Another demonstration, 
given in Ref. 8 and perhaps of some interest, shows 
that for a ::::;; 1 and sufficiently low temperatures, the 
maximum eigenvalue of the integral equation (2.14) 
is asymptotically degenerate, which implies, as for the 
ordinary nearest-neighbor Ising model, that long­
range order exists. We concern ourselves here, how­
ever, with an analysis of the critical region. 

We define the critical region to be that range of v 
values for which the v-dependent part of the unper­
turbed ground-state energy for Eo is of the same order 
as the first-order perturbation correction. At high 
temperatures, from (2.43), this means 

:i: {[w.(2v)]! - [w.(a)]!},....., 3rxyp2. 
s=I 

In the Appendix it is shown that, for small a - 2v > 
o and 0 < a < 1, 

lim :i: ([ws(2v)]! - [w.(a)]!} 
m-+oo 8=1 

= A(a - 2v) + B(a - 2v)I/a + . .. (3.5) 

and, in the limit m ---+ 00, 

p = 2a2(A + (Bja)(a - 2vYI/al-l + ... ), (3.6) 

where 

A = 7T-1 (oo d~[1 - a~a (1/; v
a

-
I 

2 dV] 
Jo Jo 1 + v 

(3.7) 

and 
B = cosec (7Tja) [ia27T cosec (ta7T)]I/a. (3.8) 

For a < 1, therefore, the critical region is defined by 

a - 2v",y, (3.9) 

and it is appropriate in this region to define a new 
temperature variable VI by 

(3.10) 

If one examines the low-temperature expansion 
(2.48), one arrives at the same result (3.9) with 2v - a 
in place of a - 2v, so that (3.10) is appropriate for 
high (VI < 0) and low (VI> 0) temperatures. 

Substitution of (3.10) into (2.43) gives the high­
temperature (VI < 0) critical-region expansion for Eo. 
It is not difficult to show, however, that terms of 
order yI!a are present in all orders of perturbation so 
that to calculate the precise coefficient of yl/a one has 
to calculate and sum the "most divergent terms" to 
all orders of perturbation. To second order (which is 
as far as we have gone), using the fact that 

T2 = -2Ba2(l - a)(a - 2v)1la-2 + . .. (3.11) 

(see the Appendix), where B is given by (3.8), and in 
general that 

Tn'" y«n-Il!a-n) for a - 2v", y 

and n = 1,2,"', (3.12) 

and in addition the expansions (3.5) and (3.6), we 
find that Eq. (2.43) for Eo becomesI2 

m ! [(aA)2 VIA] 
Eo = t s~/w.(a)] + y -4- - 2 

+ -lv1yll1a 1 - - + - +... ; B [aA a-l(a-
1 

- 1)(a
2
A)2 ] 

2 ~ 2! ~ 

(3.13) 

10 In the computation of Amax [Eq. (2.16)]. and therefore tp. we 
have a term Iimm~OO !y 1::'=1 (S~A - wI). which is finite. 

lim ! 1: w} 
m_oo .=1 

is infinite. so that in (3.13) and subsequent formulas it must be re­
membered that! 1::'=1 [w,(a)]! is to be combined with -! 1::'=1 s~A 
before letting m -+ 00. 
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and without actually calculating the remaining coeffi­
cients in the expansion of the yI/a term (coming from 
higher-order perturbation), it seems clear that the 
coefficient in question (remembering that VI < 0) is 
simply (a2A - vI)I/a. We, therefore, make the follow­
ing conjecture: 

Eo = i 2 [w.(a)] + y - __ 1_ 
m ! [(aA)2 V A] 

0=1 4 2 
Byl/a + -2- (a 2A - vIlla + .. " for VI < O. 

(3.14) 

If the conjecture is correct, then clearly the range of 
validity of the expansion should be VI < a2A, which 
is beyond the range of validity of the original high­
temperature expansion (2.43). Note also that (to 
order ylla, at least) (3.14) is analytic at the old classical 
singularity (VI = 0) but now has a singularity at 
VI = a2 A, which is precisely the position of the 
modified singularity deduced rigorously in Ref. 8. 

Let us now, as a check on the validity of (3.14), 
examine the low-temperature expansion (2.48). In the 
critical region we have, to leading order, from (2.19), 
(2.21), (2.45), (2.46), (2.47), and (3.10), that 

log ;K,(v) = -3viy2J4a2, 

2v' = a - 2vly, (3.15) 

IJ.' = (48a2)-1 = IJ., 

and 
f3' = (2a2)-1(vlyj16)! = f3y!. 

The differential equation (2.44), in the critical region, 
then becomes 

and straightforward perturbation gives Eq. (2.48) for 
Eo with the replacements (3.15). Note, however, from 
(3.12), that T; '"" y-l and, since f3' = f3y! to leading 
order, there is a first-order term in (2.48), viz., 
-9f32y2T;, coming from second-order perturbation. 
The reason for this is that in the critical region, the 
minimum of the potential is no longer the correct 
point to expand around. To remedy this difficulty, 
we perform a shift in (2.44), i.e., replace Y8 by Yo + y~o), 
before applying perturbation, and then choose the 
y~o) to eliminate the linear term in second order (the 
resultingy~O)'s, as it turns out, also minimize Eo to that 
order). Thus substituting Yo + y~O) for Yo in (3.16) 

gives 

(3.17) 

where the square-bracketed term is to be considered as 
the perturbation, and S is defined by 

m 
S = 2y!O)jN;. (3.18) 

0=1 

Application of ordinary perturbation theory to (3.17) 
gives 

3v2y 
Eo = - 4;2 + E~O) + E~l) + E~2) + .. " (3.19) 

where, by applying the same method used in obtaining 
(2.43), we have 

E~O) = i i: w;! + t i: w;(y~O)2, (3.20) 
8=1 0=1 

E~l) = f3y(S3 + 3p'S) + lJ.y(S4 + 6p'S2 + 3p(2), 

(3.21) 
and 

E~2) = -{! s~ w;(y~O)2 + 3f3yS(S2 + p') 

+ 4ocyS(S3 + 3p'S) 

+ T~[4ocy(Sa + 3p'S) + 3f3y(S2+ p')]2} 

- 18T~[2IJ.y(S2 + p') + f3yS]2 

- 6T~[4IJ.yS + f3yJ2 - 24(ocy)2T~. (3.22) 

Minimizing Eri°) + Eri l
) with respect to y~O) gives 

b!O) = -(N;W;)-1[4ocyS3 + 12ocyp'S 

+ 3f3yS2 + 3f3yp'], (3.23) 

and multiplying both sides by (N~)-l and summing 
over s, using (3.15) and the fact that 

in the critical region, gives 

S3 + 3(6vl)!S2 + (12Vl + 3p')S + 3p'(6vl)! = 0, 

(3.25) 
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or 
S = - (6vJ! or - (6v1)! ± (6V1 - 3p')!. (3.26) 

For either value of S in (3.26), the term in braces in 
(3.22), which is the unwanted linear term in second 
order, vanishes. 

To obtain the minimum value for Eo to second 
order, substitution of S = -(6V1)! in the above is 
appropriate if VI ::::;; tP'; and if VI ~ tp', 

S = (6V1)! ± (6V1 - 3p')! 

is appropriate (minimization of Eri°) + Eri1 ) + Eri2 ) 

gives the same result to second order). We, therefore, 
have that 

E -.1 ~ ,! _ 3v1P'y + 3 ,2 
0-2k W ' 2 ocyp 

.=1 4a 

and 

_ 72(ocy)2T~(6v1 _ p')2 + ... , 
for 0 < VI ::::;; tP', (3.27) 

_ 72(ocy)2T~(-2p')2 + ... , 
for VI ~ tP', (3.28) 

and it is not difficult to show that, to order y, these 
formulas are identical with those obtained rigorously 
in Ref. 8 [Eqs. (6.112) and (6.115), respectively]. 
Notice that the modified singularity occurs at 2v = 
a + V1eY, where from (3.6), to leading order, 

VIC = tP' = a2A, (3.29) 

and this is the value predicted in the conjectured 
critical-region expansion (3.14). Clearly, as a final 
check on our conjectured resummation, (3.27) should 
reduce to (3.14). 

It is not difficult to show that terms of order y1/a 
occur in all orders of perturbation below the classical 
critical point just as for above, so that, again to 
compute the precise coefficient of y1/a, one must sum 
the most divergent terms to all orders of perturbation. 
We have, however, only carried the perturbation to 
second order. Nevertheless, if we substitute the 
expansions (3.5), (3.6), and (3.11), with 11 replaced by 
v' given in (3.15), into the expansion (3.27), we find 
that, for 0 < VI ::::;; a2A, 

Eo = ! I [waCa)]! + y[(aA)2 - VIA] 
.=1 4 2 

+ (2 )1/a{1 3 aA a-
1
(a-

1 
- 1)(3)2 v1y - - + - + -

2a 2V1 2! 2 

3A a-1(a-1 
- 1)(a

2
A)2 } - -(1 - a) + - + .... 

4V1 2! 2V1 
(3.30) 

By writing 

(a
2
A - v1)11a = (2v1)1Ia{ 1 - ( ~ - ~:~) ra

, 

the terms of the coefficient of yl/a given in (3.30) are 
recognized immediately as the first three terms in the 
expansion of (a2 A - v1)1/a in powers of (t - a2 A/2vJ. 
This observation, we believe, supports very strongly 
the conjecture that (3.14) is the correct expansion of 
Eo to order y1/a for VI ::::;; a2A. 

The conjectures leading to (3.14) can be stated more 
clearly (and hence be generalized to the models 
considered in the following two sections), and the 
peculiar nature of the expansion for 0 < VI ::::;; a2 A [in 
powers of (t - a2A/2v1)!] can be better understood if 
one goes back to the expansions (3.5), (3.6), and (3.11) 
and notes that to the order recorded 

and 

2 df 
p = -2a -

dv 

where fey) is defined by 

f(v) = t Iw! 
.=1 

= t I [w.(a)]! 
8=1 

(3.31) 

(3.32) 

+ A(a - 2v) + B(a - 2v)11a + . . .. (3.33) 

Using these facts, we find that the high-temperature 
expansion (2.43) can be written as 

1 (py) df 1 (py)2 £1 E = f(v) - - - - + - - - + . . . (3.34) 
o 2 4 dv 2! 4 dv2 

' 

and the conjecture leading to (3.14) can now be 
stated as follows: The y1/a term (or the most divergent 
term) in nth-order perturbation is given by 

-- - - for n > 3. (-1t(py)n dj 
n! 4 dvn

' -
(3.35) 

If this is so, then (3.34) becomes, to order y1/a, 

and it should be noted that the second term in (3.36) 
cancels against the yl/a term proportional to A in 
fey - yp/4) [see Eq. (3.5)]. It is then straightforward 
to reduce (3.36) to (3.14). 
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Now when 0 < Vl ~ a2A, Eo given by (3.27) can be 
written as 

E =f(v') _ (P' - 6VI) df + y2(p' - 6VI)2 d2f 
o Y 4 dv' 2! 4 dV,2 

+ ... + ! (p' _ 6v) df _ 3vI yp (3.37) 
8 I dv' 8a 2

' 

and the conjecture, stated implicitly above, says that 
the most divergent term in nth-order perturbation 
(when 0 < VI ~ a2A) is 

(3.38) 

If this is so, then [using (3.31)] (3.37) becomes 

Eo = fey' - iy[p' - 6VI]) - (yp'2/16a2). (3.39) 

Now since 2v' = 2v - 3VIY in the critical region [Eqs. 
(3.10) and (3.15)] 

, yep' - 6vI ) yp' 
v - =v--

4 4 
(3.40) 

and since, to order yl/Q, p' can be replaced by p, 
(3.39) is identical with (3.36) and, therefore, with 
(3.14). 

To complete the critical-region analysis for the 
present model, we investigate the expansion (3.28) for 
Eo below the modified critical point, i.e., for VI> a2A. 
Using the results (3.31) to (3.33), we can write (3.28) 
as 

E = fey') + (YP') df + .!..(yp')2 d
2
f 

o 2 dv' 2! 2 dV,2 

+ ... _ !(YP') df _ 3v{y. (3.41) 
2 2 dv' 4a2 

Assuming that the most divergent term in nth order is 

1. (y p,)n dnf , 
n! 2 dv,n 

for n ~ 3, (~.42) 

Eq. (3.41) becomes 

Eo = f(v' + yt) (3.43) 

which reduces to 

rn ! [ (aA)2 3V2] 
Eo = t 1 [waCa)] + y yiA - -- - ~ 

8=1 2 4a 
Byl/a 

+ -2- (2VI - 2a2Ai/a + ... , for VI> a2A. 

(3.44) 

In summary, if one accepts the conjectures re­
garding the form of the most divergent term in nth-

order perturbation (n ~ 3), one finds on resumming 
that the classical critical point (at 2v = a) is displaced 
to the point 2ve = a + a2Ay and that for V < ve , Eo 
is given by (3.14) to order yl/a, and for v > Ve by 
(3.44). From these expansions and Eqs. (2.13) and 
(2.16) for the free energy in terms of Eo, we see that 
the specific heat behaves like Iv - vell /a- 2 on both 
sides of the modified critical point, with a super­
imposed (Curie-Weiss type) jump discontinuity. In 
other words, if t < a < 1, the specific heat diverges 
like Iv - v,I I/a-2, and if 0 < a < t, the singularity 
remains basically of Curie-Weiss type. This behavior 
is almost surely not the exact critical behavior; 
especially, as we see in the following section, since the 
same technique predicts a logarithmically divergent 
energy for a two-dimensional model, which is certainly 
wrong. We return to this point in the final section. 

4. CRITICAL REGION OF MODEL A 

The model considered in the previous section is 
special in the sense that it is one-dimensional with an 
infinite-range interaction. Two- and higher-dimen­
sional systems, on the other hand, exhibit phase 
transitions already with finite-range interactions, 
which is in a sense more realistic. In this section, we 
consider a particular two-dimensional lattice model 
(model A, which was first introduced in Ref. 7) with 
M rows and N columns and with interaction energy 

where 

E = - L v(kl, k'l')/-tklfJk'I' , 
l~k<k'~N 
1:S1<l'~M 

(4.1) 

v(kl, k'l') = Jye-Ylk-k'l{bl'.1 + Ubl'.l+! + b1'.I-I]}, 

J > 0, (4.2) 

i.e., the spins interact with each other in the same row 
and in the two neighboring rows according to the 
exponential of the row distance between spins. 
Griffiths has proved recentlyD that this model has a 
phase transition (in fact, he proves that any two- or 
higher-dimensional lattice model undergoes a transi­
tion to an ordered state, provided that the interaction 
is ferromagnetic and that at least nearest-neighbor 
spins in a plane interact). Our concern here is the 
behavior of the model in the critical region. 

Because of the exponential nature of the interaction 
potential (4.2), the technique described in Sec. 2 can 
be used to reduce the evaluation of the partition 
function QN,M to the problem of finding the largest 
eigenvalue of an M-dimensional integral equation. 
Details of the reduction are given in Refs. 7 and 8, and 



                                                                                                                                    

1382 M. KAC AND C. J. THOMPSON 

the final result is that the free energy 1p is given by 

- -.:L = lim lim _I-log QN M 
kT M-+oo N-+oo MN ' 

= log 2 - vy + lim ~ log Amax , 
2 M-+oo M 

(4.3) 

where 
Amax = exp [My/2 - yEo], (4.4) 

and to order y2, Eo is the smallest eigenvalue of the 
differential equation 

M a21p { M I -2 - ! Ix: - y-l 
k~l aXk k~l 

X ~ logcosh (VY)!(Xk + Xk+1)}1p = -E1p. (4.5) 
k~l 2 

At high temperatures the logcosh function in (4.5) 
can be expanded, and to order y, (4.5) becomes 

M a21p {M V M I -a 2 - ! ~x: - -4 L(Xk + Xk+1)2 
k~l X k k~l k~l 

v
2
y M 4} + -L(xk + xk+1) 1p = -E1p. 

48k~1 
(4.6) 

The quadratic form in braces can be diagonalized by 
the transformation 

where 

a - M-! /11'- , 

M 

X k = L akrYr-l, 
r~l 

= (2/M)! sin [7Tr(k - 1)/M], 

= (2/M)! cos [7T(r - l)(k - l)/M], 

(4.7) 

forr=l, 

for r even, 

for r odd; 

(4.8) 

and after making the change of variables (4.7), Eq. 
(4.6) becomes 

M-l a2rp {M-l 
I -a 2 - ! I Wry; 
r~O Yr r~O 

+ exy
k
! (:~Ol bkrYrnrp = -Erp, (4.9) 

where f denotes the integral part of (r + 1)/2 and ex, 
W r , and bkr are defined, respectively, by 

ex = '112/48, 

wr = 1 - 4'11 + 4'11 sin2 (7Tr/M), 
and 

(4.10) 

(4.11) 

(4.12) 

Note that the w;s are all positive provided 4'11 < 1, so 
that v = ! in this case represents the classical critical 
point. 

By comparing (4.9) with the corresponding Eq. 
(2.27) for the one-dimensional model, we can imme­
diately write down the high-temperature expansion 
for Eo, which to second order [cf. (2.43)] is 

Eo 1 M-l ! 2 2 
- = - L Wr + 3exyp - 24(exy) 
M 2M r~O 

X {T4 + 3p2T2} + ... , (4.13) 

and in the limit M -+ 00, M-l I~Ol wt, p, and T2, 
etc., are given by 

lim - I w; = - (1 - 4'11 + 4'11 sin2 O)! dO, 
1 M-l 1 1 i"/2 

M-+oo M r~O 7T 0 

M-l b2 
p= lim L kr 

111-+00 r~O Wi 

8 i"/2 = - cos2 O{1 - 4'11 + 4'11 sin2 O}! dO, (4.14) 
7T 0 

and 

T2 = lim M-1I ~ roo dt(M:i
1 

b'J},rblJoT exp (-wtt»)2 
M-+oo 'J}~l q~l Jo r~O Wr 

16i"/2 . 3 = - cos4 0{1 - 4'11 + 4'11 sm2 O}-~ dO, 
7T 0 

etc. 
The integrals (4.14) can be expressed in terms of 

elementary elliptic integrals, and when 1 - 4'11 > 0 is 
small, they have the expansions 

1 M 1 

j(V) = lim - I w; 
M-+oo 2M r~O 

1 1 
= - + - (1 - 4v)(log x-I) + ... , 

7T 47T 

p = -4 dj = - ~ (1 - i log x) + ... , (4.15) 
dv 7T 

and 
d2j X 

To = -4- = - + ... 
2 dv2 7T ' 

where x is defined by 

x = 16/(1 - 4'11). (4.16) 

The critical region, from (4.15) and by analogy with 
Eq. (3.5), is obtained for that range of v's for which 

(1 - 4'11) log x......., y(log X)2. (4.17) 

In this region, again by analogy with the analysis 
of the previous section [(3.10), in particular], we 
therefore define a new temperature variable VI by 

4'11 - 1 = Hv1y) log x, (4.18) 

and to obtain the high-temperature critical-region 
expansions for Eo we substitute the expansions (4.15) 
into (4.13). 
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The calculation is simplified somewhat by using the 
relations (4.15) between p, T2 , and the derivatives of 
f [which hold exactly for all4v < 1 and are essentially 
equivalent to Eqs. (3.31) and (3.32) for the one­
dimensional model]. Thus, if we make the same con­
jecture (3.35) (with yp/32 instead of yp/4) regarding 
the most divergent terms, we have, using (4.15) [cf. 
(3.36)], 

lim Eo = EO = f(V _ YP) + !(YP)dJ + ... 
ltI->oo M 32 2 32 dv 

= 1: + ~(1 - 4v + YP) 
7T 47T 8 

X {log ( 16 ) - I} 
1 - 4v + (yp/8) 

-L[l - tlog (~)J2 + .... 
47T2 1 - 4v 

(4.19) 

Substituting (4.18), and to leading order P by 
(4/7T) log x, (4.19) becomes 

E = 1: + y(log y-
I
)2 [1 _ TTV ] 

o 7T 167T2 I 

Y log y-l 
- 167T2 (2 - 7TV1) [log (2 - 7TV1) - 1] + ... , 

for VI < O. (4.20) 

Again (4.20) exists for VI < 2/7T and is analytic at 
the old singularity VI = O. The modified singularity 
at VI = 2/7T is from (4.15) to leading order p/2, and is 
the value obtained rigorously in Ref. 8. The y(log l/y)2 
in (4.20) also agrees with that obtained in Ref. 8. 

As a check on (4.20) we obtain, as in the previous 
section, low-temperature (VI> 0) expansions in the 
critical region and compare, in particular, the ex­
pansion for 0 < VI < 2/7T with (4.20). They should, 
of course, be identical. 

We proceed exactly as before, expanding the 
potential in (4.5) around its minimum and changing 
to the transformed variables (4.7). In the critical 
region, as before, we must first shift before applying 
perturbation theory, and we find, by essentially 
repeating word for word the argument from (3.16) 
to (3.27), that EO for VI > 0 is given by 

EO = J(v') - 3vl P'y log x'/64 
+ 3()(yp,2 _ 72«()(y)2T~(p' - 6vI Iog X')2 + ... , 

for 0 < VI :::;; 2/7T, (4.21) 
and 

E = J(v') _ 3(vllog X')2y _ yp,2 
o 64 128 

- 72«()(y)2T~( _2p,)2 + .. " for VI > 2/7T, 
(4.22) 

where the primed quantities are obtained from the 
corresponding unprimed quantities by replacing V 

by v', which, in the critical region, is given to leading 
order by 

1 - 4v' = t(vIy) log x'. (4.23) 

Using the derivative relations (4.15) and essentially 
repeating the argument from (3.37) to (3.39), (4.21) 
gives 

E = J (V' _ yep' - 6v1 log X'») _ y(p,)2 + ... ; 
o 32 256 

(4.24) 
and since, from (4.23), 

, yep' - 6vIIog x') yp 
V - = V - - (4.25) 

32 32 

to leading order (p' can be replaced by p), (4.24) is 
identical with (4.19) and, therefore, with (4.20). 

Similarly for VI > 2/7T, repeating the argument 
(3.41) to (3.44), (4.22) gives 

E = f(V' + YP') _ 3(vllog X')2y + yp,2 + ... 
o 16 64 128 

_ ~ + y(log y-I)2 [ 1 3( )2] 
- 2 7TVI - - 8 7TVI 

7T 87T 

y log y-I 
- 2 ( 7TVI - 2)[log (7TV1 - 2) + 1] + ... , 

87T 
for VI > 2/7T. (4.26) 

It follows from formulas (4.20), (4.26), (4.3), and 
(4.4) that in the critical region, to order y2 10g y-I, 

-tp/kT"-' C± Iv - vel log Iv - Vel + D±, (4.27) 

where C+, D+ and C_, D_ are constants (depending 
on y) appropriate for V < Ve and V > Ve, respectively, 
where from (4.18) and (4.22) Ve = t + (y log y-I)/87T 
is the modified critical point. From (4.27) we see that 
to order y2 log y-I, the energy diverges logarith­
mically and the specific heat has a simple pole at Ve' 
This is definitely not the true critical behavior of 
the model, although one might be tempted to con­
jecture from this result that the specific heat does in 
fact diverge logarithmically, just as for the two­
dimensional nearest-neighbor model. 

5. CRITICAL REGION OF A THREE­
DIMENSIONAL MODEL 

We conclude with a brief discussion of a three­
dimensional model, which may be considered as a 
natural extension of model A. 
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Consider a three-dimensional lattice of spins with 
interaction energy 

E = - L v(klm, k'I'm')PklmPkTm" (S.1) 

where 

l:5k<k':5N 
l:5!<!':5M 

l:5m<m':5M 

v(klm, k'l'm') 

= Jye-ylk-k'l{!bn(bm',m_l + bm',mH) 

+ ibm',m(b1'.1-1 + bl',IH) + Hbl ',I+lbm'.m-l 

+ bl'.!-lbm'.mH) + <51'.I<5m .. m}. (S.2) 

It is easily verified that 

(X(klm)X(k'l'm'» = v(klm, k'l'm'), (S.3) 
where 

X(klm) = (Jy/.J3)(Ulm(k) + U!+1.m(k) + Ut,m+l(k» 

(S.4) 

and Ul.m(k) are independent Ornstein-Uhlenbeck 
processes with zero mean and covariance 

(U1m(k)U1'm,(k'» = <51',I<5m'.me-Ylk-k'l. (S.5) 

So by the standard argument 

-tp/kT = log 2 - vy/2 + lim M-2 log Amax, (S.6) 
M-+oo 

where 
Amax = exp (M2y - yEo), (S.7) 

and to order y2, Eo is the smallest eigenvalue of the 
differential equation 

1 a2

; _ {! ~ X;.m + y-l 1 log cosh (VY)! 
I,m=l aXI,m I,m=l l,m=l 3 

X (X I,m + XIH,m + X1,mH)}tp = -Etp. (5.8) 

At high temperatures, the log cosh can be expanded as 
before, and it is straightforward, but rather tedious, 
to show that to second-order perturbation (ex = 
'112/108) 

EO = lim M-2 Eo 
M~oo 

= f(v) + 3exyp2 - 24(exy)2(T4 + 3p2T2) + ... , 
(5.9) 

where now 
M-l 

f(v) = lim (2M)-2 L w!'s 
111-+00 r,8=O 

= (217)-250"50" dOl d02 

X {[ 1 - 2'11 - ~ (cos 0l + cos O2 

+ cos (01 - (2)r + O2 -- -02}' (5.10) 

WIZ,/l = wr,s' for (ex, (3) = (2r,2s) or (2r - 1, 2s), 

= W T -8' for (ex, (3) = (2r,2s - 1) 
or (2r-l,28-1), (S.l1) 

4V[ (27Tr) wr,s = 1 - 2'11 - 3 cos M 

(
27TS) 27T ] + cos Ai + cos M (r - s) , (S.12) 

and 

df 
p = -6 dv' (5.13) 

d'1 T2 = -9-
2

, 
dv 

(S.14) 

etc. 
Equation (5.9) is valid for 6'11 < 1, Le., '1'= t corre­

sponds to the classical critical point, and when 
1 - 6'1' > 0 is small,f(v) has the expansion 

f(v) = fH-) + A(I - 6'11) + B(1 - 6v)! + .... 
(S.lS) 

In the critical region, therefore [where f{v) - f(t) "-' 
3exyp2], we define a new temperature variable VI by 

6'1' = 1 + vl y/9, (S.16) 

and by repeating the previous argument we conjecture 
from (S.9) that 

EO = f(t) + y{A2 - tAvl) + B(2A - tVl)!Y! + ... , 
for VI < 18A. (S.17) 

The low-temperature analysis can be performed in 
the same way as above, but the essential result is 
contained in (S.17); namely, that to order y!, the 
critical point is shifted to 

'lie = t + Ay/3, (S.18) 

and the specific heat diverges like Iv - vcl-! for 
v < Ve and V > Ve in the neighborhood of 'lie. The 
square-root singularity, as we have remarked, is also 
predicted by the Brout and related expansions.2 

6. DISCUSSION 

We have studied a one-dimensional model, a two­
dimensional model, and a three-dimensional model, 
all with a long-range exponential interaction, and have 
developed high- and low-temperature expansions in 
the reciprocal "range of interaction" y, with the 
classical theory as leading term. The expansions 
break down for a range of temperatures (defining the 
critical region) around the classical critical point, and 
in this region a resummation must be effected. We 
have carried out the perturbation calculations at high 
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and low temperatures and have conjectured the form 
of the most divergent term in nth-order perturbation 
(n ~ 3). Summing these "most divergent terms" 
shifts the classical critical point by a small amount, 
and one finds that the resummed expansions are 
analytic at the "old" classical critical point, but are 
nonanalytic at the modified critical point (the high­
and low-temperature critical-region expansions actu­
ally match up at the old singularity, which lends 
some support to our conjectures). The resummed 
expansions predict critical exponents which are identi­
cal with those of Brout's and similar schemes, and are 
almost surely incorrect. Unlike our expansions, 
however, the latter are valid only at high temperatures 
(above the classical critical point), and in the re­
summed expansions the singularity "sticks" at the 
classical value. 

The resummation described in the previous sections 
is only the first step in a succession of resummations. 
One should now investigate the resummed expansions 
given here and determine a new critical region, obtained 
when these expansions break down. This then gives 
us a new critical point and presumably, on resumming 
once more, new critical exponents. The procedure, of 
course, gets rapidly out of hand, and in any case it is 
not at all clear at the moment how the correct ex­
ponents are approached by this successive approxima­
tion scheme. There is also the added difficulty that in 
replacing the integral equations by differential equa­
tions we have neglected terms of order y2, and in 
making our conjectures about the form of the most 
divergent terms, we are assuming implicitly that these 
are the same for the integral equation and the differ­
ential equation. 

Nevertheless, our results hint at a general resum­
mation method, starting from the classical theories, 
and it is encouraging that the essential information 
about the modified critical points and critical expo­
nents can be deduced from the high-temperature 
expansions alone. However, the inability (at the 
moment) of our method and more general methods to 
give information about the true critical exponents 
remains the most serious difficulty (or drawback) 
with this type of approach. 
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Addendum: After this work was completed it was 
noticed that in all cases the high-temperature ex­
pansions for the models were formally identical with 
the general high-temperature expansions obtained by 
Siegert. By a slight extension of Siegert's argument 
it is possible actually to prove the most divergent 
term conjecture (3.35) in general, but only for 
temperatures above the classical critical point. Details 
will be published subsequently. 

APPENDIX 

We derive here the expansions (3.5), (3.6), and 
(3.11) for the one-dimensional model. 

Our starting point is the result CEq. (6.85) of Ref. 8] 

2/(11) = lim f (Q)~ - SaA) 
m-+ co 8=1 

=- log 1--+211~ --dv d~. 1 i oo 
[211 illS v

a
-

l 
] 

1T 0 a 0 1 + v2 

(AI) 

For d = a - 211 small and 0 < a < 1, we can write 
(AI) as 

2/(11) ~ 2f(aJ2) + Ad + F(b), (A2) 

where 

and 

and g(~) is defined by 

i
lls va-l 

ga) = -- dv. 
o 1 + v2 

Making the substitution ~ = bl/arJ in (A4) gives 

F(b) = Bb1/a + ... , 
where 

and 

D-l = a2 
-- dv = --.!!.. cosec ....!!.. • 1

00 va-l a2 (a ) 
ol+v2 2 2 

Now 

oB _ 1.. ('tl ( 1 _ l) drJ 
aD 1T Jo rJa + D rJa 

= _(Da-1-1/a) cosec (a-1 - 1)1T, 

(AS) 

(A6) 

(A8) 

(A9) 
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and it follows that 

B = Dl/a cosec (7T/a). {A 10) 

Combining (A2) , (A3), (A6), and (AlO) gives the 
expansion (3.5). 

From the definition (2.36) of p and Eqs. (2.24) and 

From the definition (2.42) of T2 , it then follows 
trivially that (in the limit m --+ 00) 

T2 = C(a - 2v)a- I -2 + ... , (A13) 
where 

(2.25), it follows that 
d m 

p = _(2V)2 - I w:, 
dVs=l 

(All) 

and the expansion (3.6) for p follows from (3.5) and 
(All). 

To derive the expansion (3.11) for T2 , we use the 
result [which follows from Eq. (6.70) of Ref. 8] 

and 

E = roo log l.u - 11 d.u = 27T cot (a7T). (AI5) 
J 0 .u1+a/

2 a 2 

Making the substitution y --+ [yG-l/2a]2, where 

G = D-2 = [a27T/2 sin (a7T/2)]2, (AI6) 

and performing the integral over T gives 

C = a4G-(1/2a)-1 roo dy roo

dz (yz)a 
Jo Jo [1 + 2 cos (7TaI2)ya + y2a][1 + 2 cos (7TaI2)za + Z2a](y + z) , 

(AI7) 

and making the further substitution y --+ y, z --+ ~y (with Jacobian y) reduces (AI7) to 

Substituting y = x1 / a in (AI8) and using the result 
stated on p. 118 of Ref. 13 gives for the y-integral in 
(AI8), 

7T cosec (7Tla) 1 ---
a 2 sin (7TaI2) 

x 1 + ~ . 2 cos (7TaI2) . (AI9) 
~ (ei7ra _ ~a)( e-il1a _ ~a) , 

(AI8) 

and finally, making the substitution ~ = x1 / a gives 

c = - 2;2 G-1
/
2a cosec (~) sin (7Ta) 

roo dx 

x Jo x2 - 2 cos (7Ta)x + 1 

= -2D-1
/
aa2(1 - a) cosec (7Tla), (A20) 

13 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, London, 1927). and combining (A13), (A20), and (AlO) gives (3.11). 
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On Perturbation Expansions for Real-Time Green's Functions* 
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A proof by Craig that the perturbation expansion for the real-time self-energy of a particle in a many­
particle system has the same form in any statistical state is shown to be invalid and the stated theorem is 
shown to be untrue. 

In a recent paper, 1 Craig claims to demonstrate that 
the perturbation expansion for the real-time self­
energy (mass operator) of a particle in a many­
particle system has the same form independent of the 
statistical state of the system. In other words, the 
self-energy can be expanded as a unique power series 
in the potential whose terms are the irreducible 
diagrams composed of interacting particle lines, and 
the nature of the ensemble is reflected only in the 
single-particle correlation function itself. It is the 
purpose of the present note to point out that the pur­
ported proof is incorrect and that additional ensemble­
dependent terms must appear in the expansion. 

The nature of the difficulty is easily understood 
when one realizes that the successive terms in the 
perturbation expansion contain expressions for higher 
correlations of the system as functionals of the one­
particle correlation function. 2 The "proof" above is 
then tantamount to stating that higher correlations 
are a unique functional of one-particle correlations 
independent of the statistical ensemble which is 
appropriate to a given situation.3 But surely an 
ensemble can be found where the various correlations 
are initially chosen to be quite different from those 
implied by the "universal" functional form." As a 

.. Work supported in part by the U.S. Office of Naval Research 
(contract NOOO 14-67-A-0239-003) and the Advanced Research 
Projects Agency (contract DAHOO4-67-C0023). 

1 R. A. Craig, J. Math. Phys. 9, 605 (1968). 
• This connection of terms in the expansion with higher-order 

correlations is pointed out in Appendix B of the author's thesis 
(Harvard University, 1965), where the perturbation expansion found 
by Craig is derived in yet another way. See also V. Korenman, Ann. 
Phys. (N.Y.) 39,72 (1966). 

3 That this is implied by Craig's proof can also be seen by follow­
ing the type of argument used in Ref. 2. The higher-correlation 
functions are found by functionally differentiating lower-order 
functions with respect to an appropriately defined external field. It is 
easily shown that the functional expression for higher correlations in 
terms of single-particle correlations is determined completely by the 
functional expression for the self-energy in terms of the single­
particle correlations. See in this respect also G. Baym and L. P. 
Kadanoff, Phys. Rev. 124,287 (1961). 

4 Bogoliubov has discussed the functional dependence of higher 
correlations on single-particle functions in the context of a classical 
system. See N. N. Bogoliubov, "Problems ofa Dynamical Theory in 
Statistical Physics," translated by E. K. Gora, Geophysical Research 
Papers No. 70, AFCRL-TR-60-279, 1960. 

trivial example, consider an electron system with no 
interactions. The "proof" would imply the Hartree­
Fock relation 

(tp(rltl}lp(r2f2}lpt (r31a)'I/ (r41J > = (tp(r1 tt)tpt (rat3» 

X (tp(r2t2)tpt(r,,14» - (tp(r1l1)tpt(r414) 

x (tp(r2t2)tpt(rsla) (1) 

for any ensemble. But let the ensemble be the pure 
state which is the BCS ground state and the relation 
above is clearly incorrect. 

In general, then, there must be additional terms in 
the expansion to take account of the relaxation" of the 
given initial condition to the "universal" functional 
form when, in an interacting system, this relaxation 
actually occurs. These are presumably the terms found 
by Fujita5 which Craig claims to remove. It remains 
to see just where Craig's proof breaks down. 

The difficulty is found after Eq. (3.12) of Ref. I, 
where the interacting Green's function G is expanded in 
a power series whose terms involve noninteracting 
Green's functions of all orders computed in the relevant 
ensemble. Craig claims that these can be decomposed 
into products of single-particle Green's functions in 
the usual generalization of the Hartree-Fock pro­
cedure.6 •7 The example above shows that such a 
decomposition is not correct for an arbitrary en­
semble. 

The proof cited for the claim of decomposability is 
that of Ambegaokar.7 In brief, Ambegaokar takes the 
correct equation for the two-particle functionS 

G01(1, 1)Go(J, 2; 1',2') = t5(l, 1')Go(2, 2') 

- t5(1, 2')Go(2, I') (2) 

and operates on the left with Go to find 

Go(1, 2; 1',2') = Go(1, 1')Go(2, 2') 

- Go(1, 2')Go(2, 1'). (3) 

5 S. Fujita, J. Math. Phys. 6, 1877 (1965). 
6 See, for example, P. C. Martin and J. Schwinger, Phys. Rev. 

11S, 1342 (1959), Sec. VI. 
1 V. Ambegaokar, Astrophysics and the Many Body Problem, K. 

W. Ford, Ed. (W. A. Benjamin, Inc., New York, 1963), p. 349. 
8 See Ref. 7 for notation. 
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This equation and its simple generalizations are the 
results Craig needs. But Gol has a vanishing eigen­
value so that the solution to Eq. (2) is only given 
modulo the addition of an arbitrary amount of the 
solution of the homogeneous equation GOI(l, I) X 
1(1) = O. This added term will serve to correct Eq. 
(3) for the mismatch between the value of the two­
particle correlation function implied by the decom-

JOURNAL OF MATHEMATICAL PHYSICS 

position and that appropriate to the statistical state of 
interest. 9 These are just the terms which are neglected 
in Craig's expansion and which are needed to describe 
the complete effect of the chosen statistical state on the 
system properties. 

9 This is not to say that Ambegaokar's proof is not valid in the 
context in which it was introduced. In thermal equilibrium the 
boundary conditions on the correlation functions are such that no 
additional terms can be appended to Eq. (3). 
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On Next-Nearest-Neighbor Interaction in Linear Chain. I 
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Ground-state properties of the Hamiltonian 
N N 

H = V ~ a; • at+1 + Va. ~ ai • ai+B 
i=l i=l 

(aN+1 == aI, aN+2 == (2) are studied for both signs of J and -1 ~ a. ~ 1 to gain insight into the stability 
of the ground state with nearest-neighbor interactions only (a. = 0) in the presence of the next-nearest­
neighbor interaction. Short chains of up to 8 particles have been exactly studied. For J > 0, the ground 
state for even N belongs always to spin zero, but its symmetry changes for certain values of a.. For 
J < 0, the ground state belongs either to the highest spin (ferromagnetic state) or to the lowest spin and 
so to zero for even N. The trend of the results suggests that these facts are true for arbitrary N and that 
the critical value of a. is probably zero. Upper and lower bounds to the ground-state energy per spin of 
the above Hamiltonian are obtained. Such bounds can also be obtained for the square lattice with the 
nearest- as well as the next-nearest-neignbor interaction. 

I. INTRODUCTION 

The Heisenberg linear chain with the Hamiltonian 
N 

H = tJ ~ ai • aHI (1) 
i=l 

(J < 0 ferromagnetic, J> 0 antiferromagnetic) was 
thoroughly investigated by Bethel and the ground­
state energy determined by Bethe and Hulthen.2 

des Cloizeaux and Pearson3 discussed the low-lying 
excitation spectrum and Griffiths4 calculated the 
magnetization at zero temperature. While the 1-
dimensional version is an interesting many-body 
problem, the general Heisenberg Hamiltonian as a 
description of magnetic phenomena belongs, to quote 
Herring,5 "more to the world of thought." An 
extensive criticism of the exchange integral and its 
relevance to magnetic properties of solids is given by 
Herring.s 

1 H. Bethe, Z. Physik 71, 205 (1931). 
• L. Hulthen, Arkiv Mat. Astron. Fysik 26A, No. 11 (1938). 
3 J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128,2131 (1962). 
• R. B. Griffiths, Phys. Rev. 133, A768 (1964). 
6 C. Herring, Rev. Mod. Phys. 34, 631 (1962). 
6 C. Herring, in Magnetism, G. T. Rado and H. Suhl, Eds. 

(Academic Press Inc., New York, 1966), Vol. IV. 

Two obvious criticisms leveled against (1) or its 
3-dimensional analog are the neglect of anisotropy 
and the restriotion to nearest-neighbor interaction 
only. Taking the isotropic Hamiltonian, Mermin 
and Wagner7 showed that there was no spontaneous 
magnetization in one and two dimensions. In three 
dimensions, spontaneous magnetization is believed 
to exist. An attempt to incorporate anisotropy is the 
study of the Hamiltonian considered in detail by 
Orbach8 : 

N 

H = V ~ (afatrl + a~af+l + ~a~(1:+I)' (2) 
i=l 

Many interesting properties of this Hamiltonian are 
known from the recent extensive work by Yang and 
Yang,9 who give references to earlier works. One 
might expect that in two dimensions, for sufficiently 
large ~, a spontaneous magnetic moment exists, 
although in the I-dimensional case, at finite tempera­
tures, it probably does not. 

, N. D. Mermin and H. Wagner, Phys. Rev. Letters 17, 1133 
(1966). 

8 R. Orbach, Phys. Rev. 112, 309 (1958); 115, 1181 (1959). 
• C. N. Yang and C. P. Yang, Phys. Rev. 147, 303 (1966); 150, 

321, 327 (1966); 151,258 (1966). 
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Our purpose is to direct attention to the second of 
the two restrictions-only nearest-neighbor inter­
actions. We propose to study the Hamiltonian 

N N 
H = tJ I G i • Gi+I + tJlX I G i • GiH (3) 

i=l i=l 

(N + 1 == 1, N + 2 == 2), where the next-nearest 
neighbors interact with a strength IX}, -1 S IX S 1. 
In general, the next-nearest-neighbor interaction will 
be smaller than the nearest-neighbor interaction. How­
ever, their ratio may not be completely negligible. IO 

An exact solution of this Hamiltonian, not to speak 
of its 3-dimensional variant, is probably very difficult. 
We shall, however, present lower and upper bounds 
on the ground-state energy per spin in one dimension 
for any} and for IX in [-1, 1]. To get an idea of the 
possibilities involved we have studied short chains of 
4, 6, 8 and 3, 5, 7 spins and we shall present the data 
with the corresponding conjectures about large N. 

The question that we hope to answer by studying 
(3) in this way is the following: How stable are the 
ground states of (1) with regard to the presence of 
the next-nearest-neighbor interaction? In particular, 
if the "classical" ground states become unstable, 
what is the nature of instability and what is the new 
ground state? Another purpose is to examine the 
mathematical difficulties one might encounter in the 
extension to a realistic situation of forces of inter­
mediate range. 

The sign of the exchange integral is a difficult ques­
tion and without any prior prejudice we should allow 
both possibilities for next-nearest-neighbor inter­
actions. We thus have the following four different cases: 

(i) J < 0, IX > 0: all the interactions are ferro­
magnetic, and the classical ground state of aligned 
spins is expected to be stable; 

(ii) J> 0, IX < 0: the nearest neighbors interact 
antiferromagnetically, while the next-nearest neighbors 
tend to align themselves-again a stabilization of the 
classically accepted picture; 

(iii) } < 0, IX < 0: the next-nearest-neighbors have 
a tendency to align in opposite direction and tpe 
ferromagnetic alignment is likely to be destroyed for 
large IIXI (An interesting question here is: what is this 
cri tical IX?); 

(iv) } > 0, IX > 0: the alignment of the next­
nearest neighbors is opposing that of the nearest­
neighbor interaction and the ground state, although 
of spin zero, may have alignments different from that 
of the classical ground state, that is, different 
symmetry. 

10 J. S. Smart, in Magnetism, G. T. Rado and H. Suhl, Eds. 
(Academic Press Inc., New York, 1963), Vol. III. 

The study of short linear chains corroborates the 
expectations. In cases (i) and (ii), nothing untoward 
happens. In the presence of strong antiferromagnetic 
next-nearest-neighbor interaction, the ferromagnetic 
ground state becomes unstable and the lowest state 
has spin zero (N even). When all interactions are 
antiferromagnetic, the ground state definitely has spin 
zero, but the symmetry of the ground state changes 
for strong antiferromagnetic next-nearest-neighbor 
interaction. 

Concerned with this last point we have a theorem 
due to von Neumann and Wignerll about Hamilton­
ians such as (3) that depend on a single parameter. 
The theorem forbids crossing of two levels of identical 
symmetry. By symmetry all possible symmetries are 
to be included. The levels that cross in the case of all 
interactions antiferromagnetic, differ by a kind of 
permutation symmetry, which we shaH describe in 
detail for the short chains. We must also recall a 
theorem of Lieb and MattisI2 for the ground state 
when} > 0. According to this theorem, the ground 
state always has spin zero. This we have found to be 
true. 

II. SHORT LINEAR CHAINS. NOTATION 

Let us start with a few generalities and notations. 
We note that the total spin S2 as well as its z component 
Sz are constants of motion. Hence, to get a complete 
picture of the eigenvalues, it wiII be enough to 
investigate the Sz = 0 subspace (N even) since every 
state can be rotated to this subspace without change 
in energy. The number of states with Sz = 0 for N 
spin-t particles is given by (fj;). It is also desirable 
to know the number of states with total spin S = 0, 
which is 

This is obtained by considering the difference in the 
total number of states in the S. = ° subspace and in 
the S. = 1 subspace, a procedure with obvious 
generalization.13 It is possible to derive it in a some­
what circuitous way, which, however, has certain 
advantages in that this new method gives also the 
structure of S = 0 states. Consider the problem 
group-theoretically. Each particle of spin t is associ­
ated with the basic representation of the SU2 group. 
For N particles, the possible spins can be obtained 
by constructing direct products of the basic repre­
sentations of the SU2 group, the spin t representation. 

11 E. P. Wigner and J. von Neumann, Physik. Z. 30, 467 (1929). 
12 E. H. Lieb and D. C. Mattis, J. Math. Phys. 3, 749 (1962). 
13 F. Bloch, Z. Physik 59, 208 (1930). 
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The various representations are characterized by 
Young's tableaux, with at most two rows. It is well 
known that, because of the nature of the special 
unitary group SU2 , only one number may be used to 
characterize the representation. However, the tableaux 
with two rows are also certain special representations 
of the symmetric or permutation group of N particles. 
The dimensionality of the representation is obviously 
the possible number of linearly independent states 
with the spin characteristic of the tableau. This 
dimensionality is nothing but the character of the 
unit element in that representation and can also be 
obtained as the number of ways of filling up the 
tableaux in the standard order.14 All this simply 
depends on the correspondence of the representations 
of the permutation groups and the general linear 
group discussed extensively by WeyJ.15 Now the two­
rowed tableaux with numerical characters filling them 
obviously suggest a way of writing down the spin 
S = ° states. The number of total S = ° states are 
fewer than the number of S. = ° states and the states 
in S = ° subspace may be studied for slightly longer 
chains than those possible for S. = ° subspace. 
Hulthen,2 who first studied short linear chains, used 
the construction suggested by the above procedure, 
but found it convenient not to use the states of the 
tableaux filled in the standard fashion. Rather he 
used a set of states which had the same structure, 
but took better advantage of the cyclic nature of the 
Hamiltonian with only nearest-neighbor interaction. 
We shall use the same set of states used by Hulthen, 
but we shall find that the presence of next-nearest­
neighbor interaction introduces certain difficulties in 
the computations as soon as the chain becomes 
moderately long. 

We shall follow Hulthen's article2 closely in notation. 
Let 0.: and f3 be the up- and down-spin states and 
a~, a~, a~ be the usual Pauli spinors for the particle 
numbered k. Now introduce 

[l, m] = o.:(l)f3(m) - f3(l)o.:(m), 

{I, m} = o.:(l)f3(m) + f3(l)o.:(m). (4) 

In general, a symmetric function in particles k, I, m,· .. 
is {k, I, m ... }. The basic functions of (4) fulfil certain 
algebraic relations: 

[k, l]{m, n} + [I, m]{n, k} 

+ [m, n]{k, /} + en, k]{/, m} = 0, 

[k, /] [m, n] + [k, n] [l, m] + [k, m] [n, /] = 0. (5) 

14 D. Littlewood, The Theory of Group Characters (Oxford 
University Press, London, 1940). 

15 H. WeyJ, Classical Groups (Princeton University Press, Prince­
ton, N.J., 1946). 

Hulthen's basis functions are constructed out of such 
units as (4). Hence it is important to know the following 
properties for calculating eigenvalues of the Hamil-
tonian: 

HI - Gz• Gm)[/, m] = 2[1, m], 

HI - Gz• Gm){/, m, k, ... } = 0, 

HI - G z • Gm)[k, I]{m, n} = - [l, m]{k, n}, 

HI - Gz• Gm)[k, /] [m, n] = [l, m] [n, k]. (6) 

III. EVEN NUMBER OF SPINS 

A. 4 Spins 

We shall start by considering 4 spins. This is a 
somewhat degenerate case since the next-nearest­
neighbor interactions are not fully developed. Never­
theless, certain interesting features are present. The 
Hamiltonian is 

4 2 

H = V L Gi • Gi+l + Vo.: L Gi • GiH • (7) 
i~l i~l 

Here the particle 5 is equivalent to particle numbered 1. 
Define now 

H-o.:J-2J 
H'=------

J 
4 2 

= L!(l - G i • Gi+l) + 0.: L !(l - G i • Gi+2). (8) 
i~l i~l 

There are 6 states with Sz = 0, and are of the forms 
0.:(1) f3(2) 0.:(3) P(4), 0.:(1) 0.:(2) P(3) P(4), etc. The 6 x 6 
matrix of the Hamiltonian can easily be constructed. 
The diagonalization problem is trivial and can be done 
by inspection. We shall rather follow Hulthen's 
construction procedure described above, so as to 
illustrate our remarks in Sec. II. 

With 4 spin-! particles we have three tableaux to 
consider corresponding to partitions [4], [31], [22]. 
[4] corresponds to only completely symmetric states 
of spin 2, 'IPs = {I 2 3 4} and using (6) one has 

H''lPs = H'{I 23 4} = 0. (9) 

The tableau [31] can be filled in the standard order in 
3 different ways: 

134 24 23 

2 , 3 and 
4 

These have spin 1. As Hulthen remarked, it is con­
venient to choose a function suggested by the first 
labeling and then use the nearest-neighbor interaction 
part of the Hamiltonian (7) to generate the other 
states. Hence we take as the basis 

'lPa = [12]{34}, 

'lP4 = [23]{41}, 

'IPs = [34]{12}. 

(10) 
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It is especially important to notice that the basis 
functions are not normalized and are not necessarily 
orthogonal. Using (6) to operate with H' and using 
(5), we get 

H'''P3 = 3"P3 + "P5 + a("P3 - "P5)' 

H'''P4 = -"P3 + 2"P4 - "Ps + a("P3 + 2"P4 + "P5), (11) 

H'''P5 = "P3 + 3"P5 - a("P3 - "P5)' 

Hence, we obtain the eigenfunctions 

H'("P3 + "P5) = 4("P3 + "P5)' 

H'("P3 + "P4) = (2 + 2a)("P3 + "P4), (12) 

H'("P4 + "Ps) = (2 + 2a)("P4 + "P5)' 

We have also the scalar product ("P3' "P3) = ("P4' "P4) = 
("P5' "P5) = 4,("P3' "P4) = ("P4' "P5) = -2,and ("P3' "P5) = 
O. Hence, the eigenfunctions ("P3 + "P5)' ("P3 + "P4), 
and ("P4 + "P5) are mutually orthogonal. 

The tableau [22] can be filled in two ways: 

1 3 1 2 
2 4 and 3 4' 

They have spin zero. Again we choose Hulthen's 
basis functions, cyclically generated: 

Cf!1 = [12] [34], Cf!2 = [23] [41]. (13) 

Then, by (6) and (5), 

H'Cf!1 = 4Cf!1 + 2Cf!2 + 2a[13] [24], 

H' Cf!2 = 2Cf!1 + 4Cf!2 - 2a [13] [24], (14) 
so that 

H' (Cf!1 + Cf!2) = 6( Cf!1 + Cf!2), 

H'(ffJl - ffJ2) = (2 + 4a)(ffJl - ffJ2)' (15) 

In deriving the last equation we have used (5). We 

E 

4 SPINS 
Sz=O,J> 0 

-1.ok=------=::""'-----.:o'4-.!:.2~--~--___11.0 

-5 
o 

FIG. 1. Eigenvalues of -H' for 4 spins as functions of IX. The 
small circle denotes a doubly degenerate level. Spins of the levels 
are also indicated. 

FIG. 2. Symmetries of the 
4-spin complex. (IX = 1) is a 
complete graph and repre­
sents a tetrahedron. 

a:. ~ I cC = I 

have obtained all the eigenvalues which are given in 
Fig. 1. It must be pointed out that this is not a 
"spectrum of the chain" of 4 spin-t particles. As 
des Cloizeaux and Pearson3 have explained, the spec­
trum of the chain necessarily implies a consideration 
of the wave vector k. (Identical remarks hold for Figs. 
3 and 5.) 

Figure 1 has been drawn for the Sz = 0 subspace, 
with J> 0, antiferromagnetic case. For ferromag­
netic case (J < 0) the picture should be inverted 
(same for Figs. 3 and 5). For antiferromagnetic case 
the ground state always has spin zero. For ferromag­
netic case, however, the ground state changes from 
one having spin 2 to one having spin zero at a = -to 

There are certain interesting multiplet structures 
and level crossings in the diagram, which may be 
related to the symmetries of the problem. Since we 
have already taken full rotational symmetry into 
account by going over to Sz = 0 subspace, we must 
look for the explanation of the multiplet structure to 
certain other invariances. In particular, the structure 
at a = 1, where all states of the same spin come 
together, is really interesting. To investigate the 
symmetries, it is convenient to have geometrical 
pictures, which make the permutation symmetries 
inherent in (7) rather intuitive. So let us place the 
4 spins at the corners of a square and imagine that 
the sides represent bonds of strength J connecting 
nearest neighbors. Join the diagonals with dotted 
lines to represent the next-nearest-neighbor bonds of 
strength aJ. When a = 1, the dotted lines are replaced 
by full lines. In the language of graph theory we have 
now the "square of the original graph." 16 If we call 
two vertices connected by a nearest-neighbor bond 
to be at a "distance" 1, the next-nearest-neighbor 
interaction inserts a bond between vertices at distance 
2. For the square diagram of 4 spins, the square of 
the graph is a "complete" graph,17 a somewhat 
degenerate situation from the physical stand point. 
To obtain the symmetries of our Hamiltonian, con­
sider the automorphisms of the graphs in Fig. 2, 
which leave the connections invariant. For a = 1, the 

16 A. Mukhopadhyaya, J. Combinatorial Theory 2, 290 (\967). 
17 G. Uhlenbeck and G. W. Ford, in Statistical MechaniCS, J. 

de Boer and G. E. Uhlenbeck, Eds. (North-Holland Publishing 
Co., Amsterdam, 1962), Vol. 1, p. 119. 
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graph is complete and the automorphisms constitute 
the full symmetric group S4' The representations of 
the group are well known14 and the degeneracies 
of the states at IX = 1 are immediately explained. In 
fact, the very construction of our states fIJI' flJ2' "Pa, 
"P4' "Ps, and "P6 make their transformation properties 
obvious. When IX =;i: 1, the group of automorphisms 
is clearly the group of the square. It is a subgroup of 
S4 with 8 elements and is, in fact, the dihedral group 
D4. The irreducible representations of D4 fall into 
five classes AI, A2 , BI , B2 , and E with dimensions 
1, 1, 1, 1, 2 (see the Appendix for the character table). 
It is easy to verify that the doubly 'degenerate states 
("Pa + "P4) and ("P4 + "Ps) form the representation of 
dimension 2. The ground state (fIJI + flJ2) belongs to 
the representation AI' as also the completely sym­
metric state "P6' The state (fIJI - flJ2) belongs to the 
representation BI . The state ("Pa + "Ps) transforms as 
B2 • The triple degeneracy at IX = ° of the eigenvalues 
is accidental. 

B. 6 Spins 

Henceforth we shall concentrate on the Sz = 0, 
S = ° subspace. For 6 spin-t particles there are five 
S = ° states, which we take as 

fIJI = [12] [34] [56], flJ2 = [23] [45] [61], 

"P3 = [23] [41] [56], "P4 = [12] [45] [63], (16) 

"Ps = [34] [61] [25]. 

The Hamiltonian is written as 

H - 3J - 3IXJ H'=------
J 

6 6 

= t I (1 - (Ji' (JiH) + tlX I (1 - (Ji' (Ji+2), (17) 
~I ~I 

with usual identification (J7 == (JI' (Js == (J2' With (6) 
and (5) we get 

H'flJI = (6 + 61X)flJI + (1 - 21X)("Pa + "P4 + "Ps), 

H' flJ2 = (6 + 61X)flJ2 - (1 - 21X)( "Pa + "P4 + "Ps), 

H'''Pa = 4"Pa + 2f1JI - 2f1J2 

+ 21X{-flJI + flJ2 + 3"Pa - [25] [14] [63]}, 

H'''P4 = 4"P4 + 2f1JI - 2f1J2 

+ 21X{ - fIJI + flJ2 + 3"P4 - [25] [14] [63]}, 

H'''Ps = 4"Ps + 2f1JI - 2f1J2 

+ 21X{ - fIJI + flJ2 + 3"Ps - [25] [14] [63]}. 

(18) 

From (18), after some obvious manipulations, we get 

H'(flJI + flJ2) = (6 + 61X)(flJI + flJ2), 

H'(flJI - flJ2) = (6 + 61X)(flJI - flJ2) 

+ 2(1 - 21X)("Pa + "P4 + "Ps), 

H'("Pa - "P4) = (4 + 61X)("P3 - "P4), 

H'("Pa - "Ps) = (4 + 61X)("Pa - "Ps), 

H'("Pa + "P4 + "Ps) = (4 + 61X)("Pa + "P4 + "Ps) 

+ (6 - 61X)(flJI - flJ2) 

- 61X[25] [14] [63]. 

(19) 

We have found 3 eigenvalues (6 + 61X), (4 + 61X), and 
(4 + 61X). The remaining 2 must be found by studying 
the secular equation connecting (fIJI - flJ2) and 
("Pa + "P4 + "Ps)· The first difficulty of using the next­
nearest-neighbor interaction is apparent in the 
existence of the state [25] [14] [63]. With IX = 0, the 
five linearly independent states of the Hulthen basis 
(16) were the only ones regenerated by the operation 
of the Hamiltonian. However, now another state 
[25] [14] [63] appears which has to be re-expressed in 
terms of the basis (16). The basis functions (16) were 
neither normalized nor mutually orthogonal in gen­
eral. Hence we write 

"P == [25] [14] [63] 

= CI fIJI + C2f1J2 + Ca"Pa + C4"P4 + C5"P5' nO) 

and consider the set of linear equations for the c's: 

(fIJI, "P) = CI (fIJI' fIJI) + C2( fIJI' flJ2) + Ca( fIJI' "Pa) 

+ C4( fIJI' "P4) + Cs( fIJI' "Ps), (21) 

etc. The matrix of the scalar product is easy to 
construct: 

(fIJi' fIJi) = ("Pi' "Pi) = 8, 

( fIJI' flJ2) = - 2, 

(fIJI' "Pi) = - (flJ2 , "Pi) = 4, 

("P;."P3=2 (i=;i:j), 

(fIJI' "P) = -(flJ2' "P) = 2, ("Pi' "P) = 4. 

Solving (21), we obtain 

"P = -(fIJI - flJ2) + ("Pa + "P4 + "Ps), 
so that 

H' (fIJI - flJ2) = (6 + 61X)( fIJI - flJ2) 

(22) 

+ 2(1 - 21X)("P3 + "P4 + "Ps), 

H' ("Pa + "P4 + "Ps) = 6( fIJI - flJ2) + 4( "P3 + "P4 + "Ps), 
(23) 
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and the secular equation is 

1

6 + 6IX - A 2(1 - 2IX) 1 = 0 
6 4 - A ' 

with the roots 

A = (5 + 3IX) ± (13 - 18IX + 9IX2)!. 

(24) 

(25) 

We have therefore determined all the eigenvalues of 
S = 0 levels. The eigenvalue of the spin S = 3 levels 
is of course O. Hence a spin-zero state crosses the 
ferromagnetic ground state when IX = -0.25. For the 
antiferromagnetic case a new possibility shows itself 
at IX = t. A spin-zero state (CfJI + CfJ2), which was 
higher than the ground state at IX = 0, crosses the 
ground state and becomes the new ground state for 
IX> t. By the Wigner-von Neumann theorem, the 
two states must differ in symmetry, which we shall 
examine below. 

We have also determined the exact eigenvalues for 
all states in the Sz = 0 subspace. There are 20 Sz = 0 
states, and, rather than proceeding analytically as 
above the matrix of the Hamiltonian can be easily 
diago~alized on a CDC 3600 computer. F~gure. 3 
presents the eigenvalues of the ~O states. ~helr SpinS 
can be determined by comparing our eIgenvalues 
with those given by Orbachs for 6 spins, or directly 
by analytic computation. The point to observe is the 
following. In the antiferromagnetic case the ~round 
state is always of spin zero. In the ferromagnettc case 
(J < 0) the ground state is either of maximum ~pin 
3 or spin zero. States of lower spin do cross the spl~-3 
state, but they all do so at values of IX more negative 
than that necessary for spin-zero-level crossing. 

The symmetries of the 6-spin complex can be 
described by placing them at the six corners of a 

5 
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6SPINS 
sz=O,J>o 

c:C 1.0 

r-------------~O----~~~~~ 
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FIG. 3. Eigenvalues of -H' for 6 spins. The small circle implies 
a degeneracy of 2. Level spins are indicated. The numbers on the 
right indicate the total number of levels of the cluster. 

FIG. 4. Symmetries of the 
6-spin complex. (IX = I) 
represents an octahedron .• 

cC = I 

regular hexagon (Fig. 4). The next-nearest neighbors 
can be joined by dotted lines, which are replaced by 
full lines for IX = 1, and we get the square graph of 
the hexagon, which, unlike the 4-spin case, is not 
complete. The next-nearest-neighbor interactions are 
already fully developed. For IX =;6 1, the symmetry 
of the graph is obviously that of the dihedral group 
D6 of the hexagon. Therefore the corresponding 
permutation group that leaves the Hamiltonian 
invariant has 6 irreducible representations: A~, A;, 
A" A" E' and E" of dimensions 1, 1, 1, 1, 2, and 2, l' 2' , 

respectively. The maximum degeneracy of the st~tes 
is 2, which is the case in Fig. 3 excepting a few pOints 
of accidental degeneracy. Since two spin-zero states 
cross for the ground state, it is necessary that they 
must have different symmetry, according to von 
Neumann and Wigner. It is easy to verify that the 
state a( CfJI - CfJ2) + b( "P3 + "P4 + "Ps) (with a and b 
constants) has the symmetry A~, while the state 
(CfJI + CfJ2) transforms as the representation A;. For 
IX = I, the graph obviously represents an octahedron. 
The automorphisms of the graph constitute the ,:ell­
known group 0" with 48 elements. The corresponding 
permutation group for 6 spins can easily be .writ~en 
down and be verified to leave the Hamtltoman 
invariant. The irreducible representations of 0" have 
dimensions 1, 2, and 3. Figure 3, however, shows 
that at IX = 1, besides triply degenerate levels, we 
have two levels of degeneracy 6. No group bigger 
than 0" has been found so far. Hence we may say 
that there are accidental degeneracies present at IX = 1. 

C. 8 Spins 

For 8 spins there are 70 states in the Sz = 0 subspace 
and 14 of them have spin S = O. Following Hulthen, 
we take the 14 basis functions as 

CfJI = [12] [34] [56] [78], CfJ2 = [23] [45] [67] [81], 

"PI = [23] [41] [56] [78], "P2 = [34] [52] [67] [81], 

Xl = [23] [41] [67] [85], 
"P3 = [12] [45] [63] [78], "P4 = [23] [56] [74] [81], 

X3 = [81] [27] [45] [63], 
"Ps = [12] [34] [67] [85], "P6 = [23] [45] [78] [16], 

X2 = [78] [16] [34] [52], 
"P7 = [34] [56] [81] [27], "Ps = [45] [67] [12] [38], 

X4 = [12] [38] [56] [74]. (26) 
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The operation of the Hamiltonian 

H' = _ H - 4(1 + rx)J 
J 

s s 
= L t(l - ai • ai+l) + rx L t(1 - ai • ai+2) (27) 

i=l i=l 

(with as == a l and a10 == a2) gives 

H' ({JI = S({JI + 'lfJ1 + 'lfJa + 'lfJs + 'lfJ7 

+ rx(S({Jl - 2'IfJl - 2'IfJa - 2'IfJs - 2'IfJ7)' 

H''lfJ1 = 6'IfJl + 2({JI + 'lfJ4 + 'lfJ6 + Xl 

+ rx(S'lfJl - 2({JI - 'lfJ4 - 'lfJ6 - 2XI - X2 - Xl), 

H''lfJ2 = 6'IfJ2 + 2({J2 + 'lfJs + 'lfJ7 + X2 

+ rx(S'lfJ2 - 2({J2 - 'lfJs - 'lfJ7 - 2X2 - Xs - X6), 

H' Xl = 4XI + 2({J2 + 2'IfJ1 + 2'IfJs 
+ rx(SXI - 2'IfJ1 - 2'IfJs - 2xs - 2X7). (2S) 

The structure of the remaining ten equations that we 
have not written down can be surmized from these. 
There are S extra states denoted by Xl' •.. , Xs: 

Xl = [25] [36] [41] [7S], XS = [14] [S3] [52] [67], 

X 2 = [14] [S3] [56] [27], X6 = [47] [36] [52] [SI], 

Xa = [12] [63] [5S] [47], X 7 = [23] [74] [61] [5S], 

X4 = [34] [S5] [61] [72], Xs = [S3] [72] [45] [16]. 

(29) 

The appearance of these states accentuates the 
difficulties of having the next-nearest-neighbor inter­
actions. We have now to express these extra states in 
terms of our nonorthogonal basis (26). This is an 
extremely tedious but straightforward calculation 
along the line of Eqs. (20), (21), and (22). Hence, we 
get 

Xl = -t({J1 - ~ ~ ({J2 + t'IfJl + t'IfJa - is'IfJs - t'IfJ7 

+ -(4'IfJ2 + H'lfJ4 - H'lfJ6 + 1a4'IfJS + 5
1
SXl + HX2 

+ 194Xa - -hX4, 
(30) 

and six similar equations. Thus the operation of the 
Hamiltonian gives us, finally, 

H' ({JI = S({JI + 'lfJ1 + 'lfJa + 'lfJs + 'lfJ7 

+ rx[S({J1 - 2'IfJ1 - 2'IfJa - 2'IfJs - 2'IfJ7], 

H'!PI = 6'IfJ1 + 2({JI + 'lfJ4 + 'lfJ6 + Xl 

+ IX[ -t({J1 + a ({J2 + -V-'lfJ1 - t'IfJa + <is'IfJs 

- t'IfJ7 - 134'IfJ2 - ~~'lfJ4 - ~~'lfJ6 - /4'IfJS 

- -VS~XI - ~h2 - -{4X3 - -H-X4], (31) 

and 12 similar equations for the other functions. For 
IX = 0, Hulthen was able, by taking proper linear 
combinations, to decompose the 14 x 14 subspace 
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FIG. 5. Eigenvalues of -H' for 8 spins. Two levels are indis­
tinguishably close (the third excited state at oc = 0). The circles 
denote degeneracy of 2. 

into smaller subspaces. Because of the complicated 
nature of our coefficients, it is somewhat difficult to 
use the same technique; in fact the decomposition 
cannot be pushed as far as Hulthen did, while it was 
still feasible for the 6 spins. We have therefore 
diagonalized the 14 x 14 nonsymmetric matrix 
arising from Eq. (31) directly on a CDC 3600 com­
puter, using the known values due to OrbachS at 
rx = 0 and the four analytically computed values 
6 + 6rx ± (2)~, 5 + 6rx ± (5 + 41X2 - 41X)! as checks. 
Figure 5 represents the result. Only one new feature 
is present: in the case J < 0, IX < 0, the ferromagnetic 
ground state is first crossed by a spin-zero state which 
in turn is crossed by another spin-zero state. We have 
also analyzed the entire Sz = 0 subspace of 70 states 
and ¥erified that the ferromagnetic ground state be­
comes unstable first with respect to a spin-zero state 
and that the ground state in all cases belong to either 
S = 0 or S = 4. The symmetry group is dihedral 
group Ds, with maximum allowed degeneracy 2. 
Nothing particularly striking happens at IX = 1. 

IV. ODD NUMBER OF SPINS (3, 5, 7) 

We shall summarize the results for odd number of 
spins briefly. For 3 spins there is no question of next­
nearest-neighbor interactions. For odd number of 
spins, the total spin can only be half integral, so we 
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TABLE I. Ground-state energy per spin for 5, 6, 7, and 8 particles. 

No. of spins 5 6 
at J>O J<O J>O 

-1.0 -0.8944 -0.8944 -1.3875 
-0.9 -0.8797 -0.8197 -1.3402 
-0.8 -0.8650 -0.7450 -1.2930 
-0.7 -0.8503 -0.6703 -1.2463 
-0.6 -0.8355 -0.5955 -1.2000 
-0.5 -0.8208 -0.5208 -1.1540 
-0.4 -0.8061 -0.4461 -1.1087 
-0.3 -0.7914 -0.3714 -1.0640 
-0.2 -0.7765 -0.4000 -1.0200 
-0.1 -0.7619 -0.4500 -0.9770 

0 -0.7472 -0.5000 -0.9340 
0.1 -0.7325 -0.5500 -0.8930 
0.2 -0.7178 -0.6000 -0.8540 
0.3 -0.7030 -0.6500 -0.8167 
0.4 -0.6889 -0.7000 -0.7820 
0.5 -0.6736 -0.7500 -0.7500 
0.6 -0.6589 -0.8000 -0.8000 
0.7 -0.6442 -0.8500 -0.8500 
0.8 -0.6294 -0.9000 -0.9000 
0.9 -0.6174 -0.9500 -0.9500 
1.0 -0.6000 -1.0000 -1.0000 

always have states with finite nonzero spin and the 
interesting question is whether the state of maximum 
or that of the minimum spin lies lowest. For 5 spins, 
we find that a state of spin t has always the lowest 
energy for J > 0, -1 ::::;; oc::::;; 1. 

With J < 0, oc > 0, the state of maximum spin t 
lies lowest; as the next-nearest-neighbor interaction 
becomes more and more antiferromagnetic, a state of 
spin t becop1es the lowest state and remains so. The 
symmetries of 5-spin system are analogous to those 
of 4-spin case, as the graph of 5 spins on a pentagon 
becomes a complete graph for oc = 1. For oc =;t. 1, the 
group of symmetries has 10 elements divided into 
4 classes, with representations of order 1, 1, 2, and 2. 
For oc = 1 we have the full symmetric group Ss. 

The situation with 7 spins is similar. The ferro­
magnetic ground state becomes unstable at a value of 
loci smaller than that for 5 spins. 

In Table I we collected the ground-state energy 
per spin for all values of oc for 5, 6, 7, and 8 spins. 
The cases of 3 and 4 spins are trivial and in any case 
can be determined from known results. 

V. BOUNDS FOR THE GROUND-STATE 
ENERGY FOR LARGE N 

In this section we shall present upper and lower 
bounds of the ground-state energy for arbitrarily 
large N, for the Hamiltonian of equation (3). Similar 
bounds can also be found for the square lattice, where 
the interactions between the nearest neighbors is J 
and that between next-nearest-neighbors is ocJ. 

Consider Eq. (3). Let NzF(oc, J) be the ground-

7 8 
J<O J>O J<O J>O J<O 

-0.7280 -1.1093 -0.7674 -1.3496 -1.0120 
-0.6737 -1.0787 -0.6901 -1.3033 -0.9091 
-0.6263 -1.0483 -0.6137 -1.2574 -0.8185 
-0.5947 -1.0180 -0.5380 -1.2119 -0.7499 
-0.5333 -0.9878 -0.4639 -1.1669 -0.6943 
-0.4873 -0.9582 -0.4248 -1.1226 -0.6361 
-0.4420 -0.9287 -0.4026 -1.0788 -0.5784 
-0.3972 -0.8996 -0.3802 -1.0359 -0.5219 
-0.4000 -0.8710 -0.4000 -0.9938 -0.4600 
-0.4500 -0.8430 -0.4500 -0.9527 -0.4500 
-0.5000 -0.8158 -0.5000 -0.9128 -0.5000 
-0.5500 -0.7896 -0.5500 -0.8743 -0.5500 
-0.6000 -0.7648 -0.6000 -0.8376 -0.6000 
-0.6500 -0.7419 -0.6500 -0.8034 -0.6500 
-0.7000 -0.7217 -0.7000 -0.7730 -0.7000 
-0.7500 -0.7051 -0.7500 -0.7500 -0.7500 
-0.8000 -0.6936 -0.8000 -0.7729 -0.8000 
-0.8500 -0.7366 -0.8500 -0.7988 -0.8500 
-0.9000 -0.8099 -0.9000 -0.8529 -0.9000 
-0.9500 -0.8851 -0.9500 -0.9399 -0.9500 
-1.0000 -0.9615 -1.0000 -1.0326 -1.0000 

state energy, z is the coordination number or the 
number of nearest neighbors. Let "Po be the exact 
ground-state wave function of the Hamiltonian (3). 
Then 

NzF(oc, J) = ("Pol H l"Po) 

= ("Pol V ~ a i • am l"Po) 
i 

+ ("Pol Voc ~ ai • a H2 ("Po) 
i 

with 

HI = tJ ~ ai • aHI , N + 1 == 1, (33) 
i 

H2 = tJoc~ai·ai+2' N + 1 == 1, N + 2 == 2. 
i • (34) 

Since "Po is a variational function for HI as well as H2 , 
we have 

NzF(oc, J) ~ (HI)g.s. + (H2 )g.s.. (35) 

HI is precisely the Hamiltonian treated by Bethe and 
Hulth6n and its ground-state energy is known. If J 
is negative, the ground state is ferromagnetic and 
has energy -tNz IJI. If J is positive, the ground-state 
energy is the celebrated Bethe-Hulthen result, 
- NJ(2 In 2 - t) = - tNzJ(0.88629). As for (H2)g.s., 
if ocJ is negative, i.e., J and oc have opposite sign. we 
have 

= -t IJIlocl tNz. (36) 
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Hence, for 1 negative, oc positive, 

NzF(locl, -Ill) ~ -!Nz 111- ! III loci Nz 
or 

F{locl, -Ill) ~ -! IJI - ! IJllocl· (37) 

For 1 positive, oc negative, 

NzF(-locl, Ill) ~ -!Nz III (0.88629) - !Nz 1]1 loci 

or 

F(-Iocl, -IJI) ~ -t Ill-! IJIlocl (0.88629). (40) 

Similarly, for 1 > 0, oc > 0, 

NzF(oc, J) ~ -!NzJ(0.88629) - !Nzloc(0.88629) 

or 
F(oc,J) ~ -!J(0.88629)(1 + oc). (41) 

or To obtain an upper bound, consider a state "Ps com-
F( -loci, IJI) ~ - i III (0.88629) - t 1111 ocl. (38) pletely symmetric in all spins: 

The case ocl ~ 0, i.e., oc and 1 have the same sign, is 
more interesting. We have now to determine ground 
state of H2 for ocJ ~ 0. But taking N even, H2 is the 
sum of two Hamiltonians of spins that interact only 
with nearest neighbors [odd-numbered spins interact 
only among themselves, so do the even-numbered 
ones, Fig. 6(a)], each sub-Hamiltonian containing 
iN particles. As the two sub-Hamiltonians are not 
coupled, the ground-state energy follows directly 
from Hulth6n's work: 

(H2 )g.s. = -!Nz IJocl (0.88629). (39) 

The result is also valid for odd N, as then the chain 
with next-nearest-neighbor interaction can be un­
folded into a single chain with nearest-neighbor 
interactions (Fig. 6b). Thus, from (35) for 1 < 0, 
oc < 0, 

NZF(-Iocl, -Ill) ~ -!NzI11- !NzIJllocl (0.88629) 

7 3 

(Ji • (Ji+l"Ps = "Ps' 

(Ji • (Ji+2"Ps = "Ps' (42) 

Then for any J and oc 

NzF(oc, J) ::::;; ("Psi H l"Ps) = !JNz + tocJNz 
or 

F(oc, 1) ::::;; !l + !loc. (43) 

Since for J < 0, oc > ° the upper and the lower bounds 
coincide, we have an exact solution for the situation 
when all interactions are ferromagnetic. For J > 0, 
the upper bound (43) is trivial. To get an improved 
upper bound, we consider as a variational function 
the following alternating function (N even): 

"PA = oc(1)t3(2)oc(3){J(4)' . '. (44) 
Then, 

or 

F(oc, Ill) ::::;; -t III + ! III oc = -!l(1 - oc). (45) 

For large odd N, this result will also hold. Table II 
contains all the bounds for various cases. 

The particular topological property of the linear 
6 

5 

(a) ( b) 

3 chain which enabled us to determine the lower bound 
is shared by the square lattice [Fig. 6(c)]; that is, 
the square lattice with purely next-nearest-neighbor 
interaction can be decomposed into two mutually 
noninteracting square lattices with half as many 
particles and nearest-neighbor interactions only. The 
exact ground-state energy of the Hamiltonian with 
nearest-neighbor interaction for a square lattice is not 
known. However, an inequality of the type (35) still 
holds if we know the lower bounds to the ground­
state energy. Such lower bounds can be obtained 
from the work of Yang and Yang.9 

(c) 
FIG. 6. (a) Decomposition of a linear chain into two independent 

chains (even N); (b) unfolding of a linear chain into a single chain 
by following the arrow (odd N); (c) decomposition of the square 
lattice. 

Write for a square lattice 

(46) 

the sec()nd sum goes over next-nearest-neighbor pairs 
only. Call NzF'(oc, J) the ground-state energy, with 
z the number of nearest- as well as next-nearest 
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TABLE II. Upper and lower bounds for the ground-state energy for large N. When 
comparing with Table I, note the difference that the coordination number z appears 

in the definition of F. 

J < 0, 0( > 0 

F(O(, J) ~ -1 IJI (1 + O(). 
F(O(, J) ~ -1 IJI (I + O(). 

J < 0, 0( < 0 

F(O(, J) ~ -1 IJI - IIJIIO(I (0.88629). 
F(O(, J) ~ -1 IJI + 11J110(1. 

J> 0, 0( > 0 

F(O(, J) ~ -1(0.88629)J(1 + O(). 
F(O(, J) ~ -!J + !JO(. 

J> 0, 0( < 0 

F(O(,1) ~ -l(0.88629)J - tJ 10(1. 
F(O(, J) ~ -!J - 110(1 J. 

neighbors and N even. Using the completely symmetric or 
state, we get an upper bound immediately for any J PC-IO(I,J) 2 -!J - lJI4 (51) 
and oc: 

NzP(oc,J) S tJ· iNz + ih' tNz 
For J > 0, 0( > 0, we have 

or NzP(jO(I, IJI) 2 -!JNz - !hNz 

P(oc, J) S lJ(l + O(). (47) or 

For J < 0, q. > 0, the lower bound is easily obtained: 

or 

NzP(oc, -IJI) 2 (-il J II a· a'\.s. 

+ (-iO(I JII' a· a')g.s. 

= -i IJI iNz - iO( IJI1Nz 

P(oc, -IJI) 2 -t IJI (l + O(), (48) 

so that we have an exact solution as before. 
For J > 0, Yang and Yang give a lower bound to 

the ground-state energy of iJ I a • a', for any fixed 
magnetization. It follows from the Lieb-Mattis 
theorem that the ground state has spin zero and no 
magnetization. So we obtain the inequality 

or 

(ill II a . a')g.s. 2 ! III Nz. (49) 

Now consider the lower bound for 1 < 0, 0( < 0: 

NzF8(-10(1, -IJI) 2 (-iIJIIa.a\.s. 

+ (i 10(111 I I' a· a\.s. 

2 -t IJI Nz - ! IO(IIJI Nz 

P( -10(1, -IJI) 2 -t III - ! III loci. (50) 

For 1> 0, 0( < 0, we have 

NzP( -10(1, J) 2 <V! a • a')g.s. 

+ (-ill 0( I!' a· a')g.s. 

2 -!lNz - 110(1 lNz 

PCIO(I, IJI) 2 -!J(l + O(). (52) 

By using a variational function which has all spins up 
in one sublattice and all spins down in the other, we 
can improve the upper bound in the case 1 > 0 to get 

£8(0(, IJI) S -lJ + tlO(. (53) 

Finally, using the Yang and Yang result for one 
dimension, we obtain lower bounds for the linear 
chain, which are naturally not as good as those using 
the exact result: 

F(jO(I, IJI) 2 -!J(1 + O() = -0.75J(1 + O(), 

F( -10(1, -IJI) 2 -i IJI - ! IJIIO(I 

= -0.25IJI - 0.75IJllocl, 

FC -10(1, IJI) 2 -1 IJI - i IJIIO(I 

= -0.75IJI - 0.2511114 
r 

VI. DISCUSSION 

(54) 

The general trend of the results shows the usual 
nonmagnetic character of the ground states except 
when all interactions are ferromagnetic. The most 
interesting case is J < 0, 0( < O. Considering the 
limit 0( ----+ - 00 and applying the Lieb-Mattis theorem, 
we may easily see that, for sufficiently large and nega­
tive IX, the ground state must belong to spin zero. The 
interesting trend of the results on short chains indicates 
that the ferromagnetic state becomes unstable with 
respect to a spin-zero state for the smallest absolute 
value of 0(. It is, of course, easy to show that the 
ferromagnetic state is unstable with respect to spin 
waves for oc < -to but spin waves have very high 
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spin, S = iN - 1. The indications are that the spin- D. 
zero state crosses the ferromagnetic state at a very 

Class E C6 C' C3 C. C~ 
small value of IX for large N. Quite possibly IX = 0 8 6 

Order of class 1 2 2 1 3 3 
itself is a critical value; this situation is probably 

A' 1 1 1 1 1 1 characteristic of one-dimensional system and is almost 1 

A' 1 1 1 1 -1 -1 
certainly untrue in three dimensions. Nevertheless, it • A' 1 -1 1 -1 -1 -1 1 

emphasizes the rather tenuous nature of the ferro- A' 1 -1 1 -1 1 -1 • 
magnetic states. 

E' 2 -1 -1 2 0 0 
E" 2 1 -1 -2 0 0 
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Continuing our work on the ground-state properties of the Hamiltonian 

N N 
H = V ~ O'i • O'm + Vex ~ O'i • O'i+2 , -1 ~ ex ~ 1, 

we have completed the study of 10 spins. The results of short-chain calculations provide better upper and 
lower bounds ?f t?e .ground-state energy per particle as N ---+ 'Xl, but no simple formula can be fitted to the 
data to get thIS lImIt for all ex. For J > 0 and ex = ~, however, this is exactly found to be -iJ. Some 
upper and lower bounds for the free energy are also derived. 

In a previous work,I we studied the ground-state 
properties of the Hamiltonian 

N N 
H = V L a i • aHI + VIX L a i • am 

i=l i=l 

== Ho + IXH' (1) 

(N + 1 == 1, N + 2 == 2) for both posItIve and 
negative J and -1 ~ IX ~ 1. We obtained the upper 
and lower bounds of the ground-state energy per 
particle in the limit N - 00 for (l),as well as for its 
two-dimensional version with a square lattice. To 
obtain more specific information about the depend­
ence of the ground-state energy on IX, we studied 
short linear chains up to 8 particles. It has been shown2 

for linear chain with J > 0 and only nearest-neighbor 
interaction (IX = 0) that simple empirical formulas, 
such as 

EN = E", + (a2/N2) + ... , (2) 

for the ground-state energy per particle EN' exist and 
these can be used to get E"" the limiting value as 
N - 00, with great accuracy. In order to examine 
whether such a formula exists for all IX, we have now 
pushed our calculations to a chain of 10 particles. The 
entire data are presented here in Figs. 1 and 2. 
Although one can visualize the behavior of the ground­
state energy per particle E", for all IX fairly well, it is 
extremely hard to find any empirical formula of the 
type (2) for all IX or even a limited but useful region 
of IX. Nevertheless, the short-chain calculations appear 
to provide much better bounds for E", than we have 
obtained previously. 

An interesting by-product of these calculations is 
to show that the exact ground-state energy per particle 
E"" for J > 0, IX = !, is -iJ. The ground state is of 
spin zero, but degenerate, and the corresponding 

1 C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1392 
(1969) (preceding paper). 

2 J. Bonner and M. Fisher, Phys. Rev. 135, A640 (1964). 

eigenfunctions for finite and even N can be written 
down easily. 

Some exact bounds for the free energy of the system 
(1) can be obtained. More detailed information on the 
finite temperature properties of system with nearest­
as well as next-nearest-neighbor interactions is 
available from the work of Dalton.3 

I. RESULTS OF SHORT-CHAIN 
CALCULATION 

The method of computation for the lO-spin case is 
the same as employed in Ref. 1 and is originally due to 
Hulthen.4 There are 42 spin-zero states and we take 
them as 

CPI = [12] [34] [56] [78] [90], 

CP2 = [23] [45] [67] [89] [01], 

tpi = [23] [41] [56] [78] [90], 

Xl = [23] [41] [67] [85] [90], (3) 

r l = [23] [45] [16] [78] [90], 

Al = [23] [41] [67] [89] [50], 

WI = [23] [41] [78] [96] [50]. 

There are 10 states each of the type tp, X, and A, and five 
of each of the type rand w. Here 0 stands for the tenth 
spin. The square bracket [1m] = 1X(l)[3(m) - [3(l)IX(m), 
~here IX and [3 are the up and down spin states. A 
simple way of generating these states is to start with 
CPl and CP2 and operate with the nearest-neighbor­
interaction part Ho only. Note that these states are 
not orthogonal. Operating with H' on these states, we 
generate, besides these, other states of similar structure, 
for example, 

H'tpl = 10tpi - 2CPl - 2Xl 

- r 1 - r 2 - (Jl - (J2' (4) 

8 N. Dalton, Proc. Phys. Soc. (London) 88, 659 (1964). 
• L. Hulthen, Arkiv Mat. Astron. Fysik 26A, No. 11 (1938). 
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-0'5 

BOUNDS FOR 
G.FOUND-STATE 
ENERGY 
(POSITIVE J) 

0(_ 

0·5 

FIG. 1. Ground-state energy per spin for J > 0 (antiferromagnetic 
case). The curves marked 00 are bounds obtained directly (Ref. 1) 
for H in Eq. (1), and the dashed curve is obtained from Eq. (23); 
the others are short-chain results. (The vertical scale may be fixed 
from Table I.) 

where 
(J1 = [36] [25] [41] [78] [90], 

()2 = [29] [30] [41] [56] [78]. (4') 

The same difficulty was present in the 8-spin case, but 
now it is far worse; we have 45 such states which must 
be reexpressed in terms of the above nonorthogonal 
basis by a long, tedious calculation. The presence of 
these terms therefore destroys a basic simplifying 
feature that prevails in the problem with rx = O-it is 
now impossible to reduce the matrix of the Hamil­
tonian to smaller submatrices by inspection. The 
matrix is nonsymmetric and has been diagonalized 
on a CDC 3600 computer. The spin-zero states known 
at rx = ° from the work of Orbach5 serve as a useful 
check. The ground-state energy per spin is given in 
Table 1. For J < 0, we have assumed, on the basis of 
our previous experience, that the spin-zero state 
becomes the ground state when rx is large and negative. 

At rx = 0, J > 0, the limit Eoo is approached from 
below for even number of particles and from above 
for odd number of particles in the chain. By continuity 
this would hold for small rx. From Fig. 1 it appears 
that the even-chain (i.e., a chain containing even 

5 R. Orbach, Phys. Rev. 112, 309 (1958); 115, 1181 (1959). 

number of spins) results are converging fast to a 
limit for ° ~ rx ~ t. In the other regions nothing 
definite can be said about convergence. But it appears 
that the even chain results are below and the odd 
chain results are above the exact answer for -1 ~ 
rx ~ 1. Assuming this to be true, we get the lower and 
the upper bounds given by the results of 10 spins and 
seven spins, respectively. For J < 0, the odd-chain 
results are not useful and the even-chain results may be 
assumed to approach the right answer from above; 
we get its bounds by our previous calculation and the 
ten spin results. 

II. EXACT RESULT AT ex = t FOR J> 0 

Since at rx = t (J > 0) all the even-chain results 
indicate the same value, it is apparent that we may 
have an exact answer here, Eoo/J = -0.75. Actually, 
one can guess the eigenfunctions for the Hamiltonian 
here. Take N even and consider 

CfJ1 = [12] [34] ... [N - 3, N - 2][N - 1, N]. (5) 

Now 
N 

H = tNJ(1 + rx) - J ~ t{l - (Ji' (Ji+1) 
i=l 

N 

- Jrx ~!(I - (Ji • (Ji+2) 
i=l 

== tNJ(1 + rx) - Jfl. 

to 

-Q5 

-1.0 

-1.5 

BOUNDS FOR 
GROUND-STATE 
ENERGY 
(NEGATIVE J) 

0(-

(6) 

FIG. 2. Ground-state energy per spin for J < 0 (ferromagnetic 
case). The notation is the same as in Fig. 1. 
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TABLE I. Ground-state energy per spin for 10 particles 
(divided by IJI). 

IX J>O J<O IX J>O J<O 

-1.0 -1.2429 -1.1310 0.1 -0.8679 -0.5500 
-0.9 -1.2130 -1.0398 0.2 -0.8337 -0.6000 
-0.8 -1.1816 -0.9496 0.3 -0.8013 -0.6500 
-0.7 -1.1492 -0.8610 0.4 -0.7721 -0.7000 
-0.6 -1.1157 -0.7746 0.5 -0.7500 -0.7500 
-0.5 -1.0813 -0.7339 0.6 -0.7568 -0.8000 
-0.4 -1.0463 -0.6992 0.7 -0.7850 -0.8500 
-0.3 -1.0107 -0.6366 0.8 -0.8384 -0.9000 
-0.2 -0.9748 -0.5642 0.9 -0.9019 -0.9500 
-0.1 -0.9389 -0.4878 1.0 -0.9659 -1.0000 

0.0 -0.9031 -0.5000 

Then, 

H'PI = N'PI + [23] [41] [56] ... [N - 1, N] 

+ [12] [45] [63] [78] ... [N - 1, N] 

+ ... + [34] ... [2, N - IJ[NI] 

- ot{[13] [42] [56] ... [N - 1, N] 

+ [24] [31] [56] ... [N - 1, N] + ... 
+ [N - 1, 1] [2N] [34] ... [N - 3, N - 2] 

+ [N2] [1, N - 1] [34] ... [N - 3, N - 2]}. 

(7) 

The structure of the terms is obvious. The terms 
(second, third, etc.,on the right) are those we should 
denote by "PI' "P3, "Ps, . .. in accordance with our 

m. BOUNDS FOR THE FREE ENERGY 

Here we shall present some bounds on the free 
energy for the Hamiltonian (1) in the linear-chain case. 

The upper bound for the free energy 

F = -{3-11n Z = -{3-lln Tr [exp (-{3H)] 

is obtained from Peierls's theorem.6 If Fo is the free 
energy calculated with only the diagonal elements of 
the Hamiltonian (1), 

N N 

HD = !J ~ a~a:+1 + Vot ~ a~a:+2' (13) 
i=1 i=1 

we know F ~ Fo. 
But HD is the Hamiltonian of the Ising model with 

second-neighbor interactions. This can be solved by 
the transfer-matrix method in one dimension (but not, 
as far as we know, in two or three dimensions). This 
gives an upper bound for the free energy: Put F = Nf; 
we have 

f S -ikBTln [exp (-Jot{kBT) cosh (J{kBT) 

+ exp (hlkBT) + {exp (-2JotlkBT) 

X sinh2 (JlkBT) + 4 cosh2 (J/2kBT)}!]. (14) 

In the case ) > 0, ot > 0, we can also get a lower 
bound of the free energy by utilizing the convexity 
property. 7 The method was used by Griffiths8 and 
utilized the solution of the X-Y model by Schultz, 
Lieb, and Mattis.s We have to use the fact that the previous notation. If we use the identity 

[kl] [mn] + [kn] [1m] + [km] [nl] = 0, 
(8) linear chain with only the next-nearest-neighbor 

interaction can be decomposed into two noninter­
acting linear chains with half the number of spins each 
and with only the nearest-neighbor interaction 

termwise for the coefficient of ot, we get 

H'Pl = N(1 + ot)'Pl + (1 - 2ot){[23] [41]' .. 

X [N - 1, N] + [12] [45] [63]' .. [N - 1, N] 

+ ... + [NI] [34] ... [2, N - I]). (9) 

For ot = t, 

so that 
(10) 

(11) 

Hence the energy per spin is -lJ for N ~ 00. 

Similarly, we can show that, for N even, 

'P2 = [23] [45] [67] ... [NI] (12) 

is another eigenfunction of H belonging to the same 
eigenvalue. For odd N, the states are magnetic, but 
as N ~ 00, the energy per spin can only differ by terms 
of O(l/N). Hence at ot = t, EN = -!N} for N ~ 00, 

irrespective of evenness or oddness of N. Strictly 
speaking,we have shown that (5) and (12) are just 
eigenfunctions of H and, therefore, the eigenvalue 
-iNJ greater than or equal to the exact ground-state 
energy. But the numerical evidence of Fig. 1 leaves 
little doubt that it is the exact ground-state energy. 

(consider N even for convenience). 
Write (1) as 

H = X + Y + Z + Xo + Yo + Zo 

+ X, + Y, + Z" (15) 
where 

x = V L afaf+1' Y = V L a~af+I' 
Z = V ~ a~a:+1' (16a) 

Xo = pot L afaf+2' Yo = tJot ~ a~af+2' 
Zo = tJot! a~a:+2' (16b) 

Xe = !Jot L a:'a:'+2' Ye = tJot ~ a~a:+2' 
Ze = ilot ~ ~a:+2' (16c) 

In (16b) the sum is over the odd-numbered spins and 
in (l6c) it is over the even-numbered spins. 

The convexity of the free energy provides the 

• R. E .. Peierls, Phys. Rev. 54, 918 (1938); for a recent proof, see 
D. Ruelle, Helv. Phys. Acta 36, 789 (1963). 

7 D. Ruelle, Helv. Phys. Acta 36, 789 (1963). 
8 R. B. Griffiths, Phys. Rev. 136, A751 (1964). 
• T. D. Schultz, E. Lieb, and D. Mattis, Ann. Phys. (N.Y.) 16, 407 

(1961). 
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relation 

F (t>iAi) ~ t lXiF(Ai)' t lXi = 1. (17) 

Rewriting (15) as 

H = HHX + y) + -H Y + Z) + -HZ + X) 

+ ... + I(Z. + X.)], (18) 

and using the following relations,which hold because 
of symmetry, 

F(T, I(X + Y) = F(T, l( Y + Z» 
= F(T, I(Z + X», (19) 

etc., we obtain 

F(T) ~ IF(T, I(X + Y» 
+ iF(T, teX. + Y.». (20) 

Now the Schultz, Lieb, and Mattis solution of the 
x- Y model gives 

F(J, T) = -NkBT[ln 2 + (2/7T) i 1T/2

dk 

x In {cosh [(J/kBT) cos kn} (21) 

Remember that the interaction in the second term on 
the right-hand side is JOt and the number of particles 
is iNin X. + Y., so we get 

F(T) ~ -!NkBT[ln 2 + (2/7T) l'I/2

dk 

X In {cosh [(9J/2kBT) cos kJ}] 

- tNkBT[ln 2 + (2/7T) l" /2

dk 

X In {cosh [(9JOt/2kBT) cos kn]. (22) 

The lower limit for j, the free energy per particle, 
follows after division by N. 

Taking the limit T ----+ 0, we get a lower bound for 
the ground-state energy per spin: 

Eoo ~ -0.955J(1 + IX). (23) 

We have obtained a lower bound better than this in 
our previous work. 

Such results are difficult to obtain in higher dimen­
sions, but there exact series expansion results are 
available.3 

IV. DISCUSSION 

In this study we have unravelled some of the diffi­
culties of having second-neighbor interaction as 
apparent in the linear chain. For J < 0, the most 
interesting feature is the singularity at IX = 0 and that 
the ground state becomes one of spin zero for arbi­
trarily small second-neighbor interaction of opposite 
sign. Such instability is to be expected for the same 
reason as destroys the long-range order of the 
ferromagnetic ground state in one dimension at all 
finite temperatures. For J > 0, the existence of an 
exact result at IX = i is surprising, but IX = l must be a 
singular point. Here IX = 0 appears to be smooth, but 
may not really be analytic, thus explaining the failure 
of the existence of simple analytic extrapolation 
formula. While the singularity at IX = 0 may be 
removed in two or three dimensions, the existence of 
second-neighbor interaction brings into play compli­
cated topologies; the trouble in the 8 and 10 spins of 
the nature of Eq. (4) arose precisely from these reasons. 
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Phase Transition in Zero Dimensions: A Remark on the Spherical Model 
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It is shown that the spherical model consisting of N spins with nonzero interaction between two spins 
only has a phase transition in the limit N - 00. This is a counterexample to a suggestion of Kac which 
states that an Ising model will have a transition if the corresponding spherical model has a transition. 
Possible modifications of Kac's conjecture are suggested and discussed. 

SECTION I 

It has been suggested by Kaci that an Ising model 
will have a phase transition if the corresponding 
spherical model has a phase transition. 

The purpose of this note is to present a counter­
example and to suggest that the conjecture may well 
be true if the interaction potential is purely ferromag­
netic and periodic. 

The example we consider is in itself amusing: it has 
a phase transition and is in a sense zero-dimensional. 

SECTION II 

Consider a set of N spins Si with interaction energy 

(1) 

for the Ising model Si = ± 1 and for the spherical 
modeP - 00 < Si < 00 with the constraint 

N 

Is~ = N. (2) 
i=1 

We take the particular case 

Jij = 2J, when i = 1 and j = 2, 

= 0, otherwise, (3) 

i.e., only spins 1 and 2 interact. 
We wish to emphasize that this interaction is not 

pathological in any sense. The above coupling cOn­
stant is a perfectly finite and fixed number, e.g., 7T. 

The Ising-model partition function is given by 

zJv = 2-N I I'" I e2VSlS2 
1'1=±11'2=±1 1'1I'=±1 

= cosh 2v, (4) 

where v = JjkT (k is Boltzmann's constant and Tis 
the absolute temperature) and, in the thermodynamic 

* Work supported by National Science Foundation Grant No. 
GP-9414. 

t Permanentaddress: Northwestern University, Evanston, Illinois. 
1 M. Kac, Brandeis Lectures, 1966 (Gordon and Breach, Science 

Publishers, New York, 1968). 
2 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952). 

limit, the free energy per spin "p is given by 

- 3!... = lim N-Ilog zJv = 0 (5) 
kT N-+oo 

and "p is clearly an analytic function of T, i.e., the 
Ising model with interaction (3) does not have a phase 
transition. 

The spherical-model partition function with inter­
action (3) is given by2 

Z~ = ANII- . J e2vSlS2 dSI ds2' .. dsN , (6) 

where 

11' 

~ Si
2
=N 

i=l 

is the surface area of the N-dimensional sphere. 

(7) 

We now integrate first over the variables Sa, S4, ••• , 

SN in Eq. (6) as follows. Since 
b(r2 - a2) = b(r - a)j2a 

(15 denotes the D~rac delta function), 

ANI f·· J e2vSlS2 dSI dS2 ... dSN 

11' 
r2=~Si2=N 

i-I 

00 

= ANI f ... f e2V81S2b(r - .) N) dSI dS2 ... ds N 

-00 
00 

= 2.) N ANII- . J e2V8182b(r2 - N) dSI ds2' .. dSN 

-00 

00 

= 2.) N ANII- . J e2VSlS2 

-00 

x o(is; - (N - S~ - Si)) dS I dS2 ••• dS N 

= .) N Ai f f dSI dS2e2vSlS2(N - S~ - s~)-! 
S12+S.'S,N 

1403 
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and since 

we have that 

Z% = (N2~ 2) NU-NI2) 

x f f e2VS1S2[N - s~ - S~](N-4)/2 dSl ds2 • 

S12+S22$N (8) 

Transforming to polar coordinates then gives imme­
diately 

Z% = (N ; 2) L 1
Io(NJlY)(1 _ y)(N-4)!2 dy, (9) 

where 
(10) 

is the zero-order Bessel function with imaginary 
argument. 

The integral in Eq. (9) for large N can be evaluated 
either by the method of steepest descents or, if one 
wishes to be more precise, by obtaining upper and 
lower bounds and then proceeding to the limit 
N -+ co. We adopt the latter approach. 

To obtain an upper bound for Z~ we use the 
elementary result 

Io(z) ::s;; eZ
, for z;;::: 0, (11) 

which follows directly from (10). Substitution into (9) 
then gives 

Z~ ~ N; 2L
1
eNVlI(1 _ y)(N-4)/2. dy 

~ [N - 2J max {eNVlI(l _ yYN-4)/2} (12) 
2 0$11$1 

from which it follows that 

where 

_.J!.... = lim N-l log Z% ~f(v), 
kT N-+ro 

f(v) = H2v - 1 - log 2'11), 2'11 > 1, 

=0, 2'11 ::s;; 1. 

(13) 

(14) 

To obtain a lower bound for Z~ we use the result 

Io(z) ~ (l/2z)(e' - 1), for z ~ 0, (15) 

which follows from (10) by reducing the range of 
integration to (0, 'TT/2), expanding the exponential, 
integrating term by term, and using 

2 itTI2 
- sin" 0 dO ~ (p + 1)-\ for p ~ O. (16) 
'TT 0 

Substituting (15) into (9) gives 

z% ;;::: (N - 2) f1(1 _ y)(N_4)/2[e
NVII 

- IJ dy 
2 Jo 2Nvy 

~ (N - 2) e(1 _ y)(N-4)/2[eNVII _ 1] dy 
4Nv Jo 

= (N - 2) f\1 _ y)(N-4)/2eNvlldy __ 1_. (17) 
4Nv Jo 2Nv 

Now, assuming for simplicity that N is even, 

L\1 - y)(N-4)/2eNvlI dy 

[(N - 4)/2]! eNv [(N-4)/2] [(N - 4){2]! 

= (Nv)(NI2l-1 z~ [(N - 4){2 - I]! (NV)l+! 

[(N - 4)/2]! eNv 2 
;;::: (Nv) (NI2)-1 - N(2v - 1) , 

provided 2'11 > 1, (18) 

and it follows from (17) and (18) that 

-1p/kT ;;::: f(v), provided 2'11 > 1, (19) 

where f(v) is defined by Eq. (14). 
Also, since Io(z) ~ 1, 

z% ;;::: (N ~ 2) L\l - y)(N-4)/2 dy = 1 
and thus 

-1pjkT ~ 0, for all v. (20) 

Equation (19) is true, therefore, for all v. Combining 
this result with Eq. (13) then gives 

-1p/kT = fey), (21) 

with fey) defined by Eq. (14), and it is obvious that 
feY), and hence 1p, is a nonanalytic function of 
temperature, i.e., the spherical model with inter­
action (3) has a phase transition at temperature Te 
given by 

2ve = 2J{kTe = 1. (22) 

SECTION ill 

It is perhaps of interest to note that the free energy 
,of' the "Curie-Weiss spherical model," i.e., with 
interaction energy 

E = - {(isi)2, (23) 
N 1~1 

is precisely the same as the above Eqs. (21) and (14)! 
Thus, for the interaction (23), 

ZN = ANII- . J exp [v( N-t i~ S£)1 ds1 ' •• dsN • 

(24) 
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Making the orthogonal change of variables to Yl' 
Y2"" .YN with 

we have that 

ZN = AN1f- . J eV1l11 dYI ... dYN (25) 

N 
I: IItz=N 

i=1 

and integration over Y2' ... ,YN as before gives 

Z = 2r(N/2) 
N J; N(NI2)-lr«N - 1)/2) 

X r eYlltz(N - Y~lN-3)/2 dYI 
JlltZ:5,N 

= 2r(N/2) rl~y",2(1 _ x2i N - S)/2 dx 
..117 r«N - 1)/2) Jo 

(26) 

and it is obvious from the above analysis that 

-1p/kT = f(") (Curie-Weiss, spherical). (27) 

The difference now of course is that the Curie-Weiss 
Ising model has a phase transition. In particular, for 
the interaction (23) with Si = ± 1, 

-1p/kT = _"rJ2 + log [2 cosh (2"rJ)] 
(Curie-Weiss, Ising), (28) 

where rJ is a solution of 

rJ = tanh (2"rJ)· (29) 

So, at least for this case, the Kac conjecture is true! 

SECTION IV 

It seems likely to us that, in general, the conjecture 
may be true if the interaction potential Ji ; in Eq. (3) 
is periodic and ferromagnetic, i.e., if 

Ji; = J(fi - f;) > 0, (30) 

where fi is the position vector of the ith spin. In 

support of this "modified Kac conjecture" we have, 
in addition to the Curie-Weiss models, the following: 

(i) the three-dimensional nearest neighbor Ising 
and spherical models both have phase transitions, and 

(ii) the one-dimensional IsingS and spherical models' 
with interaction 

Jii = Ii - jl-(J>+I) 

have transitions when 0 < p < 1 and do not have 
transitions when p > 1 (when p = 1, the spherical 
model does not have a transition and, at the moment, 
the Ising case is undecided). 

We remark also that for the Curie-Weiss models, 
the magnetization M is given by 

M = lim \/(1. f St)2) 
N-+«J N .-1 

= rJ2, for Ising, 

= 1 - 1/2", for spherical (2" ~ 1), 

where rJ is defined by Eq. (29) and, since the slope of 
the line Y = 'fJ is greater than the slope of Y = 
tanh 2"rJ where they intersect, 

rJ2.~ 1 - 1/2v, when 2v ~ 1. (31) 

(When 2v < 1, both magnetizations are zero.) 
It is then tempting to suggest that, in general, if 

Jii = J(ri - f i ) > 0, 

M 1slng ~ Mspherical' (32) 

with the proviso that the inequality may only be true 
for sufficiently low temperatures. 

In addition to being true for the Curie-Weiss 
models [Eq. (31)], it is true for the one-dimensional 
nearest-neighbor models. 

In conclusion we remark that 

MIslng ~ Mcontlnuum, (33) 

where "continuum" describes the model with ISil ~ 1. 
To prove (33) write 

~ ~ 

(SksZ)contlnuum = f" JSkSZexP (Vi~/iiSiSi) ds1 '" dSN/ f" Jexp (Vi~/iiSiSi) ds1 '" dSN 
-1 -1 

1 

= f· . 'fs~z ! .. , I f.tkf'z exp (v I (JiiSiS;)f.tif.ti) ds1 ' •• dSN/ 
I't=±1 I'N=±1 i<i 

o 

., max I".IL )(81' 1 '''8N ) 

.::::. VA'_Z Ising , 
0:$8i:$1 

IF. J. Dyson, "Existence of a Phase-Transition in a One-Dimensional Ising Ferromagnet" and "Non-Existence of Spontaneous 
Magnetization in a One-Dimensional Ising Ferromagnet," Commun. Math. Phys. (to be published). 

, O. S. Joyce, Phys. Rev. 146, 349 (1966). 
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where 

If we now appeal to a theorem of Griffiths,5 which 
states that ferromagnetic Ising-model correlation 
functions ({li{l;) are not decreased if the interaction 
between any two spins is increased, we see that the 
maximum of (II. II. )(8,.82 .... . SN) is achieved when all rkrl Ismg 

5 R. B. Griffiths, J. Math. Phys. 8, 478 (1967). 

JOURNAL OF MATHEMATICAL PHYSICS 

Si = + 1. This is sufficient to prove (33) or, for that 
matter, the stronger result 

(S~l>Continuum :S (SkSl)Ising' 

Notice that periodicity is not required in this case; the 
only requirement being that the interaction Ji ; be 
ferromagnetic. 
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The problem of following the dynamical behavior of a quantum-mechanical system in the diagonal 
coherent-state representation is examined for those systems whose time evolution is specified byequations 
of motion for the coherent-state weight functional which resemble Fokker-Planck equations but have 
non-positive-definite diffusion matrices. A particular equation of this type describing a linear parametric 
process is considered in detail and several proposed generalizations of the diagonal representation, which 
include dynamical effects of the atomic system coupled to the electromagnetic field in simple models of a 
unimodal laser, are also briefly discussed. 

I. INTRODUCTION 

It has been noted recently by a number of authorsl - 4 

that the problem of following the time evolution of 
such quantum-mechanical systems as models of a 
unimodal laser and optical parametric amplifier in 
the diagonal representation5•6 of the density operator 
with respect to the "coherent" states IZ),7 

pet) = (1/7T) f P(z, t) Iz)(zl d2z, z = (x + iy)/(2)i, 

(1) 

can lead to mathematical difficulty because the 
weight function P(z, t) is, in general, not a well­
behaved classical function but a generalized function 

* Supported by the NASA Multidisciplinary Research Program 
under Grant No. 5522-52-12859. 

1 B. R. Mollow and R. J. Glauber, Phys. Rev. 166, 1097 (1967); 
B. R. Mollow, ibid. 162, 1256 (1967). 

2 J. R. Klauder, private communication (January, 1968). 
3 J. P. Gordon, Phys. Rev. 161, 367 (1967). 
4 R. Graham, Z. Physik 210, 319 (1968). 
6 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963). 
• R. J. Glauber, Phys. Rev. 131, 2766 (1963). 
7 R. J. Glauber, Phys. Rev. Letters 10, 84 (1963). 

in a subspace of Z'(R2).B This difficulty manifests 
itself in the fact that the equation of motion for 
P(z, t) in these cases resembles the Fokker-Planck 
equation familiar from the classical theory of stochas­
tic processes,9 but has a non-positive-definite diffusion 

8 M. M. Miller and E. A. Mishkin, Phys. Rev. 164, 1610 (1967). 
The fact that the diagonal weight function associated with the 
density operator actually belongs to a small subspace of Z'(R2 ) is 
stressed in Sec. V of this paper, and a characterization of this 
subspace Z;'(R 2 ) was given, based on the fact that the Fourier 
transform of the diagonal weight is a continuous function with a 
quadratic exponential bound. In terms of the classical generalized 
function spaces, the space Z;'(R2) most closely corresponds to the 
space S'i(R2). {For the definition of S spaces, see I. M. Gel'fand 
and G. E. Shilov, Generalized Functions (Academic Press Inc., New 
York, 1968), Vol. II; see also J. R. Klauder and E. C. G. Sudar­
shan [Fundamentals of Quantum Optics (W. A. Benjamin, Inc., New 
York, 1968), Chap. 8) for a comprehensive discussion of the diagonal 
coherent-state representation.} The fact that the diagonal weight 
function lies in a subspace of Z'(R.) has also been noted by K. E. 
Cahill, "Regularization of the P-Representation," Phys. Rev. (to be 
published). Cahill gives an alternate characterization of this subspace 
based upon the decomposition of the Fourier transform of the 
diagonal weight into the sum of a square-integrable function and 
an infinitely differentiable function. [The terminology "P-Represen­
tation," introduced by Glauber (Ref. 6), is frequently used in the 
literature to designate the diagonal coherent-state representation.] 

9 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 
(1945). 
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where 
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in a subspace of Z'(R2).B This difficulty manifests 
itself in the fact that the equation of motion for 
P(z, t) in these cases resembles the Fokker-Planck 
equation familiar from the classical theory of stochas­
tic processes,9 but has a non-positive-definite diffusion 

8 M. M. Miller and E. A. Mishkin, Phys. Rev. 164, 1610 (1967). 
The fact that the diagonal weight function associated with the 
density operator actually belongs to a small subspace of Z'(R2 ) is 
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subspace Z;'(R 2 ) was given, based on the fact that the Fourier 
transform of the diagonal weight is a continuous function with a 
quadratic exponential bound. In terms of the classical generalized 
function spaces, the space Z;'(R2) most closely corresponds to the 
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and G. E. Shilov, Generalized Functions (Academic Press Inc., New 
York, 1968), Vol. II; see also J. R. Klauder and E. C. G. Sudar­
shan [Fundamentals of Quantum Optics (W. A. Benjamin, Inc., New 
York, 1968), Chap. 8) for a comprehensive discussion of the diagonal 
coherent-state representation.} The fact that the diagonal weight 
function lies in a subspace of Z'(R.) has also been noted by K. E. 
Cahill, "Regularization of the P-Representation," Phys. Rev. (to be 
published). Cahill gives an alternate characterization of this subspace 
based upon the decomposition of the Fourier transform of the 
diagonal weight into the sum of a square-integrable function and 
an infinitely differentiable function. [The terminology "P-Represen­
tation," introduced by Glauber (Ref. 6), is frequently used in the 
literature to designate the diagonal coherent-state representation.] 

9 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 
(1945). 
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matrix. They are, therefore, not of the parabolic 
typelO and the general question of the existence and 
uniqueness of solutions to such equations when the 
drift and diffusion coefficients are variable has not 
been resolved.ll If, on the other hand, the drift and 
diffusion coefficients are constant, then the "Fokker­
Planck-like," non-positive-definite diffusion equations 
-hereafter referred to as FPL equations-belong to 
the class of "incorrectly posed" partial differential 
equations which have been studied intensively during 
the past ten years.IO A characteri~tic feature of such 
equations is the existence of a time interval T during 
which the solution is a well-behaved classical function, 
but after which the solution exists only in the sense of 
a generalized function. (A simple example of such an 
equation is the heat equation for negative times.12) 
For "incorrectly posed" equations to have classical 
solutions for a nonzero time interval, the initial data 
must be an entire analytic function for complex values 
of the spatial variables; then the magnitude of T 

depends) on the growth of the initial data in the 
complex plane,13 Although an analogous theory has 
not yet been developed for FPL equations with vari­
able coefficients, the simple, variable coefficient 
equation considered in Sec. II does exhibit such be­
havior. However, even this example illustrates that 
variable coefficient PFL equations are much more 
subtle and it is presently not known how to prove 
existence and uniqueness and obtain an estimate for T 

in the general case,u 
In this context, it is important to note that in the 

case of the diagonal weight functional P(z, t) it can 
be proved directly from the definition (1) that P(z, t) 
exists and is unique.8 Hence, proofs of existence and 
uniqueness derived directly from the differential 
equation for P(z, t), although interesting from a 
mathematical viewpoint, are really "frosting on the 
cake." From a physical point of view, what is needed 
is a solution for P(z, t) which would enable one to 
calculate the normally ordered correlation functions 
characterizing the coherence properties of the electro­
magnetic fieldl4 using simple c-number operations. 
In the sense that no general prescription is presently 
available for calculating such averages when the time 
evolution of P(z, t) is specified by a FPL equation, 

10 I. M. Gel'fand and G. E. Shilov, Generalized Functions 
(Academic Press Inc., New York, 1967), Vol. III, Chap. III. 

11 This question is currently being investigated by F. Treves and 
S. Steinberg (private communication, November, 1968). See F. Treves, 
Ovciannikov Theorem and Hyperdifferential Operators (Instituto 
Matetica Pura ae Aplicada, Rio de Janeiro, 1969). 

10 F. John, Partial Differential Equations (Interscience Publishers, 
Inc., New York, 1964), p. 102. 

13 Reference 10, p. 163, Theorem 3. 
14 R. J. Glauber, Phys. Rev. 130, 2529 (1963). 

several authorsl5 have concluded that no "reasonable" 
or "useful" diagonal representation exists in these 
cases, and have advocated following the time evolution 
of the density operator pet) using other "quasiproba­
bility" weight functions which are "better behaved" 
mathematically such as the Wigner distribution16 or 
the diagonal coherent-state matrix element of the 
density operator.17,18 While these alternate procedures 
for calculating correlation functions are, of course, 
valid, we believe that it is still of interest from a 
physical as well as a mathematical point of view to 
study the time evolution of the density operator in the 
diagonal coherent-state representation even in those 
cases in which P(z, t) is a generalized function and 
bears only a formal relationship to a classical proba­
bility density function. In Sec. II, we discuss in 
detail the model of a linear parametric process 
previously considered by Mollow1 and Klauder,2 and 
exhibit solutions for P(z, t) for all times. In Sec. III, 
we consider the problem of following the time 
evolution of the interaction between an atomic source 
and its radiation field by means of a generalization of 
the diagonal weight function which includes atomic 
as well as field variables. 

II. TIME EVOLUTION OF A P ARAMETRlC 
PROCESS 

We consider a single-mode field governed by the 
parametric Schrodinger Hamiltonian 

H = wata + (ate-irotae-irotat + H.c.), (2) 

where a, at are the usual boson annihilation and 
creation operators, and w, a are c numbers which 
specify the angular frequency of the mode and the 
strength of the parametric interaction.19 The inter­
action Hamiltonian in the interaction representation 
is, therefore, 

HI(t) = H1(O) = eiroatat{ate-irotae-irotat + H.c.}e-iroatat 

= aat2 + a*a2 (3) 

15 See, for example, R. J. Glauber, Proceedings o/the Symposium 
on Modern Optics (Interscience Publishers, Inc., New York, 1967); 
R. Graham et al., Z. Physik 213, 21 (1968). 

16 E. P. Wigner, Phys. Rev. 40, 749 (1932). 
11 C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274 

(1965). 
18 R. J. Glauber, Quantum Optics and Electronics (Les Houches, 

1964); (Gordon and Breach, Science Publishers, New York, 1965). 
'9 Since an actual parametric process involves a coupling between 

two (or more) harmonic-oscillator modes,a and at in Eq. (2) should 
be interpreted as n-component row and column vectors and co and a 
as real symmetric n X n matrices in the general case of an interaction 
between n-coupled oscillators. However, the resulting Hamiltonian 
can be converted into a sum of n terms of the form of Eq. (I) by 
diagonalizing the matrix a (the matrix co is already diagonal), so that 
there is no loss in generality in considering the single-mode case. 
(The n-mode problem is discussed in detail in the paper by Mollow 
in Ref. I.) 
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and the time evolution of the interaction-representa­
tion density operator PI(t) is specified by the equation 

. °PI(t) 
I iit = [H1(t), PI(t)]. (4) 

We can transcribe this equation for the density 
operator into an equation of motion for the diagonal 
weight function P(z, t) by combining Eqs. (1), (3), 
and (4), 

i °PI(t) = ~ I oP(z, t) Iz)(zl d2z 
ot 1T ot 

= .; I P(z, t)[H1(t), Iz)(zl] d2z 

= .; I P(z, t)[(O'at2 + 0'*a2), lz)(zl] d2z, (5) 

and making use of the differential-operator repre­
sentation of the creation and annihilation operators20 

and two partial integrations to rewrite Eq. (5) in the 
form 

1 I oP(z, t) Iz)(zl d2z 
1T ot 

= ! I{ (O'!:.... - 20'Z*..!) - c.c.}P(Z, t) Iz)(zl d2z. 
1T OZ2 OZ 

(6) 

In terms of the real variables x, y and with the choice 
0' = 1/2i, the resulting equation for P(z, t) is 

oP(x, y, t) 

iJt 

= X - - - - - y - + - - P(x, y, t), (7) ( 
iJ 1 iJ2 iJ 1 iJ2) 

iJx 2 iJx2 iJy 2 iJl 

which has the formal solution 

P(x, y, t) 

= exp t x- - -- - y- + -- P(x, y,O). [( 
iJ 1iJ

2 
iJ 1iJ

2
)] 

iJx 2 iJx2 iJy 2 iJy2 
(8) 

If we assume that the mode is initially in a chaotic 
state, then6 

1 {X2 + y2} 
P(x, y, 0) = -2(N-) exp - -2--'(N'--')'- , (9) 

where (N) is the average number of quanta at t = O. 
With this choice for P(x,y, 0) the solution can be 
written in the form 

P(x, y, t) = f(x, t)g(y, t), 

where 

f(x, t) = exp [t(x ~ - ! ~)] exp {-x
2
J2(N)} , 

iJx 2 iJx2 [2(N)]t 
(lOa) 

g(y, t) = exp [t(-y ~ + ! ~)] exp {-l/2(N)}. 
iJy 2 iJy2 [2(N)]t 

(lOb) 

To solve these equations, we note that the expo­
nential in Eq. (lOa) is of the form eA+B where 

iJ t iJ2 
A = tx -, B = - - -. (11) 

iJx 2 iJx2 

Since the commutator product [A, B] ::::i AB - BA 
is proportional to B, 

iJ2 
[A, B) = + -2 t2 = -2tB, (12) 

iJx 

the Zassenhaus formula21 reduces to 

Hence, 

eA+B = eAef(tlB, f(t) = (e
2t 

- 1) . 
2t 

f(x, t) = exp {tx ~} 
X ex {(I - e2t)~} exp {-x

2
/2(N)} . 

P 4 iJx2 [2(N)]1 

(13) 

(14) 

The right-hand ~ide of Eq. (14) may be evaluated by 
first utilizing the identity 

ex {(I - e2t)~} exp {-x2/2(N)} 
p 4 iJx2 [2(N)]1 

= exp {(I - e2t)~} exp {-x2/2(N)} 
2 o(N) [2(N)]1 (15) 

and the Taylor-shift formula to rewrite Eq. (14) in the 
form 

f(x, t) = exp {tx :J 
[exp ([2(N) +_~2 _ e2t)]) ] 

X [2(N) + (1 _ e2~]t . (16) 

By applying the Taylor multiplication formula22 

exp (tx ~)1JI(x) = 1JI(xe~, (17) 

Ii W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954). 
10 See, for example, p. 127 of the book by Klauder and Sudarshan 21 The function tp(x) in Eq. (17) represents an arbitrary function 

in Ref. 8. of x. 



                                                                                                                                    

DYNAMICS IN DIAGONAL COHERENT-STATE REPRESENTATION 1409 

we obtain the solution 

1 
f(x, t) = et [(2(N) + l)e-2t _ l]l 

x exp {[(2(N) +-~:-2t _ I]}' 
(18) 

The right-hand side ofEq. (lOb) may be evaluated in a 
similar fashion with the result 

1 
g(y, t) = e-t[(2(N) + 1)e+2t _ 1]* 

x ex { ~-l :----} 
p [(2(N) + 1)e2t - 1] . 

(19) 

Therefore, 

P(x, y, t) 

1 

= ([(2(N) + l)e-2t - 1][(2(N) + l)e+2t 
- Int 

{ 
_X2 -l} 

x exp [(2(N) + 1)e-2t _ 1] + [(2(N) + 1)e+2t - 1] . 

(20) 

We note the following important points about the 
solution for P(x,y, t) given by Eq. (20): 

(I) Since the density operator PI(t) must satisfy the 
constraint 

Tr PI(t) = ~ f P(z, t) d2z = 1, (21) 

this solution is only valid for times t such that 

(2(N) + 1)e-2t > I (22) 

or 0 < t < In (2N + l)t = T because, for times t > T, 

f(x, t) diverges as x becomes infinite. 
(2) The solution for t < T can also be obtained1.2 

by solving the equation of motion for the Fourier 
transform of P(z, t), the normally ordered character­
istic function XN(y, t), defined by17.23 

X N(Y, t) = Tr pe1at(t)e-1ta(t), (23) 

and then taking the inverse transform. Since the 
Heisenberg equations of motion for aCt), at(t) are 
linear, the right-hand side of Eq. (23) may be easily 
evaluated with the result 

XN(U, v, t) 

= exp [-Hu 2[(2(N) + l)e-2t - 1] 

+ v2[(2(N) + l)e2t 
- 1m, Y = (u + iv)/(2)l. 

(24) 

23 R. J. Glauber, Physics of Quantum Electronics (McGraw-Hill 
Book Co., Inc., 1966), p. 788. 

In contrast to Eq. (20), this solution for XN(u, v, t) 
is valid for all times. Indeed it is easily shown that 
XN(u, v, t) is a continuous function with the expo­
nential bound 

IXN(u, v, t)1 ~exp [!(u2 + V2)]. (25) 

Thus, for t > T, the solution for XN(u, v, t) is 

XN(U, v, t) = exp {+!u2 [1 - (2(N) + 1)e--2t] 

- Iv2[(2(N) + l)e+2t - I]}, (26) 

which does not have a Fourier transform in the 
classical sense because of the exponentially increasing 
functional form of u. 

(3) The time interval during which the solution for 
P(z, t) exists as a classical function depends strongly 
on the initial data, i.e., we have seen that with the 
choice 

P(x,y, O) = {exp [_(X2 + y2)/2(N)]}/2(N) 

a classical solution exists for the finite time interval T. 

If, on the other hand, P(x,y, O) = m5(x)t5(y), 
corresponding to the mode initially in the vacuum 
state, a classical solution does not exist for any 
nonzero time interval, while if P(x,y, 0) decreases 
faster than the exponential of any negative-definite 
quadratic form in x as x -+ 00, a classical solution 
exists for all time.1 In this regard, it is important to 
note that not all rapidly decreasing functions are 
admissible as valid initial data for P(z, t) or XN(y, t). 
For example, the function exp (-lyI4) is not an 
admissible normally-ordered characteristic function 
since it characterizes a state for which (ata) = 0, and 
this state, the vacuum, is uniquely specified by 
XN(y, t) = 1.24 (This restriction on the class of 
admissible characteristic functions is well known in the 
context of classical probability theory. See, for 
example, Ref. 25.) 

(4) The technique used to solve Eq. (10) may also 
be used to obtain an estimate of the time interval 
duri.ng which a classical solution exists even in the 
case of more general FPL equations for P(z, t), 

oP(z, t) _ L( .E...)P( ) -~...:..- z, z,t, 
ot oz 

(27) 

when it is impossible to obtain an explicit solution 
because of the form of the differential operator 
L(z, %z) and/or the initial data P(z,O). That is, 

24 I wish to thank B. Mollow for a discussion concerning this 
question. 

25 E. Lukacs, Characteristic Functions (Charles Griffin, London, 
(1960), p. 59. 
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since the formal solution of Eq. (27) has the infinite­
series representation 

P(z, t) = exp tL(Z' ;z)P(Z, 0) 

00 t
n (0) = L -, IJn) z,;- P(z,O), 

o n. uZ 
(28) 

an estimate of the "classical time interval" 7 can be 
obtained from the convergence of the infinite series if 
it is possible to estimate the effect of the nth-order 
differential operator Dn)(z, oloz) on the analytic 
initial data P(z, 0). 

We next consider the solution of Eq. (7) in the time 
interval t > 7. This solution follows immediately 
from the form of Eq. (26) for XN(u, v, t) and the fact 
that the Fourier transform of eu2

/
4a , a > 0, is the 

analytic functional corresponding to the function 
i(2a)!eas2 and the contour (-ioo, +ioo) in the 
complex s plane.26 Hence, the solution of Eq. (7) for 
t > 7 with initial data given by Eq. (8) is the analytic 
functional of two complex variables S1' S2, corre­
sponding to the function 

P(S1, S2, t) 

= i{[1 - (2(N) + 1)e-2t][(2(N) + 1)e2t - 1]}-! 

X exp {[1 _ (2(:)i + 1)e-2t] + [(2(N) ;~;e2t _ 1]} 

(29) 

and the hypersurface r defined by 

S1:(-ioo, +ioo), S2:( - 00, + (0). (30) 

It is easy to verify that this representation leads to 
the same normally ordered moments as are obtained, 
for example, by differentiating XN(U, v, t). For ex­
ample, the mean number of quanta (at(t)a(t» for 
times t > 7 is given by 

(a t (t)a(t) = .; f f P(S1, S2, t)1p(S1, S2) dSl ds2 , (31) 

r 

where the test function 1p(S1, S2) is obtained via the 
prescription 

S1 ....... ix/(2)!, S2 --+ y/(2)i, 1p(S1, S2) --+ 1p(x, y). 

In this case, 

1p(x,y) = (zl ata Iz) = HX2 + y2); (32) 

hence, 

(33) 

2. I. M. Gel'fand and G. E. Shilov, Generalized Functions 
(Academic Press Inc., New York, 1965), Vol. I, p. 188. 

Substituting (33) and (29) into (31), we obtain 

(at(t)a(t» = (N) cosh 21 + sinh2 t. (34) 

Thus, if it is possible to obtain an analytic functional 
representation for the diagonal weight, it can be used 
to obtain expectation values of interest in a straight­
forward manner. However, aside from the type of 
FPL equation considered in this section, i.e., those 
with linear drift and constant diffusion coefficients, 
it is presently not known how to obtain explicit 
solutions in this form. To overcome this difficulty, an 
alternate procedure for evaluating expectation values 
has been advocated by Klauder.27 This method, which 
obviates the necessity of working with generalized 
functions inherent in the direct approach, is based on 
the observation that the derivative of a generalized 
function is usually defined by its reciprocal derivative 
action on an appropriate test function space. There­
fore, to find the mean value of an operator O(a, at, t) 
at time t, we may either follow the time evolution of 
the density operator via the equation of motion for 
P(z, t), Eq. (27), or follow the time evolution of the 
function O(z, t) = (zl 0 Iz) via the equation 

oO(z, t) = I.J (z ~) O(z t) (35) 
ot ' oz " 

where Lt is the Hermitian adjoint of L. That is, 

(O(a, at, t» = ~ f P(z, t)(z\ O(a t, a, Q) \z) d2z 

=f etLp(z, O)O(z, 0) d2z 

= f P(z, O)etLt O(z, 0) d2z 

= f P(z, O)O(z, t) d2z. (36) 

Although conceptually it may be more satisfying 
to calculate P(z, t) and then use it to compute the 
mean value of any operator (Schrodinger picture), the 
alternate technique of following the time evolution of 
a particular mean value (Heisenberg picture) via an 
equation of the form of Eq. (35) has the virtue of 
avoiding the generalized function P(z, t) in favor of 
the well-behaved classical function O(z, t). Applica­
tions of this technique are currently under investi­
gation. 

., J. R. Klauder (private communication, October, 1968). 
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ill. GENERALIZATIONS OF THE DIAGONAL 
COHERENT-STATE REPRESENTATION 

Recently several authors3.28.29 have considered 
generalizations of the diagonal coherent-state repr~­
sentation to include dynamical effects of the atomIC 
system coupled to the electromagnetic field in simple 
models of a unimodal laser. In previous work,30 
Fokker-Planck equations describing the statistical 
state of the field alone were derived by adiabatically 
eliminating the atomic variables from the stochasti­
cally equivalent Langevin equations.31 Both Haken28 

and Lax29 derive a stochastic differential equation, 
i.e., one containing derivatives higher than the second 
order, for a generalized weight function including 
atomic variables and also obtain the Fokker-Planck 
approximation to the exact equation. Their weight 
function is defined as the Fourier transform of a 
characteristic function which is an atoms-field 
generalization of the normally ordered characteristic 
function defined by Eq. (23). For example, for a two­
level laser described by the five variables: a, at (field), 
M, Mt (atomic polarization), and [N2 - Nd (popu­
lation inversion), it is natural to define the generalized 
diagonal weight function P as the Fourier transform 
of the characteristic function28 

F(y, A, cp, t) 
= Tr {p(t)eiA* Mei'P[N2-NlleiAMt eiyateiy*a}. (37) 

If we let 
A = eV ,,* Mei'P[N.-NIleiAMt, (38) 

B = eiyateiy*a = eIYI'/2ei(Yat+Y*al, (39) 

28 H. Haken, H. Risken, and W. Weidlich, Z. Physik 206, 355 
(1967). 

29 M. Lax and H. Yuen, Phys. Rev. 172, 363 (1968). 
3. See, for example, M. Lax, Phys. Rev. 145, 110 (1966). . 
31 The "stochastic equivalence" between the Langevin equatIOns 

and the Fokker-Planck equation is discussed, for example, by R. L. 
Stratonovitch, Topics in the Theory of Random Noise (Gordon and 
Breach, Science Publishers, New York, 1963), Vol. I, p. 102. Straton­
ovitch's proof that it is always possible to go from the Fokker­
Planck equation to a set of equivalent Langevin equations is based on 
the fact that the diffusion matrix of a true Fokker-Planck equatIOn 
is positive definite. Hence, the equivalence is open to question in the 
case of the FPL equations we have been discussing. In this regard, 
it is interesting to note that Gordon adiabatically eliminates atomic 
variables directly from his basic FPL equation [see Ref. 3, Eq. 
(3.19)] in contrast to the usual procedure. 

it follows from the inequality 

ITr (pAB)12 ~ Tr p(AtA) Tr p(BtB) (40) 

and the fact that the operator B is traceable (since it is 
defined in the finite-dimensional Hilbert space of the 
atomic system) that the characteristic function exists. 
Because of the q-number nature of the atomic com­
munators,29 we have been unable to establish a bound 
on F in terms of the atomic variables analogous to the 
exponential bound and therefore cannot characterize 
precisely the function space to which F belongs. 
However, in general, it is clear that the inverse of F, 
the diagonal weight P, is a generalized function in a 
subspace of Z'. 

In contrast to the above procedure, Gordon's 
generalization3 of the diagonal coherent-state repre­
sentation is a direct extension of the definition Eq. (1) 
that makes explicit use of the differential operator 
representation of the atomic variables. Using the 
laser model of Lax,30 he obtains a FPL equation for 
his diagonal weight. In addition to the mathematical 
difficulty due to non-positive-definite diffusion matrix, 
some of the drift coefficients are quadratic, and some 
of the diffusion coefficients are linear in the atom­
field variables. For these reasons, no explicit solutions 
have been obtained and the adjoint approach (see 
Sec. II) seems to be the only method presently 
available for distilling information from this equation. 
In this regard, it is important to note that this method 
does not lead to an increase in the order of the differ­
ential operator, i.e., Lt in Eq. (35) is of the same order 
as L, whereas exact equations for such well-behaved 
distribution functions as the generalized Wigner 
density3 are of infinite order and can only be handled 
in a truncated diffusion approximation. 
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the coupled set of first-order nonlinear differential equations describing a generalized form of Vol­
terra's problem of two conflicting populations 

x = Co + C1x + C2y + Caxy + C,xs + C&y2, 

y = Ao + A1x + Asy + A3xy + A,x2 + A6y2 

are solved by an approximate method which gives y(t) for the particular case in which the variables x and 
y vary periodically, the coefficients C and Ai are real, and the peak-to-peak amplitude of x is small 
compared with the mean value of x. The peak-to-peak amplitude of y, however, is not necessarily small 
compared with the mean value of y. When these conditions are satisfied, the functional form of y(t) is 
approximated by Jacobian elliptic functions. The solutions obtained in this analysis are relevant to 
special cases of the classical problem of predator and prey, and also to certain low-frequency oscillations 
i~ p~rtially i?nized plasmas that arise from periodic solutions to the neutral and charged-particle con­
tmulty equatIOns. 

INTRODUCTION 

This paper will be devoted to the following coupled 
set of first-order nonlinear differential equations: 

i = Co + C1x + C2y + C3xy + C4X
2 + Csi, (1) 

y = Ao + A1x + A2y + A3XY + A4X2 + Asy2, (2) 

which are a generalized form of Volterra's problem of 
two conflicting populations.I - 9 A less general form of 
these equations was originally analyzed by Lotka in an 
attempt to formulate a mathematical theory of the 
behavior of two conflicting species in a state of 
nature1,2 and of certain oscillatory chemical reactions.3 

This work was later refined by Volterra,4,S whose work 
is summarized by Davis.6 

Most of the literature on this problem is concerned 
with determining the conditions under which the 
population of one or both species will remain bounded, 
or under which periodic fluctuations of the populations 
will occur.6- 9 Little emphasis has been placed on 
determining the peak-to-peak amplitude, period, and 
waveform of the solutions to Eqs. (1) and (2) because 

1 A. J. Lotka, Proc. Nat!. Acad. Sci., US 6, 410 (1920), pp. 
410-415 

2 A. J. Lotka, Elements of Physical Biology (Williams and Wilkins 
Co., Baltimore, Md., 1925), Chap. 6. 

3 A. J. Lotka, J. Am. Chern. Soc. 42, 1595 (1920). 
, V. Volterra, Lecons sur la theorie mathematique de la lutte pour 

la vie (Gauthier-Villars et Cie., Paris, 1931). 
5 V. Volterra, J. Conseil Perm. Intern. Exploration Mer 3,1 (1928). 
• H. T. Davis, Introduction to Nonlinear Differential and Integral 

Equations (Dover Publications, Inc., New York, 1962), Chap. 6. 
7 M. Frommer, Math. Ann. 109, 395 (1934). 
8 R. D. Pittle and Thomas J. Higgins, J. Franklin Inst. 282, 291 

(1966). 
• R. D. Pittle, "A Detailed Study of the Nonlinear Systems 

Characterized by Volterra's Differential Equations of Growth," 
MS thesis, Dept. of Electrical Eng., University of Wisconsin, 1965. 

of the difficulty of the exact nonlinear problem. 
Analytical solutions have been obtained for the 
linearized case in which the peak-to-peak amplitude 
of both x and yare small by comparison with their 
mean values.3,s The waveforms are sinusoidal in this 
case. In the present analysis, analytical solutions to 
Eqs. (1) and (2) were obtained under the assumption 
that the fluctuations of only one of the two variables 
are small by comparison with its mean value. 

Equations (1) and (2) can be derived in a plasma 
physics context by writing the continuity equations 
for each of the three components (ions, electrons, and 
neutrals) of a partially ionized gas and assuming that 
spatial variations are small over the region of interest. 
One of the three equations may be eliminated by 
assuming that the Debye distance is small compared 
with the apparatus dimensions, so that the ion and 
electron densities are approximately equal at each 
point. There will remain (in the absence of three­
body processes) two equations similar in form to Eqs. 
(1) and (2).10-12 The variable x might represent the 
number density of neutral particles and y the number 
density of electrons, or vice versa. It has been demon­
strated experimentallyl1,12 that the periodic solutions 
to Eqs. (1) and (2) can be identified with a previously 
unrecognized mode of plasma oscillation. 

ANALYSIS 

It is an easy matter to put Eqs. (1) and (2) on a 
computer and obtain ilUmerical solutions for a 

10 J. R. Roth, Phys. Fluids 10,2712 (1967). 
11 J. R. Roth, Phys. Fluids 12, 260 (1969). 
12 J. R. Roth, "Experimental Observation of Oscillations Described 

by The ~ontinuity Equations of ~lightly Ionized Deuterium, Neon, 
and Helium Gas," NASA Techmcal Note TND-4950, 1968. 
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particular set of Ci and Ai' However, it is desirable 
to have a closed-form solution for x(t) and yet) in 
terms of the coefficients Ci and Ai of the differential 
equations, in order to compare experiment with the 
predictions of the mathematical model. The most 
obvious approach to obtaining a closed-form solution 
is to linearize these equations through a "double­
perturbation" analysis, in which both x and yare 
assumed to have constant mean values Xl and Yoo' The 
time-varying portions of X and y [x2(t) and Y01(I)] are 
assumed to be much smaller than their respective mean 
values, so that Xl» X2(t) and yoo» YOl(I). This method 
was used by Lotka3 and by Volterra 5 in their analyses 
of a less general form of Eqs. (1) and (2), and yields 
exponential and sinusoidal solutions. 

The small-amplitude approach used in this analysis 
starts with the assumption that the peak-to-peak 
amplitude of only one of the two variables is small by 
comparison with its mean value. Removal of this 
constraint from the second variable is a desirable 
generalization: It permits the amplitude of the second 
variable to be calculated as a function of the coeffi­
cients Ci and Ai' The amplitude and waveform of the 
first variable (whose peak-to-peak amplitude is 
assumed small) cannot, in general, be obtained in 
closed form. The period of both variables is, of 
course, the same. 

The approximate closed-form solution of this paper 
is obtained by assuming that the peak-to-peak ampli­
tude of the fluctuations in X is small compared with 
the mean value of x: 

(3) 

In a plasma physics context, this is equivalent to 
assuming that the gas is lightly ionized and the neutral 
gas density only slightly perturbed. In the following 
analysis, it is assumed in all cases that the function y 
is periodic in time and that the boundary conditions 
at time t = 0 are given by Eq. (4): 

y(t=O)=yo, y(t=O)=O. (4) 

It is further assumed that Yo is positive-definite and 
may be either the maximum value or minimum value 
of y(t). No assumption was made about the relative 
magnitude of ~y and y, so that the assumption 
/:1x/xl «1 could also cover the case in which the 
relative amplitude ~y is either comparable to or small 
in comparison with the maximum value of y. In 
addition, the mathematical development is sufficiently 
general so that Xl may be either larger or smaller than 
the mean value of y. 

Immediate introduction of the small-amplitude 

approximation into Eqs. (1) and (2), setting x(t) = 
Xl + ~x(t),and then obtaining a solution for yet) by 
ignoring terms containing ~x(t) would be premature 
since it would merely decouple Eq. (2) from the 
variation of x(t) and lead to a family of trivial solu­
tions for yet). If Eq. (2) is differentiated with respect to 
time, one obtains 

y = Alx + A2y + Aaxy + Aaxy 

+ 2A,xx + 2A5yY. (5) 

The first-order time derivatives in Eq. (5) may be 
replaced by substituting Eqs. (1) and (2) for them to 
obtain an equation of the form 

y = 10 + Ily + 12y2 + lay3, (6) 

where the coefficients Ii are polynomials in x, algebraic 
in the starting coefficients Ci and Ki • If it is assumed 
that the peak-to-peak variation of x(t) is sufficiently 
small that x(t) in the coefficients Ii may be approxi­
mated by its mean value Xl' 

x(t) = Xl + ~x(t) ~ Xl' (7) 

the coefficients Ii in Eq. (6) become constants. 
Equation (6) with these coefficients may then be 
considered an approximation to yet), a necessary 
condition for the validity of which is that the small­
amplitude approximation of Eq. (3) be satisfied. 

Equation (6) is recognizible as a differential equa­
tion whose periodic solutions are given in terms of 
Jacobian elliptic functions.6•la The integral tables of 
Byrd and FriedmanI ' are extremely helpful in partic­
ular cases. The solutions to Eq. (6) for which 13 = 0 
and the other Ii are constant have been worked out 
and are available elsewhere. IS 

DISCUSSION 

The utility of the above approximation may be 
assessed by considering a particular case given by the 
pair of equations 

x = -649.5 + 6.02x + 145y - 0.95xy 

- 0.00025x2, (8) 

y = 105 + 0.15x - l00y + 0.95xy - 0.0115x2 , (9) 

with the initial conditions x(O) = 100.494 and yeO) = 
0.881. Note that Cs = A5 = O. In Fig. 1 is shown the 
x-y phase trajectory of the exact solutions to Eqs. (8) 
and (9), and the exact solution for y(t) is shown in 
Fig.2(a). 

13 G. M. Murphy, Ordinary Differential Equations and Their 
Solutions (D. Van Nostrand Co., Inc., New York, 1960), p. 160. 

14 P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals 
for Engineers and Physicists (Springer-Verlag, Berlin, 1954). 

15 J. R. Roth, "Periodic, Small-Amplitude Solutions to the 
Spatially Uniform Plasma Continuity Equations," NASA Technical 
Note TND-4472, 1968. 
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If a mean value Xl = 100 is adopted, Eq. (6) 
becomes 

jJ = 83.8653 - 131.2249y + 47.0S42y2. (10) 

A solution to this equation may be obtained by using 
expression 233 :00 of Ref. 14, to obtain 

yet) = 0.881 + 0.2329 sn2 (3.2017t), (11) 

for which the elliptic modulus is 

k2 = 0.1782 (12) 

and sn is the Jacobian elliptic sine. Equation (11) is 
plotted in Fig. 2(b). A comparison of Figs. 2(a) and 
2(b) shows that yet) as given by Eq. (11) differs from 
the exact solution only by a few percent in peak-to­
peak amplitude and period. 

Equation (6) will not provide a satisfactory approxi­
mation to yet) when the time-dependent terms in the 

1.3 

1.2 

1.1 

Y 1.0 

.9 

.8 

. 7.~--3=-----:1:-~--:-~~~ 
97 

X 

FIG. I. Plot of the trajectory of the solutions to Eqs. (8) and (9) on 
the x-y phase plane. 

IT~ ~AA/" 
1.0~ 
.8L-~ __ ~~ __ ~-L __ ~-L __ L--L~ 

~ (a) 

1.21 A A A A /' 
1.°fl I VI VI ~ 1'1 1 
.8~~~~~~~~~~~~--~~ 

o .5 1. 0 1.5 2.0 2. 5 3.0 3. 5 4.0 4. 5 5. 0 
(b) t 

FIG. 2. (a) Plot of the exact solution of Eqs. (8) and (9) for y(t) as 
a function of t. (b) Plot of the approximation to y(t), given by Eq. 
(11), as a function of t. Note the very good agreement in amplitude 
and period between the exact solution and the present approxima­
tion. 

coefficients Ii containing x(t) are nonnegligible. An 
example of the failure of Eq. (6) to provide a satis­
factory small-amplitude approximation is provided by 
Eq. (13) of Ref. 10, which was found experimentally 
to hold over only a portion of the range ofinterest.1l•

12 

CONCLUSIONS 

The analysis presented herein extends the approxi­
mate solutions available in the literature (Refs. 3 and 
5) to the case in which the peak-to-peak amplitude of 
yet) may be comparable to its mean value. It can be 
shown that the results obtained in this analysis reduce 
to those given in Refs. 3 and 5, in the limit of small 
peak-to-peak fluctuations in yet). The present analysis, 
therefore, contains the previously obtained closed­
form solution to Eqs. (1) and (2) as a special case. 
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We study the asymptotic behavior of the ground-state binding energy G(A) of -6 + AV as A ---+ 00. 

Unlike the number of bound states, G(J.) does not have a universal power growth as A --+ 00. It is shown, 
however, that as J. ---+ 00 for Kato potentials 

AJ. < G(J.) < B}.4. 

Examples are presented for which G ~ }.P for any 1 < (J < 4. Other examples are presented which obey no 
power growth. We also prove theorems which reflect the close connection between the large A behavior of 
G and the small r behavior of V for potentials with a single attractive singularity at r = O. These can be 
roughly phrased as follows: If V ~ -r-f/. for r --> 0, then G(A) ~}.P with P = 2{(2 - IX) as A ---+ 00. 

1. INTRODUCTION 

For large classes of potentials it has been shown 
that the total number of bound states [N(AV)), the 
number of states in any I channel [n,(AV)], and the 
largest I-channel with bound states [lmax(AV)], for 
the Hamiltonian - ~ + AV, all have power growth 
in A as A ~ 00. Specifically, 

Ail! < N(AV) < Bil! (see Ref. 1), 

aA! < lmaxO.v) < bilt (see Ref. 1), 

C,At < n,(AV) < D,At (see Ref. 2), 

where each formula holds for" sufficiently large, and 
the constants are V-dependent. However, the powers 
! or ! are not V-d~pendent. 

In this paper, we examine the analogous question 
for G(AV), the binding energy of the ground state of 
-~ + ilV. We define G so it is positive, i.e., G is the 
negative of the energy of the bound state. We only 
deal with potentials which are "negative somewhere" 
(see Ref. 1, Coronary 1). In this case if .10 = 
inf {il > 0 I N(AV) > O}, G(AV) only makes sense if 
A > "0' and so we henceforth suppose A > .10' 

We see that, unlike N, nl , and Imax , G does not 
necessarily have power growth and, when it does, the 
power can vary between 1 and 4; i.e., there is not a 
universal power growth. We also show that, when V is 
a (not necessarily central) potential with a single 
attractive singularity r = 0, that power growth of 
V at r = 0 leads to power growth of G as ,,-+ 00. 

Thus, the large coupling-constant behavior of G 

.. This research partially sponsored under Air Force Office of 
Scientific Research under Contract AF49(638)-1545. 

t N.S.F. pre-doctoral fellow. 
1 B. Simon, J. Math. Phys. 10, 1123 (1969); F. Calogero and G. 

Cosenza, Nuovo Cimento 4SA, 867 (1966). 
• F. Calogero, Commun. Math. Phys. 1, 80 (1965); Variable Phase 

Approach to Potential Scattering (Academic Press Inc., New York, 
1967), Chap. 23; J. H. E. Cohn, J. London Math. Soc. 40, 523 
(1965); 41, 469 (1966); W. Frank, J. Math. Phys. 8,466 (1967). 

"mirrors" the small r behavior of V, which IS an 
intuitively expected result. 

For convenience, we restrict ourselves to potentials 
V which are the sum of an V and an L 00 function. 
This class was first considered by Kato,3 who showed 
that -~ + V is self-adjoint on D(~), the domain of 
~. We call such potentials Kato potentials. 

Let us summarize the remainder of the paper. In 
Sec. 2, we discuss various types of power growth. 
In Sec. 3, we present a class of Kato potentials for 
which G(A) ,...., AP for any 1 < fJ < 4. In Sec. 4, we de­
rive several general properties of G, including the fact4 

that any power growth must have 1 ~ fJ ~ 4. In 
Sec. 5, we show that,if V has power growth V "'-' -r~ 
for r small (0 < rx < i), then G,...., ilP with fJ = 
2/(2 - rx). Finally, in Sec. 6, we present a V with 
G(A) not possessing power growth as .1-+ 00. 

2. TYPES OF POWER GROWTH 

For a function F(A), there are at least five natural 
interpretations for the expression F(il) ro-..J ilel

: 

(a) There is a C such that, for any E, there is an no, 
with 

(C - E)ilel <'F(A) < (C + E)A", for il> no. 
(b) There exist C, C', and 0 0 , such that 

CAel < F(A) < C'ilel
, for il > no. 

(c) For every E, there is an 0 0 such that 

ilel
-

E < F(A) < ilel+E
, for il > 0 0 , 

(d) lim (_A_ OF) = rx. 
'\--+00 F(A) 0.1 

(e) lim Ft(A! exists. 
'\--+00 ,,"-

• T. Kato, Trans. Am. Math. Soc. 70, 195 (1951). 
4 fJ < 4 depends essentially on the fact that V is Kato. If we are 

less restrictive and allow V ~ rf1. with 2 > IX > tt, we get G ~ AP 
with fJ > 4. 

1415 
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(a), (b), and (c) can be rewritten in terms of limits: 

(a') lim [F(il.)/il."] exists and is finite and nonzero. 
).-,",0 

(b') Urn [F(il.)/il."] and lim [F(A)/A"] are finite and 
nonzero. 

(c') lim log F(il.)Jlog A = IX. 

We also remark that (c) is equivalent to a form with 
C, C ' as in (b). The five types of growth are related by: 

Theorem 2.1: 
(a) ---+- (b) 

7' ""-
(e) ---+- (d) ---+- (c) 

and (d) + (a) ---+- (e). Moreover, no additional im­
plications (single or multiple) hold. 

Proof: I (a) ---+- (b) ---+- (c) is immediate, as is (d) + 
(a') ---+- (e). 

To see that (d) ---+- (c), suppose (d) holds and E is 
given. Then find no so that A > no implies 

~<_l_oF <IX+E 
il. F(A) oil. A' 

which, integrated from no to il. and then exponentiated, 
says 

- <--< - , ( 
il. )H F(A) ( il. )"+< 
no F(no) no 

which is (c) (in the C, C' form). 
(e) ---+- (a) requires the integration of an inequality 

as in (d) ---+- (c). This integration also shows that when 
(e) holds, 

lim F'(A) = IX lim F(A) 
il.,,-l il." ' 

which is L'Hopital's rule. This means that (e) ---+- (d). 
To see that no other implications hold, we remark 

that F(A) = A(2 + sin A-I) obeys (b) and (d) but not 
(a) or (e); F(il.) = A log A obeys (c) but not (a), (b), or 
(e); and F(A) = [1 + (1 + A)-l sin A4] obeys (a), (b), 
(c) but not (d) or (e). Q.E.D. 

We write F(A) "-' A"( -), to indicate growth of type 
(-). We remark that similar power growth for VCr) 
at r ---+- 0 is also meaningful. In this notation, we have 
the following: 

Theorem 2.2: For a large class of potentials, 
N(AV)"-'Af (b); nz(AV)"-'Al(b); lmax(AV) "-'Al(b). 
(See Ref. 5.) For proof, see Refs. 1 and 2. 

• K. Chadan [Nuovo Cimento 58A, 191 (1968») has shown that 
n,(A V) ~ At (a) for a restricted set of V. 

3. A CLASS OF EXAMPLES WITH DIFFERENT 
POWER GROWTH 

Consider the class of potentials, Vir) = -r". For 
V to be Kato, we must6 have 0 < IX < t. We first 
remark that -~ + AV" always has bound states; in 
fact, because V falls at 00 more slowly than r-2 , 

-~ + AV always has infinitely many bound states7 ; 

we do, in fact, prove this below. 

Theorem 3.1,' There is a unitary transformation 
U(il., IX) so that 

U(A, IX)-l( -~ + AV,,)U(A, IX) = ).P( -~ + V,,), 

where (3 = 2/(2 - IX). 

Proof: The formal scaling r ---+- AP/2r takes - ~ + A V" 
to AP( -~ + Va). Thus we let 

[U(il., 1X}'p ](r) = il.3P/4'1J!(AP/2r ). 

Then U is unitary and U-l(~)U = AP~, U-IVU = 
il.ap/2V. But 

tlX{3 + 1 = 1 + [1X/(2 - IX)] = 2/(2 - IX) = (3, 

so the theorem is proven. 

Corollary 3.2: For any AI, -~ + Al Va has infinitely 
many bound states. 

Proo!, A simple variational-principle argument as 
in Simon,l Corollary 5, shows that -~ + AVa has 
arbitrarily many bound states for A sufficiently large 
[i.e., N(AV) ---+- 00]. But by Theorem 3.1, -~ + AV" 
and -~ + Al V" are unitarily equivalent up to a factor 
and so have the same number of bound states. 

Corollary 3.3: G(AVa) = APG(V,,), and thus 

G(AV,,) "-' AP(e). 

Thus,in particular, any power growth 1 < {3 < 4 
is possible for Kato potentials. We can see that 
{3 = 1 and {3 = 4 are also possible. [For {3 = 1, see 
Theorem 5.1; for (3 = 4, we remark that Theorem 
5.3(iii) implies that VCr) = ri(1 + Ilogrl)-l, which is 
Kato, has G(AV),,-,A4(c).] 

4. GENERAL PROPERTIES OF G( V) 

Let us write G(it) for G(itV) when V is held fixed. 

Theorem 4.1: There is an n and a B > 0 such that 
G(it) > BA if A > n. 

• Physically we expect no trouble if ex < 2. but the mathematics is 
more compli.cated for ex > i. so we restrict ourselves. 

, R. Courant and D. Hilbert. Methods of Mathematical Physics 
(Interscience Publishers. Inc .• New York. 1953). Vol. I. p. 447. 
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Proof Let Ao be as in Sec. I and let "P be the ground 
state of -~ + (Ao + l)V. Then b = ("P, V"P) < 0, so 
that ("P, (-~ + AV)"P) = a + Ab with b < O. By the 
variational principle, G(A) > -a - Ab. Let n = 
-2a/b, B = -b/2, and the theorem follows. 

Theorem 4.2: There is a c > 0 such that G(A) < 
CA' for A sufficiently large.' 

Proofs: First suppose V E V. Let "PA represent the 
ground state, and write k 2 = G(A), with k > O. By 
Kato's theorem, "PA E D(~) so that (-~ + AV)"PA = 
_k2"PA implies "PA = (~ - k2)-I(AV)"PA' Thus "PA 
obeys the integral equation 

( ) A f exp (-k Ix - yl) V() () d3 
1J!A X = - - Y "PA Y y. 

47T Ix - yl 
Thus 

f d3
x l"Pix)1

2 

< (4:)2 f d
3
x f d

3
y f d

3
y' I "Piy) I I "Piy')1 

lV(y) I 1V(y') I exp [-k(lx - yl + Ix - y'1)1 
x 

Ix - yllx - y'l 

= (4:)2 f d
3
y f d3y' lV(y) I 1V(y') I I "PA(Y) I I "P;.(y') I 

Xfd3X exp [-k(lx - yl + Ix - y'1)1. 
Ix - y[ Ix' - yl 

The x integral is (27T/k) exp (-k Iy - y'1) :::; 27T/k.9 

Thus, 

II"PAI12 :::; 8:k[f d
3
y lV(y) I I "PiY)lr 

:::; 8:~ II "PA11 2f d3
y lV(y)1

2
, 

where this last inequality follows from the Cauchy­
Schwartz theorem. Therefore, k < C1A2 or G(A) = 
k2 < CA'. 

Now suppose that V = VI + V2 with VI E V and 
V2 E L 00 and let II V2 11 00 = D. Then V> W, where 
W= V1 - D,SOG(AV) < G(AW) = G(AV1)+AD< 
A'C + AD, and so the theorem holds true in this case. 

Q.E.D. 

Let us henceforth restrict ourselves to V's which 
lead to non degenerate ground states for -~ + AV; 
in particular, V can be any central potential and any 
but the most pathological noncentral potential. 

8 This is a modification of an argument, due to G. Tiktopoulos, 
private communication. 

• This can be done most easily in prolate spheroidal coordinates 
or by using the Green's"function equation for exp (-k Ix - yi)! 
Ix-yl· 

Theorem 4.3: G(A) is a real analytic function for 
A> Ao and G'(A) = -("PA' V"P,t), where "P,t is the 
ground state. 

Proof: V is a small perturbation of - ~ + AV in the 
technical sense.10 Since the ground state is nonde­
generate, Rayleigh-Schrodinger perturbation theory 
for G(A + Ao) (expanded in A) converges ,11 and so G 
is real analytic. Moreover, G'(A) is given by the 
perturbation theoretic result as - ("P,t, V"P,t). Q.E.D. 

The condition -G'(A) = ("P,t, V"PA) is the famous 
Feynman-Hellman theorem,12 whose proof is seen to 
be completely rigorous for Kato potentials. 

Theorem 4.4: 
(i) G(A) > 0; 

(ii) G'(A) > A-1G(A); 
(iii) G"(A) > O. 

Proof 
(i) is immediate. 

(ii) follows from the fact that -~ is positive for 

(iii) follows from the fact that the second-order 
perturbation term for -G(A) is negative. Alternately, 
we can prove that G' (A) is increasing directly, as fol­
lows: Let Al > A2 and write 1J!j = "P,ti' By the varia­
tional principle, 

G(Al) = ("PI' ~"Pl) - Al ("PI' V"Pl) > ("P2' ~"P2) 

- A1 ("P2, V"P0, 

G(A2) = ("P2' ~"P2) - A2("P2, V"P2) > ("PI' ~"Pl) 

- A2("Pl, V"Pl)' 
Adding, we see that 

or 
Q.E.D. 

(ii) can be used to give an alternate proof of 
Theorem 4.1. (iii) tells us that G is convex. We remark 
that the reasonable conjecture that a smooth convex 
function has power growth is false, as our example in 
Sec. 6 shows. 

10 T. Kato, Perturbation Theory for Linear Operators (Springer­
Verlag, Berlin, 1966), pp. 375-377. 

11 Reference 10, pp. 381-382. 
12 R. P. Feynman, Phys. Rev. 56, 340 (1939); H. HeUman, Ein­

fiihrung in die Quantenchemie (Franz Deuticke, Leipzig, 1937), p. 
285. 
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Theorem 4.5: 
(i) G(A) < - (tp;., (AV + 4r-2)tp;.). 

(ii) If a vlar exists and the Virial theorem is obeyed, 
then 

Proof: 
(i) follows from the simple fact that, for any 

tp E D(.6.), 

(tp, -.6.tp) > < tp, 4~2 tp) 

(see Ref. 13 for a proof when tp is COO of compact 
support and then use the fact that .6. is the closure of 
its restriction to these functions). 

(ii) follows from the Virial theorem 

2(tp;., -.6.tp;.) = (tp;., r(aVlar)tp;.). Q.E.D. 

For a CI central Kato potential, the standard proof 
of the Virial theoremI4 should go through. For the 
noncentral case, WeidmannI5 has given simple con­
ditions for the Virial theorem to hold as a rigorous 
result. 

Theorem 4.6: If VI and V2 are Kato and VI(r) < 
V2(r) for all r, then G(AVI) > G(AV2) (even if the Vi 
do not go to ° at r = (0). 

Proof: This is an immediate consequence of the 
variational principle. We have, in fact, already used 
this argument in the proof of Theorem 4.2. 

5. POWER GROWTH AT r = 0 

Let us first eliminate the trivial case of potentials 
that are bounded below. 

Theorem 5.1: If V(r) > -C for some constant 
C > 0, then G(A.) '" A.(e). 

Proof' [Notice that (b) growth is trivial since we 
have Theorem 4.1 and G(A.) < A.C.] We have G'(A.) = 
-(tp;., Vtp;.) < C. Thus G' is bounded above, but G' 
is increasing by Theorem 4.4(iii). Thus lim G' (A.) exists 

;.~OO 

and is finite, i.e., G(A.) '" A.(e). Q.E.D. 

We deal in the remainder of this section with the 
more interesting case of potentials with attractive 
centers. We could deal with the case of finitely many 
centers, but we restrict ourselves to the following 
class. 

13 Reference 7, p. 446. 
14 The normal proof really supposes 1p;.E D[(o'/or')r(%r)]. For 

negative energy eigenfunctions in a Cl Kato potential, one should be 
able to prove that 1p;. decreases exponentially from its integral 
equation. For the radial Schriidinger equation, it follows that 1p;. 
is C3 • 

16 J. Weidmann, Bull. Am. Math. Soc. 73, 452 (1967). 

Definition: We say a potential V is attractive if 
(i) lim V(r) = - 00, 

r~O 

(ii) for every R > 0, V is bounded in the region 
{r I r > R}. (We say that V is "bounded outside 
spheres.") 

Definition: We say V has attractive growth ot(a) 
[or ot(b), ot(c)] if 

(i) V is attractive, 
(ii) V", -r-"(a) as r ---* 0 [or (b) or (c)]. 

We reserve ot(d) and ot(e) for a slightly stronger con­
dition. 

We are heading towards proving that whenever V 
has attractive growth ot of some type, G(A.) ,-...; A.II with 
the same type of growth where f3 = 2/(2 - ot): For 
growth of type (a), (b), or (c), the crucial element of 
the proof is the following: 

Lemma 5.2: If V(r) < -Ar-Y + B, then G(A.) > 
AR/6 

- BA.; and if V(r) > -Cr-Y - D, then G(A.) < 
CRyA.6 + DA., where <5 = 2/(2 - y), and Ry = G(Vy) 
as in Sec. 3. 

Proof' This follows immediately from Theorems 
3.3 and 4.6. 

Theorem 5.3: Let 0 < ot < t. Then 
(i) If V has attractive growth ot(a) , then G(A.) '" 

A.II( a). 
(ii) If V has attractive growth ot(b), then G(A.) '" 

A.II(b ). 
(iii) If V has attractive growth ot(c), then G(A) '" 

A.II( c). 
In each case, f3 = 2/(2 - ot). In case (i), 

lim G(A.) = R" lim _ V(r) . 
;. .... 00 A.P r .... O r" 

Proo!, (i) Since V is bounded outside spheres and 
v'" -r-"(a), there is a C = lim - V(r)/r", so that 

for every E, there is a B with 

-(C + e)r-« - B < V(r) < -(C - E)r-" + B. 

Thus Lemma 5.2 implies 

(C - E)R"A.II - BA. < G(A.) < (C + e)R"A.P + BA.. 

Since f3 > 1, for every E we have 

(C - e)R" < lim G(pA.) < lim G(pA.) < (C + e)R". 
- A. A. 

Since e is arbitrary, 

. G(A.) 
hm-p =R"C. 
;. .... co A. 
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(ii) Since V is bounded outside spheres and 
V r-...J -,-~(b), there is a B, C, C' so that -Cr-~ -
B < VCr) < -C'r-~ + B. Thus Lemma 5.2 implies 

R"C'),II - B), < G()') < R"C),II + B),. 

Thus for)' sufficiently large, 

(iii) Since V is bounded outside spheres and 
V r-...J -r-~(c), for every E, there is a B so that 

-r~+' - B ~ VCr) < -r~-£ + B. 

Thus Lemma 5.2 implies 

-B). + R,,_.),p-e ~ G()') ~ R,,+.)'P+<" + B)', 

so that 

fJ 
' 1· log G()') 1-:- log G()') fJ " 

- E < 1m < 1m < + E . 
- log). log), 

Since E is arbitrary and E', E" ---+ 0 as E ---+ 0, we have 

lim log GO) = fJ. 
;. .... '" log), 

Q.E.D. 

We finally get to the interesting cases of Type (d) 
or ( e) growth. The Virial theorem is crucial and so we 
restrict ourselves to the following: 

Definition: We say V has attractive growth lX(d) or 
lX(e) if 

(i) V is attractive, 
(ii) V r-...J -r-"(d) [or (e)], 

(iii) V obeys a Virial theorem, 
(iv) r(oV/or) is bounded outside spheres. 
Condition (iv) is not essential in its strong form. 

Using the fact that "P;. falls off exponentially, we could 
probably survive with e-a.r[r(OV/or)] bounded for 
some IX. However, only the most pathological V's 
fail to obey (iv) and so we do not consider weakening 
it in detail. 

Proof: We first remark thatf2 ---+ 00 as ), ---+ 00 by (i) 
and (ii). Moreover, 

f1 gl f1g2 - fAgl (f1 - gl)g2 - gl(f2 - g2) 
--= = 

f2 g2 f2g2 gz/2 

= (fl - gl) _ ~ (f2 - g2) 

g2 f2 

But for)' sufficiently large, (gl/g2) ~ 2C, so 

Ii! -~ I < ~ + 2CB ---+ o. 
f2 g2 - f2 f2 

Thus 

lim Ii! -S11 = 0, 
;. .... '" f2 g2 

so that the theorem follows. 

Theorem 5.5: Let 0 < IX < i. Then: 
(i) If V has attractive growth lX(d) , then G(A) r-...J 

).11 (d). 
(ii) If V has attractive growth IX (e) , then G()') r-...J 

AII(e). 
In either case, fJ = 2/(2 - IX). In case (ii), 

lim G'().) = fJR"lim _ V'(r) . 
;. .... '" ).(1-1 IX r .... O r,,-l 

Proof: (i) By the Virial and Feynman-Hellman 
theorems, 

_G_( )._) = (..:...:..'ffJ.:::...:;. ,-O.(t=--r-,-( o_V.:...-lo-'.r )_+'----'V):.....:,."P=;.) 
AG'(A) ("P;., V"P;.) 

Let us fix some R and let 

Then I ("P;., V"PA) - ("PA' V"P;')RI and 

I ("P;. , (lr(oV/or) + V)"P;.) 

- ("P;., <lr(oV/or) + V)"P;')RI 
are bounded, 

[by Theorem 4.4(ii)] and ('ffJ;., V"PA) ---+ 00. Thus, by 

Lemma 5.4: Let/;().), gi().) (i = 1,2) be positive Lemma 5.4, the lim and lim of G(A)/AG'(),) are the 
same as that of functions with g2 ---+ 00 as ). ---+ 00. Suppose that 

(i) lim S1 = C < 00, 
;. .... '" g2 

(ii) I/;().) - gl).)1 ~ B for some B and all ).. 

Then 

lim f1(A) = lim gl().); lim f1(A) = lim gl(A) . 
- f2().) - g2().) h(}..) gz(J.) 

("P;", V"P;")R 

for any fixed R. Since VCr) ---+ - 00, pick Ro, so that 
VCr) ~ -1 for Irl ~ Ro. Given E, choose R so that 
R~ Roand 

If ~~ + IX I ~ E for Irl ~ R. 
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Thus 

I<~A' G~~ + V)~A)R + (~- 1)(~A' V~A)RI 
= I<~A' very ~~ + ~)~A)RI ~ ~ I(~A' V~A)RI·· 

Thus 

1 _ <: _ ~ < (~A' (tr(oV/or) + V)~A)R 

so that 

2 2 - (~A' V~A)R 

<X E <1--+-2 2' 

1 - ~ - ~ ~ lim G(A) < lim G(A) < 1 _ ~ + ~ . 
2 2 - AG'(A) - AG'(A) - 2 2 

Since E is arbitrary, 

so (i) is proved. 
(ii) By Theorem 2.1, (e) implies (d) and (a) growth. 

Thus, by Theorems 5.3(a) and 5.5(a), if Vhas attractive 
growth <x(e), then 

G(A) ~ AP(d) + (a). 

But (d) + (a) -+ (e) so G(A) ~ AP(e). Moreover, 

lim G'(A) = lim AG'(A) lim G(A) 
A--+OO AP- l k-'oo G(A) A--+OO AP 

= (3R lim VCr) 
'" '" r--+oo r 

(by Theorem 5.3) 

= (3R",(lim V~~!) (lim v~r») 
r--+O r r--+O rV (r) 

= (3R", lim V'(r) . 
IX r--+O r",-l 

6. A CLASS OF EXAMPLES WITHOUT POWER 
GROWTH 

In this final section we construct potentials for 
which G(A) does not have power growth. On the basis 
of Sec. 5, we should try to construct them from 
potentials V which do not have power growth at 
r = O. In fact, we use central potentials which 
alternately grow as r"'l and r"'2. The key to handling 
G(A) in this case is the following lemma: 

Lemma 6.1: Let V be a central potential which 
monotonically decreases as r decreases. There is a 
positive constant C, independent of V, so that for any 

fixed R and A 

- (C2 + AV(R») ~ G(A) ~ -min [~ + ;. V(r)]. 
R r>O 4r 

Proof' The upper bound follows from Theorem 
4.5(i). To get the lower bound, pick (independently of 
V) some fixed normalized Coo function cP, with sup­
port inside the ball {r Ilrl < I} and let 

C = (cp, -dcp) > O. 

Let CPR(r) = R-!cp(r/R), so that 

flcpR(r)1 2 d
3r = 1. 

Then, by the variational principle, for any R, 

-G(A) ~ (CPR' (-d + AV)CPR). 

We have (CPR' -dcpR) = C/R2. Moreover, since 
supp (CPR) c {r Ilrl < R} and V is decreasing, 

(CPR' VcpR) ~ VCR). 

Thus -G(A) ~ (CfR2) + AV(R), which yields the 
lower bound. Q.E.D. 

We could have proven Theorem 5.3 using a 
strengthened form of Lemma 6.1. 

We construct our examples by using the following 
basic fact about potentials which grow as a "variable 
power": 

Lemma 6.2: Let Yn be a sequence of numbers with 
0< <Xl. < Yn ~ 1X2 < J. Let An be a sequence of 
numbers with 

o < ... < An < A n_l < ... < Al = 1 < Ao = 00. 

Let V(r) be given by 

VCr) = -r-Y" + Bn , 

if An+! < r < An, where the Bn's are defined by Bo = 
0, and by the requirement that V be continuous. Let 

<5n = 2/(2 - Yn). 

Then there exist constants Cl and C2 dependent only 
on <Xl and <X2 , so that 

-ABn + ClA~" < G(A) < -ABn + C2;'~" 
whenever 

-!1X11(An)"'l-2 < A < {4[(A n+l)2-Yn - Bn(A n+l)2n-1. 

Proof: We first show that under the conditions on 
A, that AV + 4r-2 takes its minimum value when 
r E (An+! , An). For suppose that r > An. Then, for 
any m, 

YmA> 1X1A > !(An)(Yl-2l > t(A n)'xm-2 > t"Ym-2 
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(we have used the facts, (Xl ~ Ym < 2 and An < 1). 
Thus 

(d/dr)( -Ar-Ym + lr-2) = (AYm - !rYm-2)r-Ym-l ~ 0, 

so that A V + 4r-2 decreases monotonically in the 
region r > An, and so the minimum is taken for 
r ~ An. 

On the other hand, the upper bound for A implies 
that 

-A 1 ----.:...:...- + ABn + 2 
(An+!)Yn 4(An+!) 

= 1 2 {I - 4A[(An+l)2-Yn - Bn(An+I)2]} ~ 0, 
4(An+!) 

so that +AV + lr-2 ~ 0 at r = An+!' But Ir2VI is 
monotone decreasing as r ~ 0, so ;. V + 1r2 > 0 if 
r < An+!' Thus, we have shown that AV + 4r2 

takes its minimum value in (An+! , An) and hence at 
the point 

At this point 

AV(Rn) = ABn - (Yn)1!(2-Yn )A"" 

and 
R;;2 = (y n)2!(2-Yn ) A"n. 

Thus, using Lemma 6.1 with R = Rn , we see that 

-ABn + ClA"n < G(A) < -ABn + C2A "" , 

where 
C2 = max {(y)1!(2-Y) _ !(y)2!(2-Y)}, 

(%1 <)'<<<2 

C
l 

= min {(y)1!(2-r) - C(y)2!(2-Y)}. Q.E.D. 
"1 <Y<"s 

To assure that Cl > 0, we restrict ourselves to 
(X2 < min (1, C-l). This restriction is not essential; 
if we were to work harder, we could probably remove 
it. However, we only want examples of nonpower 
growth-we do not wish to examine it in detail-so 
we take the lazy way out. 

Theorem 6.3: Let (Xl, (X2 be two numbers with 
o < (Xl < (X2 < min (1, C-l), and let (Ji = 2/(2 - (Xi)' 

Then there is a Kato potential V with 

1· log G(AV) < (J' 1-' log G(AV) " {J 
1m _ 1, 1m .::. 2' 
- log A log A 

In particular, G fails to have power growth at 00. 

Proof: Pick the sequence Y n as in Lemma 6.2 by 
Y2m = (X2' Y2m+1 = (Xl' We shortly pick the An's and 
Bn's recursively. Once we have done this, we define 
Vas in Lemma 6.2. For all r, V> -r-"2. Thus V is 
Kato. Let Al = I and suppose we have picked 
A2,'" ,An' and thus also Bl ,'" ,Bn. If we had 

-ABn + CIA"" < G(A) < -ABn + C2A"" 

for all A > (2(XI)-lA~C2, then it would follow that 

lim log G(A) = 15 . 
;. .... 00 log A n' 

so we pick An > (2(XI)A~1-2, so that 

and 

I
IogC-ABn + C2A"n) -15 1<1 at A = An 

1 1 n' 
OgA n 

CCI > 0 is crucial here). Now pick An+! , so that 

{4[CA n+I)2-y
" - BnCAn+I)2]}-1 > An 

and 

An+! < An. 

This is always possible since 

4[(An+1)2-Yn - Bn(An+l)2]-1 ~ 00 

as An+! ~ O. Determine Bn+! and proceed to pick 
An+2' •••• The V so constructed has the property 
that log GCA2n)Jlog A2n ~ {J2 and 

log GCA2n+!)/log A~n+! ~ {JI • 
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Use of polar coordinates is examined in performing summation over all Feynrnan histories. Several 
relationships for the Lagrangian path integral and the Hamiltonian path integral are derived in the 
central-force problem. Applications are made for a harmonic oscillator, a charged particle in a uniform 
magnetic field, a particle in an inverse-square potential, and a rigid rotator. Transformations from 
Cartesian to polar coordinates in path integrals are rather different from those in ordinary calculus and 
this complicates evaluation of path integrals in polars. However, it is observed that for systems of central 
symmetry use of polars is often advantageous over Cartesians. 

I. INTRODUCTION 

Of fundamental importance to quantum mechanics 
is the Schrodinger equation 

-iot"P(r, t) = H"P(r, t) (1) 

containing H, the Hamiltonian of the system, as a 
differential operator. This differential equation can be 
replaced by an integral equation 

~(r", 'T) = f K(r", r'; 'T)"P(r', 0) dr', (2) 

if the initial condition "P(r", 0) = "P(r', 0) is satisfied. 
The kernel of Eq. (2) corresponds to the propagator 
of the wavefunction "P(r, t) from the point r' to r" in 
time 'T. 

In Feynman's Lagrangian formulation ,I it is 
asserted that the kernel is given by a path integral 

K(r", r'; 'T) = f exp [is(r'', r')]i>r(t). (3) 

Here, integrations are over all possible paths, or 
histories, starting at r' = reO) and terminating at 
r" = r( 'T). The function S(r", r') in the integrand is the 
classical action 

SerIf, r') = fL(t, r) dt, (4) 

L(t, r) being the Lagrangian of the system in question. 
As an alternative approach to quantization, Feyn­

man's formalism has attracted much attention.2 

However, this approach is applicable only to a limited 
class of problems.3 Certainly any effort to extend it 
beyond its present limits would be worthwhile. In 
most applications available so far, calculations are 
done in Cartesian coordinates. It has been suggested 
that the integral over all paths may be performed in 
polar coordinates as well. 4 It is the purpose of the 

1 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 
2 S. G. Brush, Rev. Mod. Phys. 33, 79 (1961). 
3 See, e.g., R. P. Feynman and A. R. Hibbs, Quantum Mechanics 

and Path Integrals (McGraw-Hill Book Co., Inc., New York, 1965). 
4 S. F. Edwards and Y. V. Gulyaev, Proc. Roy. Soc. (London) 

A279, 229 (1964); S. ozaki, Lectures at Kyushu University, 1955 
(unpublished). 

present paper to demonstrate the usefulness of polar 
coordinates in evaluating the path integral for specific 
particle systems. Indeed, it is observed that most 
solvable examples in Cartesians are equally well 
treated in polars. Use of polars seems of better 
advantage for certain systems of central symmetry, 
although the applicatIOns considered are all essentially 
of the harmonic-oscillator type. 

In Sec. II, we derive several general expressions for 
the path integral in the central-force problem. The 
Hamiltonian path integral equivalent to Feynman's 
Lagrangian path integral is also discussed in polars. 
Section III is devoted to applications. The propagator 
of the harmonic oscillator is the first example, a 
limiting case of which includes the free particle. A 
slight modification of the procedure of computing the 
propagator for the harmonic oscillator in polars leads 
to the result of Sondheimer and Wilson for charged 
particles in a uniform magnetic field. 5 The third 
example is the rigid rotator, for which the Hamiltonian 
path integral is utilized. The final calculation, con­
cerned with a particle in an inverse-square potential, 
could hardly be completed in Cartesians but is found 
trivial in polars. In an appendix, derivations of the 
formulas used in the text are given. Throughout this 
paper we employ natural units, i.e., Ii = c = 1. 

II. THE CENTRAL-FORCE PROBLEM 
The Lagrangian Path Integral 

It is customary to define the summation over 
Feynman histories (3) by3 

K(r", r'; 'T) 

= lim ANJexp [i fS(r" r,_l)] drl dr2 ... drN_l, 
N-co 3=1 

(5) 

where r, = ret,), ro = r', rN = r", I, - t1- 1 = 'TIN = 
E, and AN is the normalization factor in the Nth 

5 E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London), 
A2tO, 173 (1951). For derivation by the path-integral method, see 
M. L. Glasser, Phys. Rev. 113, B831 (1964); A. Inomata, Benet 
Laboratories, U.S. Army, Technical Report WVT-6718, 1967. 
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approximation. The partial action in a small time 
interval Ilt; = t; - t;_l may be approximated by 

S(r;, r;_I) ~ eL(llr;/e, r;), (6) 

where Ilr; = r; - r;_1 and Ilt; = e. This approxima­
tion reflects the situation that the important contri­
butions to the path integral are only from the paths 
close to the classical one. 

In polar coordinates, the squared distance between 
two points r;(rj, 0;, ~j) and r j _ 1 (r;_I, 0;_1, ~j-l) is 

(Ilr ;)2 = r; + r;_1 - 2r;r H cos 0; , (7) 
where 

cos 0; = cos 0; cos 0;-1 

+ sin OJ sin 0;_1 cos (~; - ~j-l)' (8) 

For a particle of mass m in a central potential, the 
partial action is given by 

Serf' r;_I) 
= tm(r; + r~_I)/e - (m/e)r,r;_1 cos 0; - EVer,). 

(9) 
If use is made of the expansion formula 

(
7T)!00 

exp (u cos 0) = - I (21 + I)P1(cos 0)I1+!(u) 
2u I~O 

(10) 

in terms of P1(cos 0), the Legendre function, and 
I1+!(u), the modified Bessel function, the integrand of 
Eq. (5) can be written as 

exp [i~ls(r;,r'-I)] 

= f] [l~pl; + I)P1lcos 0,)R1/r;, rH )} (11) 

where 

Rl(r;, r;_I) = { 
i7Te }! 

2mr;r'_1 

x exp [~: (r; + r~_I) - ieV(r')}l+!(: r,r;_I)' 

(12) 

After interchanging multiplications and summations, 
the right-hand side of Eq. (11) becomes 

1112~.Jfi [(2/; + I)PI;(cos 0,)R1;(r;, rH )]}. 

Substitution of this result into Eq. (5) yields 

K(r", r/; 'T) = lim AN I 
N-+oo /112" 'IN 

x Ift {(21; + I)PI/cos 0;)RI;(r;, r H )} 

N-l 
X IT (r2 sin 0 dr dO d~). (13) 

Here, 

N-l N-l 
II (r2 sin 0 dr dO d~) = II r~ sin 0; dr; dO; d~;; 

;~1 

this convention will be adapted hereafter. The angu­
lar integrations in Eq. (13) can easily be carried out. 
First, expand Pl(cos 0) in terms of the spherical 
harmonics 

P1(cos 0;) = ~ ± Y?*(O" ~,)n(OH' ~H)' 
21 + 1 n~-l 

(14) 
Then use the orthogonality relation 

II Y?*(O, ~)Y~:(O, ~) sin 0 dO d~ = bwbnn, (15) 

to obtain 

II fi {(2/, + I)PI;(cos 0;)} IT (sin 0 dO d~) 
N-l I 

= (47T)NbllN II bl;+11N I Y~*<O", ~")Y?(O', ~/). 
'~1 n~-l 

(16) 

As a result, for each quantum number I, the radial 
and angular contributions to the propagator are 
separable; that is, 

K(r", 0", ~"; r', 0' , ~/;'T) 
00 I 

= L L Kl(r", r'; 'T)Y~*(O", ~")Y~(fJ', f), (17) 
I~On~-1 

with the radial propagator of the 1 wave 

I

N N-l 
= ~i~ (47T)N AN I! {RtCr;, r H )} II (r2 dr) (18) 

remaining to be evaluated, contingent on specification 
of the potential. The normalization factor, so chosen 
that the total propagator (17) may be unitary, is 

AN = (27Tie/m)-iN. (19) 

The Hamiltonian Path Integral 

It has been shown6 that in Cartesian coordinates 

ANI exp [ii L dt] IT (dr) 

= (27T)-3NIIexp [J(p.t - H)dt] IT Cdp) IT (d)r, 

(20) 

where p is the momentum conjugate to r. This implies 
that the Hamiltonian path integral in phase space is 

6 H. Davies, Proc. Cambridge Phil. Soc. 59, 147 (1963); C. 
Garrod, Rev. Mod. Phys. 38,483 (1966). 
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identical to Feynman's Lagrangian path integral as 
far as particle systems described on the Cartesian 
basis are concerned. Since we are interested in the 
approximation (6), corrections higher than the first 
order in 1£ are unimportant. If the approximation 

cos b R:! I - lb2 (21) 

is valid for angular changes b in the time interval 1£, 

then one can express (20) in polars. However, the 
approximation (21) is not relevant, as Edwards and 
Gulyaev have pointed out.4 This may be compared 
with the situation that the simple procedure of re­
placing p by -i(ojoq) is not reliable in polars. The 
irrelevance arises from the fact that even if the changes 
in Cartesian variables are of the order of 1£, the 
corresponding changes in angular variables are not. 

In order to take all contributions up to first order in 
1£ into account, we utilize the asymptotic form of 
Iv(uj€) for small 1£, 

(u) (27TU)-t [U 2 € ] Iv ~ r--.J -1£- exp ~ - t(v - t) ~ + 0(1£2) , 

(22) 
and replace Eq. (10) by 

exp [~cos bJ R:!.!.... i exp [ivb + ~ - (v
2 

- V€J. 
1£ 2u v~-oo 1£ 2u 

(23) 

Use of this approximation formula and the identity 

tm(~r)2 = p~r - i€p2jm + i€(p - m~rj€)2jm (24) 

enable us to derive 

exp [is(C j , Cj_l) - ;:(Pi -: ~ri)] 
i€ (. II • II )t = sm Vi sm Vj_l 

27Tmrirj_l 

X :1 exp ipi~ri + if'~(ji + iv~e/>i _ 4" [ 
i€(f'2 _ 1) 

1'. v 2mr ir i-I 

i€(v2 
- t) ] 

----'----'!..:'--- - i€ VCr i) . (25) 
2mr ir i-I sin 0 i sin 0 i-I 

Integrating both sides of (25) over the entire range of' 
Pi and dividing by the constant factor resulting from 
the Fresnel integral on the left-hand side yield 

exp [is(Ci' Ci- 1)] 

= (~)i(riri_l sin 0i sin OJ_l)-i 
27Tm 

X :1 fexp [iPj~r j + if'~O i + iv~e/>j _ i€(f'2 - t) 
1'. v 2mr ir i-I 

i€(v2 - !) ] 
. . - i€V(rj) dPi' (26) 

2mriri_I sm OJ sm 0i_1 

On substitution of (26), the path integral turns out to 
be of the Hamiltonian form, analogous to that in Eq. 
(20); namely, for N large, 

ANf exp [if L dtJ IT (r2 sin 0 dr dO de/» 

= (27T)-3N f exp [J (pr + poe + p~~ - H) dtJ 

N N-I 

X II(dp dpo dp~) II (dr dO de/», (27) 

where we have made formal replacements 

(28) 

p2 + (1'2 - !)Ir2 + (v2 - !)I(r2 sin2 0) 

+ 2m V(r) ->- H, (29) 
and 

There is an essential feature of the representation in 
polars due to the premise that the system has rota­
tional symmetry. Because of the periodicity associated 
with rotation, the angular momentum assumes only 
discrete values, so that the propagator may remain 
single-valued. In this regard, the replacements (28)­
(30) are literally formal. It may be worth noting that 
if the system is bounded by a finite cubic box, the 
representation in Cartesians also requires each com­
ponent of the linear momentum· to take discrete 
values. Then integrations over the momentum variables 
in Eq. (20) must be treated as summations over 
possible discrete values. The difference of sym­
metries assumed for the system is the main source of 
the difference between the features of the representa­
tions in Cartesians and in polars. 

In fact, the angular motion is solely determined by 
the rotational symmetry, and much involved calcu­
lations are unnecessary. What remains to be deter­
mined is only the radial motion. It is therefore more 
practical to develop the Hamiltonian path integral 
for the radial propagator than to handle the formal 
expression (27). In the following, we shall derive the 
radial propagator for the I-wave in the Hamiltonian 
form. With the approximation formula (22), the 
radial function (12) is given by 

RI(rj , ri-I) 

i€ [im(~r ;)2 i€l(l + 1). ] = exp - - I€V(r i ) • 
2mr ir i-I 21£ 2mr i r i-I 

(31) 
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In the same fashion as Eq. (23), we write the radial 
function as 

Rz(r" r1-1) = ~e:£i)~(r;ri-l)-lL: exp [iP;~ri 

- ~ p; - id(l + 1) _ i€V(rj)] dpj. (32) 
2m 2mrjr;_1 

Equation (31) shows that the radial propagator for the 
I wave is 

Kz(r", r';7") = (r'r,,)-llim (~)tN 
N .... oo 27f'1€ 

f { f[ 1(1 + 1) ] }N-l 
X exp i tmf2 - r2 - VCr) dt II (dr), 

(33) 

which coincides with the results of Ozaki and of 
Edwards and Gulyaev4 for VCr) = O. On the other 
hand, use of expression (32) leads to the Hamiltonian 
path integral 

Klr", r'; 'T) = (r'r,,)-llim (": )N 
N .... oo 21€ 

x ffexp [if(Pf - Hz) dtJ IT (dp) IT (dr), (34) 

where 

Hz = .l[p2 + l(l + I)J + VCr). (35) 
2m r2 

III. APPLICATIONS 

The Harmonic Oscillator 

For the harmonic oscillator having spring constant 
k = mw2 , the Lagrangian is 

(36) 

and, hence, the partial action in the time interval ~tj is 
given by 

S(rj' r j _ 1) = i(mj€)(r~ + r~_l) 
- (m/€)r jri _ 1 cos 0 j - i€mw2r;. (37) 

The corresponding radial function reads 

RzCr j , rj_l) = [ 
i7f'€ ]t 

2mrj rl _ 1 

x exp [~7 (r~ ..;. r~_I) + ti£mw2r;] 

x lz+1(: r,r;_I) , (38) 

with which the radial propagator of the I wave can be 

put in the form 

Kz(r", r'; 7") = (r'r,,)-t lim (_i,8)N exp [ii,8(r,2 + r,,2)] 
N .... oo 

x f exp [ioc(r~ + r: + ... + r~_I)] 
N-l 

x I/+t( -i,8rorl) ... I/+t( -i,8rN_lrN) II (r dr), 

where 
(39) 

,8 = ml£, oc = ,8(1 - iW2£2). (40) 

As is shown in Appendix A, the formula 

iooexp (i(l.r2)1.( -iar)Iv( -ibr) r dr 

= .i. exp [_i(a2 + b
2
)]lv(_i ab) (41) 

2(1. 4(1. 2(1. 

is valid for Re (')I) > -1 and Re «(I.) > O. Repeated 
use of the above formula yields 

f exp [i(l.(r~ + ... + r~_I)]li -i,8rorl) ... 

lv( -i,8rN_lrN) IT (r dr) = IT (..!:.-) 
;=1 2(1.j 

X exp {_i[r,/~l ,8~ + r"d
J2

]}lv( -iPNrOr1), ;=14(1.j (l.N 
(42) 

where (I., and Pi are coefficients to be determined by 
solving the following algebraic equations: 

,82 
for j ~ 1, (43) (1.1 = (I., (l.j+l = (I. --, 

4(1.j 

PI = ,8, 
i P 

for j ~ 1. (44) P1+1 = PIT 2' k=1 (l.k 

The multi-integral formula (42) enables us to complete 
the radial integrations in Eq. (39); i.e., 

Kz(r", r'; 'T) = -i(r'r,,)-t lim aN 
N .... oo 

X exp(ifNr''!. + igNr"2)lz+~(-iaNr'r"). (45) 

Our problem reduces to determining the factors 

N-l P 
aN=IT-, 

;=12(1.; 
(46) 

(47) 

(48) 

As is seen in Appendix B, the coefficient (I.; satisfying 
Eq. (43) can be given in terms of a polynomial so that 
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the factors aN, iN' and gN defined above are express­
ible in series form. However, what we are interested in 
is the limiting value of each factor for N -- 00. In 
Appendix B, it is also shown that as N tends to 
infinity 

aN -- mw csc (W7'), 

iN -- tmw cot (W7'), 

gN -- !mw cot (W7'). 

Therefore, the radial propagator becomes 

Kl(r", r'; 7') = -i(r'r")-!mw csc (W7') 

X exp [timw(r'2 + r"2) cot (W7'») 

(49) 

(50) 

(51) 

X I l+![ -imwr'r" csc (W7'»). (52) 

As a particular case, the propagator of the two­
dimensional oscillator can be obtained: 

K( "cp" , cp') mw {imW r . r . 7' - ex , , , , -2" ( ) p 2' ( ) m sm W7' sm W7' 

X [(r'2 + r,,2) cos (W7') - 2r'r" cos (cp" - cf>'»)}. 

(53) 
For the one-dimensional oscillator, 

K(r", r'; 7') 

( 
mw )! = .' exp [timw(r,2 + r,,2) cot (W7'»). 

2m sm (W7') 
(54) 

In the limit where w vanishes, the propagator (52) 
reduces to that of a free particle in three dimensions. In 
the same limit, the propagator (54) leads to the one­
dimensional free-particle case 

( 
m )! [im ] Ko(r", r';7') = 27Ti7' exp 27' (r" - r')2. (55) 

From Eqs. (33) and (52) follows the useful relation 

f exp { if [ tmf2 - v
2 
~ t - ~~2 - tmw2r2] dt }:Dr 

= -i(r'r")!mw cSC(W7') exp [timw(r,2 + r"2)cot(W7'») 

X 1.[ -imwr'r" csc (W7'»), (56) 

for Re (v) > -1. 

The Charged Particle in a Uniform Magnetic Field 

The Lagrangian for a particle of charge e moving in 
a constant uniform magnetic field B, which is applied 
along the z axis, is 

L = !m[t2 + 2w(xy - yx»), (57) 

or, in cylindrical coordinates (r, (), z), 

L = tm(f2 + r202 + 2wr20) + tmi2, (58) 

where teB/m = w is the Larmor frequency of the 
charged particle. Introduction of a new angular 
variable cp such that 

cp = () + wt (59) 
and 

02 + 2wO = ~2 _ w2 

casts the Lagrangian (29) in the form 

L = Im(f2 + r2~2 - w2r2) + tmi2. (60) 

The corresponding partial action in the time interval 
€is 

S(r;, r;_l) = tm(r~ + r~_l)/e 
- (m/e)r;r;_l cos (cp; - CP;-l) 

- temw2r~ + tm(6.z;)2/e. (61) 

It is clear that the motion of a charged particle in a 
uniform magnetic field is equivalent to a combination 
of two-dimensional harmonic oscillation and free 
motion perpendicular to the plane of oscillation. 
Correspondingly, the action in a given time interval 
can be separated into contributions from the harmonic 
oscillation and the free motion. Thus, the propagator 
for this system is a product of the propagators for a 
harmonic oscillator in the (r, cp) plane and a free 
particle in the z direction. That is, 

K( "-1." " , -I.' , ) r,,/,,z;r,,/,,z;7' 
- K( " -I.". , -I.'. )K (" , . ) - r,,/,,r,,/,,7' oZ,Z,7'. (62) 

The propagators on the right-hand side of Eq. (62) 
have been expressed in Eqs. (53) and (55). Trans­
forming the variable cp back into the real angular 
variable () by Eq. (59) leads to the desired propagator 

K(r", ()", z"; r', ()', z'; 7') 

( 
m)! W7' 

= 27Ti sin(w7') 

x exp { ~mw [(r'2 + r,,2) cos (W7') 
2 sm (W7') 

- 2r'r" cos «()" - ()' + W7'») + im (z" _ Z')2}. 
27' 

(63) 

It is well known that the simple replacement of 7' 
in the propagator by -i(kT)-l, where k is the 
Boltzman constant and T the temperature, enables 
one to write down the density matrix in statistical 
mechanics. Following this procedure, we obtain the 
density matrix for an ensemble of charged particles 
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in a uniform magnetic field as 

p(r", r'; T) = (mk'[}' . wk-
1
:-

1
_1 exp {-tmkT 

27T) sm(wk T ) 

x [2iW r'r" sin (0' - 0") +.!!!... (r,2 + r,,2) coth (.!!!...) 
kT kT kT 

- ~; coth (tT) cos (0" - 0') + (z" - Z')2J}, 
(64) 

which is of the same form as that derived by Sond­
heimer and Wilson.5 

The Rigid Rotator 

The expression (33) for the I wave is more con­
venient than (16) for evaluating the propagator of a 
rigid rotator. Let ro be the radius of the sphere on 
which the rotator is constrained. Then let t5(r} - ro) 
take the place of exp [-iE Veri)] in the radial propa­
gator (33); that is, 

) (1 
K!(ro; 7) = r02lim ~) 

N-+oo 27TlE 

X IT {exp [im (r; - r;_SI. 
;=1 2E 

- iEl(1 + l)Jt5(r i - ro)}rr(dr). (65) 
r;ri_l 

After integration, the following simple form results : 

Within the approximation adopted, the asymptotic 
expansion formula (22) enables us to rewrite the 
radial function as 

( 
i7TE )1 

Rlr;, ri-l) = 2 
mr;r;_1 

[im(r~ + r~-I)JI (mr;r;_I) X exp )., 
2E iE 

where 

(70) 

A(1) = [(I + t)2 + k2]1. (71) 

Since the radial integrations are independent of A(1), 
there results from Eq. (70) in much the same manner 
that Eq. (33) comes from Eq. (31) the radial propa­
gator for the I wave 

K!(r", r'; 7) = (r'r")l( -im/7) 

x exp [!im(r'2 + r"2)/7]1).( -imr'r" /7), (72) 

with A defined by (71). By Eq. (15), the propagator for 
a particle in the potential (68) is 

K(r" 0" ,J,.". r' 0' ,J,.'. 7) , ''f'' , ''f'' 

= (r'r,,)-t(:) exp [~: (r,2 + r"2)J 

X !~n~/).(!)(m~:r") Y?*((j", 4>")Y?(O', 4>'). (73) 

ACKNOWLEDGMENT 

K!(ro; 7) = ro exp -.- . -2 [7 1(1 + l)J 
2lm ro 

The authors wish to acknowledge helpful discussions 
(66) with Professor Jack H. Smith. 

Thus Eq. (15) gives, for this rotator, 

K(O", 4>"; 0', 4>';7) 

= rol ~ ± exp [71(1. + l)J y?*«(j", 4>")Y?(O', 4>'). 
!=On=-! 2lmro 

The Particle in an Inverse-Square Potential 

For a particle in an attractive potential 

VCr) = k2/r 2
, 

(67) 

(68) 

the derivation of the propagator is a trivial matter 
when one utilizes relation (56), setting w = 0 and 
replacing l+! by [(I + !)2 + k2]!. To see the 
situation in more detail, we start with the radial 
function (31), which now takes the form 

(69) 

APPENDIX A: DERIVATION OF FORMULA (41) 

Consider the contour integral 

fr e-~z"I.(az)IvCbz)z dz (AI) 

for Re ('I') > -1 and Re (IX) > o. As is shown in 
Fig. 1, r is a closed contour consisting of a path from 
A to B along the positive real axis, a circular arclike 
path from B to C, a path from C to D along the line 
with arg (z) = 37T/4, and a small circular arclike path 
from D to A about the origin. The integrand is 
regular in the z plane cut along the negative real axis. 
As a consequence, the integral (AI) vanishes. Since 
the contributions from the two arc1ike paths dis­
appear when the appropriate limits are invoked, we 
have 

(A2) 
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Im{z) 

c 

.:B~R.:;;.AN:.:.;C~H:..;C~U:.:.T __ ...:;:.~~~ ....... __ .l--_-' Re( z) 
A 8 

FIG. 1. Contour r taken in Eq. (AI). 

Thus, by Weber's formula7 

i oo 2 1 [a
2 + b2

] (ab) e-«z Iv(az)I.(bz)z dz = - exp Iv - , 
o 2ex 4ex 2ex 

(A3) 

Now consider a series 

Xk = I( _1);(k ~ j + 1)'Y/21+1. (B5) 
;=0 2; + 1 

By induction, it is straightforward to show that 

Xk+1 + Xk - l = XlXk • 

It is apparent that 

satisfies the relation 

(B6) 

(B7) 

(BS) 

which coincides with Eq. (43) for Aj = 2exjlfJ. From 
(B7) it immediately follows that 

(B9) 
where 'Y/ is WE. 

Let Nand 'Y/ be such that N'Y/ remains finite for all 
N. Then 

Xk - l - sin (k'Y/) (BlO) 

as N goes to infinity. To see this, compare the sum of 
the first n terms of Xk - l , 

Tn = 1k( _1)1( ~ + j )'Y/21+\ 
1=0 2; + 1 

(Bll) 

with that of the series for sin (k'Y/), 

_ n<k j (k'Y)21+l 
Sn - j~O (-1) (2j + I)! (BI2) 

we obtain our formula (41), after replacing a by ali! that is, 
and b by bli!. ITn - Snl < [n(n + 1)'Y)lk] sinh (k'Y), (B13) 

APPENDIX 8: DETERMINATION OF THE 
COEFFICIENTS a, t, AND g 

Let Aj be 2exjlfJ and define the finite product of 
Ail: 

k 

Ak = II Ail. (Bl) 
j=l 

Then the coefficients defined in Eqs. (46), (47), and 
(4S) are all expressible in terms of fJ and A k : 

aN = fJAN- l , 

from which the convergence (BlO) is obvious. 
Accordingly, we have 

aN - fJ'Y/ csc (N'Y/), (BI4) 

frv - tfJ'Y/ cot (N'Y). (BI5) 

It is also clear that (AkAk _ l ) converges uniformly to 
'Y/2 csc [(k + 1)'Y/] csc (k'Y/) in the same limit. Therefore, 
we may write 

(BI6) 

IN = t,8(l - ~lAjAj_I)' 
gN = tfJ(1 - AN/AN-I)' 

(B3) and determine the limiting value of g as 

(B4) gN - i,8'Y/ cot (N'Y). (BI7) 

, See G. N. Watson, A Treatise on the Theory of Bessel Functions 
(Cambridge University Press, Cambridge, England, 1962), 2nd ed" 
p,395, 

In Eqs. (814), (BI5), and (B17), let ,8'Y/ = mw and 
N'Y/ = WT. 
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Inverse Functions of the Products of Two Bessel Functions 

WILLIAM SOLLFREY* 
The RAND Corporation, Santa Monica, California 

(Received 27 December 1968) 

Special cases of the inverse function of the product of two spherical Bessel functions have been found 
recently by other writers as IF2 hypergeometric functions. We give the general expression as the derivative 
of a product of spherical Bessel functions. These results have also been found in the classical literature. 

A recent articlel considers the problem of finding 
the inverse function of the product of two spherical 
Bessel functions. The results are given in terms of IF2 

hypergeometric functions. Define the inverse function 
by the equation 

looNkr)jl+m(kr)gl,m(kr') dk = (J(r - r'). (1) 

Then Ref. 1 gives formulas in terms of IF2 functions 
for m = 0, 1, 2, and explicit results for go,o, gl,O' g2,O' 
gO,I' and gO,2' They conjecture that the higher-order 
inverse functions can be found by their methods. 

This problem has been treated in the classical litera­
ture. The inverse function gl,o was found, in a form 
differing by an integration by parts, by Bateman,2 and 
the higher-order forms by Fox.3 All these results are 
available in a standard text. 4 The general and quite 
simple formula is 

gl,m(X) = 8x
2 

~ x2nl(X)jl+m(X), (2) 
7T dx 

where nl(x) denotes the spherical Neumann function. 
Equation (2) reduces to all the special cases treated in 
Ref. 1 except for gO,2' for which it differs by a con-

in terms of the Mellin transform off (x) by5 

1 fC

+
ioo 

g(x) = -. x-s ds/F(1 - s), 
27T1 c-ioo 

F(s) = L:J"xs-y(X) dx. 

(3) 

(4) 

The path of integration in Eq. (3) must lie in the strip 
where both F(s) and F(1 - s) are analytic. In terms 
of cylindrical Bessel functions, using f(x) from Eq. 
(1), the result is obtained: 

This integral is a standard form6 and yields 

7T 
F(1 - s) =-

2s+2 

(5) 

f(s + 1)f(l + tm + t - ts) 
X . 

f(!s + !m + 1)r(ts + 1 + !m + t)f(!s - !m + 1) 

(6) 
Thus, gl,m is given by 

stant. Since it may be easily verified that jl and jH2 8 1 J 
g (x) = -- ds are themselves orthogonal over the range, the inverse I,m 7T 27Ti 

function is not unique to an arbitrary additive constant. 
Furthermore, if the spherical Bessel functions are 2

2S
f(s + !m + Of(s + 1 + tm + j)r(s - tm + 1) X , 

replaced by the corresponding expression in cylindrical x2S f(2s + 1)f(l + tm + t - s) 
Bessel functions, Eq. (2) is valid when I is not an (7) 
integer. . 

. where s of Eq. (6) has been replaced by 2s, and the 
To demonstrate the result of Eq. (2), the method of 

Ref. 4 will be followed. If two functions f(x) and abscissa of integration lies between -t and O. Regard-
g(x) satisfy the relation of Eq. (1), then g(x) is given less of the parity of m, the poles of the first two gamma 

* This research is supported by the United States Air Force under 
Project RAND. Views or conclusions contained in this abridgment 
of RAND Memorandum RM-5886-PR should not be interpreted as 
representing the official opinion or policy of the United States Air 
Force. 

1 H. A. Mavromatis and K. Schilcher, J. Math. Phys. 9, 1627 
(1968). 

2 H. Bateman, Proc. London Math. Soc. 4, 461 (1906). 
3 C. Fox, Proc. London Math. Soc. 29, 401 (1929). 
4 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals 

(Oxford University Press, London, England, 1948), pp. 212-216. 

functions in the numerator are canceled by the poles 
of f(2s + 1) in the denominator. The path of integra­
tion may be closed by a large semicircle in the left 
half-plane and the integral over the semicircle tends to 
zero. The third factor in the numerator has poles at 
s = -n - 1 + !m, where n takes on all positive 

• Reference 4, p. 214. 
• G. N. Watson, Treatise on the Theory of Bessel Functions (The 

Macmillan Company, New York, 1948), p. 403. 
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integer values and zero. Those poles, for which 
o ~ n ~ tm - 1, lie to the right of the integration 
path and do not contribute to the integral. Those 
poles, for which lm ~ n ~ m - 1, have vanishing 
residues. The residues of the remaining poles may be 
evaluated and the reflection formula r(z)r{l - z) = 
7T/sin TTZ may be used to simplify the expression. Thus, 

gl,m(X) 

= 4x2( _1)Hm+l i (_1)n 
m n! 

X 
r(2n + 2 - m)(!x)2n-m 

r(n + 1 - m)r(n + l- 1- m)r(n + 1 + t) 
= 4x2( _1)H1 i (-It 

o n! 
x r(2n + m + 2)(!x)2n+m 

r(n + m + 1)r(n + ! -/)r(n + 1+ m + t) 

Now we have the general formula7 

J,ix)J.(x) 

(8) 

(9) 

00 (-lynr(2n + f1- + y + 1)(txr+Il+' =I . 
on! I'(n + f1- + y + l)r(n + f1- + 1)r(n + Y + 1) 

(10) 

Setting f1- = -/ - t, Y = 1+ m + !, this series be­
comes 

J_I_!(X)JHm+!(X) 
_ 00 (-lynr(2n + m + 1)(!x)2n+m 
- I 3 • 

o n! r(n *' m + 1)r(n + t -l)r(n + 1+ m +2) 

(11) 
7 Reference 6, p. 147. 

All the gamma functions in Eqs. (9) and (11) match 
except the one in the numerator. Multiply Eq. (11) 
by x and differentiate, and the two series become 
identical. Thus, 

gl,m(X) = 4x2(-I)/+l ~ xJ_I_!(x)JI+m+i(x). (12) 

The identity NI+!(x) = (-I)/HJ_ I,(x) and the 
return from cylindrical to spherical Bessel functions 
now yield Eq. (2). The analysis may be carried 
through in the same manner if I is not an integer. Only 
one of the three sets of numerator poles will cancel, 
and two series of the type of Eq. (9) result. Both may 
be identified as Bessel function products and com­
bined to yield the form of Eq. (2) in cylindrical Bessel 
functions. 

For large x, Eq. (2) has the asymptotic form 

8x
2 I 1 ( m7T) gl,m(X) ~ -:;;- (-1) + cos 2x - 2"" ' (13) 

which includes all the cases of Ref. 1. For small x, 
the result is 

(x) -4- _ (m + 1)r(1 + t)xm
+2 

gl,m 2m-2r(1 3) . 7T +m+ 2 
(14) 

Since this vanishes for x = 0, the calculation of the 
potential from the phase shift, as discussed in Ref. 1, 
becomes much more practical. The structure of Eq. 
(2) makes it clear that the inverse function gl,m(X) 
can always be written in terms of algebraic and trigono­
metric functions when I and m are both integers. If 
m is an even positive integer, an arbitrary constant may 
be added to gl,m' 
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Group Theory and Mixed Atomic Configurations* 
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(Received 20 December 1968) 

A group-theoretical scheme is introduced to classify the states of an atomic system having two open 
shells. States labeled according to this scheme may be written 

1(104. + lB)OCQA(SAL~JA X (JQB(SBLB)JB, QMQJMJ ), 

where the quasispins QA and QB are coupled together to form a total quasispin Q. Although these states 
are, in general, mixtures of different configurations l~l~, it is found that they serve as a convenient basis 
for the calculation of matrix elements in (104. + lB)N. The matrix elements of operators between the states 
of two configurations are obtained from these matrix elements by means of a unitary transformation. 
As an example matrix elements of the Coulomb interaction within (/ + p)N are calculated. 

I. INTRODUCTION 

In 1958, Elliott! showed that it is possible to classify 
the states of mixed configurations according to the 
representations of certain continuous groups. More 
recently, Feneuille2•3 has chosen a particular group­
theoretical scheme which is useful in the general case. 
He has also expressed the Coulomb interaction within 
the configurations (d + sY' as a sum of seven oper­
ators, which have well-defined transformation prop­
erties under the operations of these groups, and he 
has tabulated the matrix elements of these basic 
operators. 

The particular groups which Feneuille chose to 
classify the states of (l A + I B)N are not compatible 
with Jj coupling between the shells, which is often the 
"best" coupling scheme. However, this is not a dis­
advantage in those cases for which it is necessary to 
form and to diagonalize the entire energy matrix. 

The purpose of this paper is to consider two other 
possible choices of continuous groups-each of which 
is compatible with Jj coupling. Operators are intro­
duced which have well-defined transformation prop­
erties with respect to these groups and in terms of 
which any scalar interaction within (lA + lIi)N may be 
expressed. It is found that all of these basic operators 
may be written as a sum of operators of the form 
{T(PKlU(P'Kl}(ROl where for instance T is an oper-

A BOO" , A 

ator acting only within the A shell having quasispin 
rank P and rank in the total spin-orbital space K. 
T A and U B are coupled together to form a scalar 
operator with a total quasi spin rank of R. 

• This work was partially supported by the United States Atomic 
Energy Commission. 

t Present address: Argonne National Laboratory, Argonne. 
Illinois. 

1 J. P. Eiliott, Proc. Roy. Soc.(London)A245, 128 (1958). 
• S. Feneui1le, J. Phys. 28,61 (\967). 
3 S. Feneui1le, J. Phys. 28, 315 (1967). 

II. CLASSIFICATION OF STATES 

The first group-theoretical scheme which we shall 
use is, in part, 

R(8/A + 8/B + 8) ::::> SU(2) X SP(4IA + 41B + 4) 

::::> SU(2) X SP(4IA + 2) X SP(4IB + 2). (1) 

Because the relevant irreducible representations of the 
rotation group R(8/A + 8/B + 8) are all of the type 
(t, t, ... ,±t), the irreducible representations of 
SU(2) X SP(4IA + 41B + 4) may be simply denoted 
by (Q, v), where Q is the total quasispin and v the total 
seniority. Similarly, the irreducible representations of 
SP(4IA + 2) and SP(4IB + 2) may be denoted by 
v A and VB , where, for instance, v A is the seniority in the 
A shell. The scheme is completed by the reductions 

SP(4IA + 2) X SP(4IB + 2) 

::::> (SU(2) x R(2IA + 1» x (SU(2) x R(2IB + 1» 
::::> (SU(2) x R(3» x (SU(2) x R(3» 

::::> R(3) x R(3) ::::> R(3). (2) 

A state of (l A + I B)N can be described in this scheme 
by writing 

I(lA + IB)NQv(VAWATA(SALA)JA 
x VBwBTB(SBLB)JB), JM), (3) 

where the usual spectroscopic notation is used. 
According to the reduction (2), the spin and orbital 
quantum numbers in the A(E) shell are coupled 
together to form JA(JB)' JA and JB are then coupled 
together to form a total J. 

Although states labeled according to this scheme 
have a definite total quasispin, in general they are 
mixtures of different configurations I~Af1J/.4 For in­
stance, the states of (f + p)5 which have a total 

• R. D. Lawson and M. H. Macfarlane. Nuc!. Phys. 66, 80 (1965). 
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quasi spin t and seniorities 2 and 1 in the 1 and p 
shells are linear combinations of states of 14p and 
11'3. We shall find, however, that the states of this 
scheme serve as a very convenient basis for the calcu­
lation of matrix elements of operators acting within 
(fA + IB)N. The matrix elements of operators between 
the states of a single configuration or joining the states 
of two different configurations may be obtained from 
these matrix elements by means of a unitary trans­
formation. 

In order to define this unitary transformation, we 
introduce a second group-theoretiCal scheme for which 
the representation labels are compatible with the 
configuration labels NA and NB • We write 

R(S/A + SIB + S) ~ R(S/A + 4) X R(SIB + 4) 

~ (SU(2) X SP(4IA + 2» 
x (SU(2) x SP(41B + 2». (4) 

Irreducible representations of 

(SU(2) x SP(4IA + 2» x (SU(2) x SP(4IB + 2» 

are denoted by (QA, v A) X (QB, VB), where, for in­
stance, (QA' v A) is the quasi spin and seniority in the 
A shell. We again complete the scheme with the re­
ductions (2) and label our states 

111Al;BQAvAwATA(SALA)JA 
x QBvBWBTB(SBLB)JB, JM). (5) 

The generators of the continuous groups which 
appear in these two schemes may be found elsewhere.6 

For eigenstates of the first scheme, 

MQ = -!(2IA + 21B + 2 - N). 

N is thus related to the azimuthal quantum number of 
total quasispin. Similarly, for eigenstates of the 
second scheme, 

M~ = -t(21A + 1 - NA), 

MZ = -t(21B + 1 - NB)· 

The phases of the eigenstates of the first scheme can 
be chosen so that the two sets of states are related by 
the equation 

I(lA + IB)NQv(vAwATA(SALA)JA 
x VBWBTB(SBLB)JB), JM) 

= L (QAM~QBMZ I QAQBQMQ) 
MQAMQB 

x 111Al~BQAv AW AT A(S ALA)J A 
x QBVBWBTB(SBLB)JB , JM). (6) 

We can thus pass from one scheme to the other by 
either coupling or uncoupling in the quasispin space 
of A and B particles. Accordingly, we shall hence-

5 B. R. Judd, "Group Theory in Atomic Spectroscopy," in Group 
Theory and Its Applications, E. M. Loeb), Ed. (Academic Press Inc., 
New York, 1968); H. T. Wadzinski, thesis, The Johns Hopkins 
University, )968. 

forth label a state within the first scheme as 

I(fA + IB)QAVAWA'TA(SALA)JA 
X QBVBWBTB(SBLB)JB , QMQJMQ), (7) 

thereby making its quasispin structure explicit. 
The idea of coupling quasi spins was first introduced 

by Kerman et al.6 in dealing with a nuclear pairing 
interaction. The simplified pairing Hamiltonian which 
they used could be written in terms of the quasi spin 
generators and so the technique was very convenient. 
However, atomic interactions or more realistic nuclear 
interactions, which involve position, momentum, and 
spin operators, do not seem to have been dealt with 
in this way. 

m. CLASSIFICATION OF TENSOR OPERATORS 

We denote by a~and b~creation operators for IA and 
IB electrons, respectively. Following Judd,7 we intro­
duce special absorption operators fia. and bp , where, 
for instance, fia. is related to the adjoint of a~ by the 
equation 

fi = (_)8+zA-m,-m'(at )t. 
m,mI -m,-m, 

The operators a~ and iia. have a spin rank of s and an 
orbital rank of IA • They transform according to the 
(10· .. 0) representation of SP(4IA + 2) and 

SP(4IA + 41B + 4) 

and according to the (0··· 0) representation of 
SP(4IB + 2). The operators b; and bp have analogous 
transformation properties. 

Having assigned ranks to the a's and b's, we can 
form other tensor operators by coupling them to­
gether in various ways. In particular, we can write 

W(Kk)(la,la) = _(at a)(Kk), 
W(Kk)(la' Ib) = _(atb)(Kk), 
W(Kk)(lb' la) = -(b t fi)(Kk), 
W(Kk)(lb' Ib) = _(btb)(Kk). 

The transformation properties of the operators 
W(Kk) (fa' la) and W(Kk) (Ib ,Ib) under the operations of 
the groups SP(4IA + 2) X SP(41B + 2) and SP(41A + 
41B + 4) are easily obtained. They have been given, 
for instance, by Judd.s Since the operators W(Kk)(fa , Ib) 
and W(Kk)(lb, la) are both bilinear in the d's and b's, 
they transform according to the (10, . ·0) x (10, .. 0) 
representation of SP(41A + 2) X SP(41B + 2) and we 
can introduce linear combinations of them which also 
correspond to definite representations of SP(41A + 
41B + 4). We write 

U(Kk)(la, Ib) == _{(atb)(Kk) + (fibt)(Kk)}, (S) 

G(Kk)(la, Ib) = _{(atb)(Kk) - (fibt)(Kk)}. (9) 
---

• A. K. Kerman, R. D. Lawson, and M. H. Macfarlane, Phys. Rev. 
124, 162 (1961). 

7 B. R. Judd, Second Quantization and Atomic Spectroscopy (The 
Johns Hopkins Press, Baltimore, Md., 1967). 

8 B. R. Judd, Physica 33, 174 (1967). 
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TABLE I. Classification of tensor operators. 

Operator 
Representation 

SP(4/ .. + 2) X SP(4IB + 2) SP(4/ .. + 41B + 4) 

WllCkl(l., I.) (K + k even) 
W'lCk'(/., I.) (K + k odd) 
WllCkl(l., I.) (K + k = 0) 
WllCkl(h, lb) (K + k even) 
WllCkl(lb, lb) (K + k odd) 
W'lCk'(lb,lb) (K + k = 0) 
U'lCkl(/., lb) 

(110 .. ·0) x (0' .. 0) (110' .. 0) 
(20' .. 0) 
(0'" 0) 

(110' .. 0) 
(20' .. 0) 
(0···0) 

(110' .. 0) 
(20' .. 0) 

(20 ... 0) x (0 ... 0) 
(0 •.. 0) x (0 ... 0) 
(0 .. ·0) x (110 ... 0) 
(0 ... 0) x (20 ... 0) 
(0 ... 0) x (0 ... 0) 

(10 ... 0) x (10 ... 0) 
G'lCkl(l.,lb) (10 ... 0) x (10, .. 0) 

The operators U(Kk) are linear combinations of the 
operators a!bp - b~aa and, hence, belong to the 
anti symmetric part of the direct product representa­
tion (10··· 0) ~ (10 ... 0) of SP(41A. + 41B + 4), 
which is (110, .. 0) + (0, . ·0). Since it is not pos­
sible to construct a scalar with respect to SP(41A. + 
41B + 4) from the U(Kk), these operators transform 
according to the (110'" 0) representation of that 
group. Similarly, the G(Kk) transform according to the 
symmetric part of the direct product representation, 
and hence belong to the (20, .. 0) representation of 
SP(41A. + 41B + 4). 

The anticommutation relations between a and bt 

lead to expressions for U(Kk) and G(Kk) in terms of the 
W(Kk) (fa, Ib) and W(Kk) (fb , la): 

U(Kk)(la, lb) 

= W(Kk)(la' lb) + ( - Y .. +ZB+K+kW(Kk)(lb, la), (10) 

G(Kk)(la, Ib) 

= W(Kk)(la' lb) - (-y .. +1B+K+kW(Kk)(lb, la). (11) 

If I A. and I B have the same parity, UC Kk ) (la' Ib) and 
G(Kk) (fa, Ib) are identical to the operators W+(Kk) (fa' 'b) 
and W-(Kk)(fa , lb) introduced by Feneuille.a The com­
plete classification of the operators W(Kk)(la, la), 
W(Kk)(lb,lb), U(Kk)(fa , lb), and G(Kk)(la, Ib) with respect 

to the gmups SP(41A. + 2) X SP(41B + 2) and 
SP(41A. + 41B + 4) is given in Table I. 

IV. DECOMPOSITION OF TWO-PARTICLE 
SCALAR OPERATORS 

Of the possible coupled products which we can 
form with pairs of tensor operators, the products 

{W(kK)(fa, 'a)W(K'k')(la, la)}(tt)O 

and 
{W(Kk)(fb, Ib)W(K'k')(lb, Ib)}(tt)O 

act entirely within a single atomic shell. Since methods 
for resolving operators of this kind into group­
theoretical parts are already available, we shall not 
consider them here. Of the other possible products, 

{U(Kk)(fa , Ib)U(K'k')(la, Ib)}(tt)O 

and 

with K + k even, odd, or zero, are typical examples. 
Each of these sets transforms according to a direct 
product representation of SP( 41 A. + 2) x SP( 41 B + 2). 
It is these representations that we wish to resolve into 
their irreducible parts. 

We make use of a theorem of Racah9 to factor the 
appropriate Clebsch-Gordan (CG) coefficients into 
two parts: 

«Vawasa1a x vbwbsblb)Kk, (vawas)a X VbWbSbib)K'k', tt, 01 VaWa(Kaka)K X VbWb(Kbkb)K,O) 

= «(sa1a)(sb1b»Kk, «s)a)(Sbib»K'k', tt, 0 I (sasa)Ka(laia)ka, K; (SbSb)Kb(lbib)kb, K; 0) 

X «vawasa1a + vawas)a I VaWaKaka)(vbwbsblb + VbWbSbib I VbWbKbkb»' (12) 

The first part, which is itself a CG coefficient for R3 X Ra, may be expanded as a sum of products of 3-j 
symbols. The resulting expression can then be simplified using the graphical techniques of Jucys et al. lo to 
obtain 

«(sa1a)(sb1b»Kk, «sa1a)(sb1b»K' k', tt, 0 I (sasa)Ka(lia)ka, K; (sbsb)Kb(lb1b)kb, K; 0) 

= (-l)"b+k.+K+t{[KHkHK'Hk'HtHKaHkaHKbHkbHK]}lt: :: ~} {;: ;: :,} {~: ~: :t'}' (13) 

Ka Kb t ka kb 

We can now form operators which are linear combinations of the {UKk'(la, Ib)U(K'k')(la, IbWtt>o and which 

• G. Racah, Phys. Rev. 76, 1352 (1949). 
10 A. P. Jucys, I. B. Levinson, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for 

Scientific Translations, Jerusalem, 1962). 
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correspond to single representations of 
SP(41.4. + 2) X SP(41B + 2). 

We write 

1]«Kaka)K, (Kbkb)K, 0) = ! «(s I.tJJ(s1 B»Kk, «s1..4.)(s1 B»K'k', tt, 0 I (SS)Ka(l A1 A)ka, K; (ss)Kb(l B1B)kb, K; 0) 
"k 

,,'k' 
t 

Using Eq. (8) for the U(Kk) and explicitly carrying 
out the recoupling, we obtain expressions for 1] in the 
following cases: 

(l) ka + ka and Kb + kb both even: 

1]«Kaka)K, (Kbkb)K, 0) 

= -(-ii {A (l(Kaka)K)B(l(Kbkb)K)}~~O) - (i)f 

x {A (l(Kaka)K)B(l(Kbkb)K)}~~O); (15) 

(2) Ka + ka and Kb + kb both odd: 

1]«Kaka)K, (Kbkb)K, 0) = {A (O(Kaka)K)B(O(Kbkb)K)}~~O); 

(16) 

(3) Ka + ka and Kb + kb of opposite parity: 

~(VW(Kaka)K, (10' .. 0)2(10 ... O)lBK, 0) 

1](2)«Kaka)K, (Kbkb)K, 0) 
= -(~i{A (l(OO)O)B(l(OO)O)}~~O) 

- (i)! {A (l(OO)O)B(l(OO)O)}~~O) 

- ([lB]/[IADfNA - ([lA]/[lBDfNB + ([lA][lBD
f
, 

1](l)«Kaka)K, (Kbkb)K, 0) 

= ([lB]/[lADfNA + ([lA]J[lB])fNB · (18) 

Here A (PKk) is identical to the X(PKk) (fa' fa) used by 
Feneuille,2 and B(PKk) is identical to X(PKk) (fb , fb)' In 
cases (1) and (2), 1] is a pure two-body operator. 
However, for Ka = ka = Kb = kb = 0, 1] has both 
one-body and two-body parts. We have denoted these 
as 1](1) and 1](2). 

Similarly, we form those linear combinations of the 
operators, {W(Kk)(la, la)U(K'k')(la, lb)}<tt)o with K + k 
even, which correspond to definite representations of 
SP(4IA + 2) X SP(41B + 2): 

= ! «110", O)wKk + (10, .. 0)2(10' .. O)lA I VWKaka) 
K+keven 

X !«(Kk)(OO»Kk, «sIA)(sIB»K'k', tt, 0 I (Ks)Ka(klA)ka, K; (Os)s(OIB)IB' K; 0) 
K'k' 
t 

x {W(Kk)(la, la)U(K'k')(la, lb) }(tt)o. (19) 

Again, using Eq. (8) and carrying out the recoupling, we obtain 

~(VW(Kaka)K, (10' .. 0)2(10' .. O)lBK, 0) = ! «110'" O)wKk + lA {I VWKaka) 
K+keven 

X [(i)f{(A(IKkla)(i(KakalK)b(!Kln~Ol - (ii{(A(IKkla)(f(KakalK)b(!K)n~O)]. (20) 

am.,. denotes the triple tensor whose rna = +i 
component is a~ and whose rnq = -t component is 
ii,.. Similarly, b(!K) is obtained from the triple tensor· 
bm•1I by coupling the spin and orbital components to 
form a tensor of rank K in the total spin-orbital space. 

For the special values Ka = t, ka = lA, ,has a one­
particle part given by 

,(1)((10'" 0)2(10'" O)lAK, (10", 0)2(10'" O)IBK, 0) 

= ! ([K][k]/[s][lADf«110'" O)wKk 
K+keven 

+ lA {I V 2WIA){a t(KlE(Kl}(O). 

For all other values of Ka and ka, , is a pure two-body 
operator. 

A similar analysis may be applied to the cases 

K + k odd and K + k = 0, and to all other possible 
coupled pairs of tensors. Hence, any scalar two-body 
operator within (lA + fB)N can be expressed as a sum 
of operators of the form {TTK)UW'lKn:O)-in 
addition to certain one-body operators which may be 
easily dealt with. 

V. MATRIX ELEMENTS 

We have seen that it is possible to label the states of 
(fA + IB)N, 

1(IA + IB)ocQA(SALA)JA X fJQB(SBLB)JB' QMQJMJ)' 

and to express operators as linear combinations of 
tensors of the type 

{TrBlUif' K"} <BT) • 
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A generalization of Eq. (7.1.5) of Edmondsll yields 

«IA + IB)r1.QA(SALA)JA X PQB(SBLB)JB , QJII {T~PK)U~'K')}(RT) 
X JI(lA + IB)r1.'QA(SALA)JA X P'Q's(S'sL's)J's, Q'J') 

= (-)2Q"'{[Q][R][Q'][J][T][J']}!{~; ~~ ;,) {;; ;~ ;,} 

Q Q' R J J' T 

X (r1.QA(SALA)JAII TTK) 11r1.'QA(SALA)JA> <PQB(SBLB)JBII U~'K') IIP'QB(SBLB)JB), (21) 

where x is equal to the number of creation and absorption operators in TrK ). 

The reduced matrix elements of a(!K) and AP«I(k)K) for VA ~ V~ are given by the equations 

(lAr1.QA(SALA)JA Ila(!K)11 IAoc'QA(SALA)JA) 

= -r-l{VA[SA][LA][JA][K][JA]}!{~~ ~ 1:}(I'1r1.QASALA {ll~rlr1.'QASALA), (22) 

JA JA K 

(IAr1.QA(SALA)J A IIA(P(I(k)K)II lAr1.'QA(SALA)JA) 

= (-1)2QA+lS-l{2[JA][KJ[JAJ}!{~: ~: ~}(l'1OCQASALA IIW(I(k)II r~lOC'QASALA)' for K + k ¥: 0, (23) 

JA JA K 

(lAr1.Q.iSALA)JA IIA(1(OOlO)111Ar1.'QA(SALA)JA) = -2{QA(QA + 1)(2QA + 1)(21A + 1)/(2IA + l)}k, (24) 

where 

r = (QA t QA) and s = (QA P QA). 
QA t - QA QA 0 - QA 

The reduced matrix elements of the UirK) may, of 
course, be obtained from these equations also. 

All of the other operators T~(K), which we encountered 
in the previous section, were obtained by coupling 
together the operators a(!K) and A (P(I(k)K). Their 
matrix elements may be evaluated by the usual tensor 
methods. 

VI. COULOMB INTERACTION IN ([ + p)N 

As an example of the theory, we consider the 
Coulomb interaction in the (f + p) shell. The 
Coulomb Hamiltonian is given by 

H = I {14Fo(j)W!OO)(f,j) • W~OO)(f,f) 
i> j 

+ 6Fo(p)W~OO)(p, p) • W~OO)(p, p) + 2(21)!Fo(f, p) 

X (W;OO)(f,f)' W~OO)(p, p) + w;OO)(p, p). w~oo'(f,f) 

+ 168Flf)wl02)(f,j). W~02)(f,j) + 12F2(p)wl02)(p, p). W~02)(p, p) 

+ 28(14iF2(f, p)(w102)(f,j)' W;02)(p, p) + w102 )(p, p). W;02)(f,j» 

+ 308Fij)W!04)(f,j). W~04)(f,f) + 1848F6(f) 

X W!06)(f,j) . W~06)(f,f) + 126G2(f, p)U;02)(f, p). U~02)(f, p) 

- 56Gi ,p)U;04)(f, p). U~04)(f, p) - 4(21)!H2(f, p) 

X (Wl02)(f,f)U~02)(f, p) + U;02)(f, p). W~02)(f,j» 

- 6(6)tK2(f, p)(W;02)(p, p)U~02)(f, p) + U;02)(f, p). W~02)(p, p» 

- 4(462)tHif, p)(W;04)(f,j)' U~04)(f, p) + U;04)(f, p). W~04)(f,f)}, 

where we have used the integrals Fk and Gk defined by 
Condon and Shortley12 and in addition set 

Fo(j,p) = F(O)(j,p), 

Hz(j, p) = RZ(fj,fp)f25, 

H4(f,p) = R4(fj,fp)/297, 

Kz(f,p) = R2(jp,pp)/25. 

(25) 

H contains terms which act entirely within one 
atomic shell and also terms of the kind 

~ w;or)(f,f)' w~or)(p, p), 
i>i 

~ u;or)(f, p) • u;or)(f, p), 
i>j 

11 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, N.J., 1960). 

12 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, New York, 1935). 
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and 
I wjor)(j,f) • ujor)(j, p). 
i> i 

Using Eqs. (13) and (14), we find that the second of 
these "interaction" terms is related to the fJ'S by the 
equation 

I ujor)(j; p). ujor)(j, p) 
>i 

= (!) I ( - )k+r[r ]([K])!{3 3 k} 
ICkK 1 1 r 

X r/ 2)«Kk)K, (Kk)K, 0). (26) 

Similarly, Eqs. (13) and (19) yield 

I w~or)(j,/) . uj°rl(j, p) 
i> i 

= -(!)[r]{~ ! ~} 
x ((110 ... O)lr + j {I VW 2p) I ([K])! 

K 

x ~(2)(VW2pK, (10' .. 0)2PK, 0), for r even. 

(27) 

The operator Ii>i Wior)(j,j) • w~or)(p, p) is itself the 
two-body part of an operator having definite trans­
formation properties with respect to SP(4IA + 2) X 

SP(4IB + 2), and it may easily be expressed as a sum 
of operators of the form {A(PK)B(PK)}<RO). 

To illustrate our method in detail, we calculate the 
matrix elements ofIi>i U~02)(j,p). U~02)(/, p) between 
the states 114p%3Hs X pp~, 11-) and 1/2p3%3Hs x 
pp~, 11-) for which QA = % and QB = 1. According 
to our method, we will relate these states to states of 
definite total quasispin, carry out the calculation of 
matrix elements within the total quasispin scheme, 
and, finally, obtain the desired matrix elements by 
means of a unitary transformation. 

The transformation equations relating the two sets 

of states may be written 

1(1 + P)%3H6 x I2P~, % - %-v-) 
= (j- - ! 1 - 11 % 1 % - %) 1/4p%3Hs x pP!, -v-) 

+ (t - t 1 0 1% 1 t - t) Irp3%3H6 x 12P!, -V'-), 

(28) 
l(j + P)t3H6 x J2P!, t - t _11_) 

= (t - ! 1 - 11 % 1 t - %) If4pt3Ha x 12P!, -v-) 

+ G - t 1 0 I tIt - t) Irp3t 3Hs x 12P!, -l.{-). 
(29) 

We shall, henceforward, denote the original states 
simply as 11) and 12), respectively, and make the 
quasispin structure of the new basis states explicit by 
denoting them asl (t 1)t) and I (t I)t). Then, Eqs. (28) 
and (29) become simply 

where 

2 

I(t l)Q) = I U QP IP), (30) 
P=1 

(
(-f)! _(t)1) 

U = (t)! (of)! . 

The matrix elements of 2i>i U;02)(j, p) • U;02)(j, p) 
in the total quasi spin scheme are obtained from the 
corresponding matrix elements of 

{A (P(KIc)K)B(P(ICIc)K)}~~W) 

by using Eqs. (15), (16), (18), and (26). This calculation 
is greatly simplified if the matrix elements of 

{A (P(ICIc)K)B(P(Kk)K)} (Ro) 

for K + k :;f= 0 are immediately factored In the 
following way: 

«% l)QI {A(P(Kk)K)B(P(Kk)K)H~O) 1(% l)Q') 

= C(K, k, K)DQQ,(P, R), for K + k :;f= O. 

The Wigner-Eckart theorem together with Eqs. (21) 
and (23) yield the following expressions for these 
quantities: 

C(K, k, K) = (_lY+k+K[K][k]([K])!{1 1 K}{5 5 k}{J.f- 6 %} {~ ~ :} {~ ; :} 
ttt333Kt6 ' 

6 6 K t % K 

The matrix elements of the fJ's may then be written 

«% l)QI fJ«Kk)K, (Kk)K, 0) 1(% l)Q') 

= C(K, k, K)EQQ,(P), for K + k :;f= 0, (31) 

where P is the quasispin label of fJ in thejand p shells. 

~J {~- ~ ~}/(! P !~) (1 
2 Q Q' R 2 0 2 1 

P 1) 
o -1 

For K + k even (P = 1), the two-by-two E matrix is 
obtained from [D(I, 2)] and [D(l, 0)] by carrying out 
the addition (15): 

[E(1)] = -(t)![D(l, 2)] - (t)'[D(1,O)]. 

For K + k odd (P = 0), 

[E(O)] = [D(O, 0)]. 
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Similarly, for the case K + k = 0, the matrix 
elements of 1J can be obtained by using Eqs. (21), (24), 
and (18). The contribution of the single-particle 
operator 

-([IB]/[IAD!NA - ([lA]/[lBD!NB + ([lA][lB])! 

may be easily evaluated using the transformation Eq. 
(30). We write 

«! 1)QI1J(2l«Kk)K, (Kk)K, 0) IG l)Q') 

= AQQ" for'K = k = O. (32) 

According to Eqs. (26), (31), and (32), the matrix 
elements of 2i>i U~02)(/,p)· U~02)(j,p) in the total 
quasi spin scheme, which we shall denote M QQ" are 
given by the equation 

«! 1)Q12 Uj02'(f, p) • U~02)(f, p) 1(% l)Q') 
i>j 

= /4(21)! AQQ, + (t) 2 (- )k([K])! 
KkK 

x {3 3 k}C(K' k, K)EQQ,(P). 
1 1 r 

In this way [M] is found to be 

( 
-(Ws) -(N4)(1O)!) 

[M] = -(N4)(1O)! _(!g) . 

The matrix elements of 2i>i Ul02)(I,p)' U}02l(j,p) 
between the states lj4p%3Ha x PPi , -1.1-) (11» and 
1/2p:J.g 3 Ha x PPi,-V-) (12» are obtained from [M) 
by means of the unitary transformation 

+ _ ( -1
9
4 n D(10)!) 

u [M]U - OD(10)! _~~ . 

Each of these matrix elements was also calculated by 
the conventional method that seemed most convenient. 
The (1, 1) element was calculated by fractional 
parentage, the (2, 2) element was calculated by Slater 
determinants, and the off-diagonal elements were 
calculated by a method recently developed by Shore.13 

Complete agreement was obtained. 
The calculation of these four matrix elements was 

easier and more straightforward by our method than 
by the conventional methods. This was true even 
though the states which we chose correspond to a 
"stretch" case for which the conventional methods 
could be simplified considerably. 

18 B. W. Shore, Phys. Rev. 139, AI042 (1965). 

Our method has the useful feature that it provides 
general equations which may be applied directly. The 
equations do not contain sums over dummy indices 
or sums over magnetic quantum numbers which re­
quire further simplification. 

VI. CONCLUSION 

We have found that by coupling together the 
quasi spins of A and B particles, we may produce states 
having a total quasi spin label which serve as a con­
venient basis for the calculation of matrix elements 
within (lA + IBY". Since these states have a total 
quasispin value, the Wigner-Eckart theorem may be 
used to factor the N dependence from the matrix 
elements, and the resulting reduced matrix elements, 
which are independent of N, can be factored into A 
and B parts. Thus the matrix elements of an operator 
acting within the (l A + I B) shell can be calculated 
from the matrix elements of other operators acting 
solely within A or within B. This factorization of the 
matrix elements of (lA + IB) should be very convenient 
for the study of complex configurations such as 
(j + p)N. It is also hoped that it will provide some 
insight into these more complicated problems. 

This method of evaluating matrix elements can 
obviously be extended to deal with matrix elements 
between configurations having several open shells. 
The basic operators and states could then be formed 
by coupling three or more quasispins. 

Throughout the above analysis there has been an 
equivalence between quasispin labels and representa­
tion labels of the symplectic group. For instance, in 
the case (I + p)N, the first term on the rhs ofEq. (15) 
transforms according to the (11110 ... 0) representation 
of SP20 and the second term transforms according to 
the (220'" 0) representation of SP20 . Thus the 
quasispin labels 2 and 0 are equivalent to the sym­
plectic labels (I 1110 ... 0) and (220, .. 0). The idea 
of coupling quasispins, however, is much more lucid 
than the idea of combining representations of 
SP(4IA + 2) X SP(4IB + 2) to form a representation 
of SP(4IA + 4lB + 4). 
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It is shown that a completeness relation for the eigensolutions of a non-Hermitian operator H can be 
derived even if the resolvent operator R(H) of H is allowed to have poles of higher order than just simple 
poles, as required by Fonda, Ghirardi, Weber, and Rimini. A class of operators satisfying the require­
ments of this note is cited. 

In describing a physical system by a Hamiltonian 
H, it is important to know whether or not the eigen­
solutions of the Hamiltonian H are complete in the 
carrier Hilbert space. Recently Fonda et aU have 
shown that the eigensolutions of a non-Hermitian 
operator H are complete in a Hilbert space if the 
resolvent operator R(z) [== (zI - H)-I] of H has only 
simple poles at points of the point spectrum C1 p (H) 
(among other assumptions). The purpose of this note 
is to point out that the above assumption can be 
relaxed as follows: The resolvent operator R(z) of 
the non-Hermitian operator H has a Laurent expan­
sion of finite order about any points Ea , Eb , Ee , ••• 

of the point spectrum C1p (H). The idea that such a 
relaxation is possible is principally motivated by the 
mathematical properties of compact (completely 
continuous) operators2 and a recent study on the 
spectral properties of a class of non-Hermitian 
operators by the author.3 Compact operators possess 
spectral properties that mimic those of matrices, 
and the class of non-Hermitian operators of Ref. 3 
possess point spectra with properties like those of 
compact operators and a continuous spectrum that 
is real. These properties coincide almost completely 
with the assumptions of Fonda et aU in their proof 
of the completeness of the eigensolutions of H. 

Since our intention is to relax only one of the 
conditions of Ref. 1, we state a modified version of 
their assumptions as follows: 

(1) The resolvent operator R(z) = (zI - H)-l is 
defined on an everywhere-dense set D in a Hilbert 
space, such that for all rp, 1p in D the function 
(rp, R(z)1p) is analytic in z except for isolated poles of 
finite order and for cuts. The function (c/>, R(z)1p) has 

* Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

1 L. Fonda, G. C. Ghirardi, T. Weber, and A. Rimini, J. Math. 
Phys. 7, 1643 (1966). 

• A. C. Zaamen, Linear Analysis (Interscience Publishers, Inc., 
New York, 1953). 

8 J. Wong, J. Math. Phys. 8, 2039 (1967). 

a Laurent expansion about any of its isolated poles: 

00 

(rp, R(z)1p) = ! (z - Ebt( rp, Bn 1p), 
n=-v(b) 

pCb) = (order of the pole Eb) < 00, (1) 

(rp, Bn1p) = ~ r (z - Eb)-n-l(rp, R(z)1p) dz, 
2m Jrb 

where the contour rb encloses only the singularity 
Eb • Since rp and 1p are arbitrary functions belonging 
to a dense set D, it is meaningful to speak of the 
Bn's as operators with domain D. We assume that 
the range of any of the operators Bn is in D, so that 
the operator product BmBn makes sense. The function 
(rp, R(z)1p) has a branch cut lying along the real axis 
Eo ::;;; Re (z) < 00. The "projection" operators p's 
are defined by the following formulas: 

2~ r (rp, R(z)1p) dz = (rp, B_l 1p) = (rp, Pb1p) 
1T1 Jrb 

and 

(-) ~ {(rp, R(E + iO)1p) - (rp, R(E - iO)1p)} 
2m 

= (rp, P(E)1p), Eo::;;; E < 00. (2) 

The operator peE) has the usual meaning of a 
projection operator associated with the continuous 
spectrum.4 

Remarks: In case that (a) the operator H is closed, 
(b) (zI - H) has a range dense in the Hilbert space, 
and (c) the inverse operator R(z) = (zI - H)-l is 
continuous, then R(z) is guaranteed to be analytic in 
the resolvent set p(H).5 

(2) The function (c/>, R(z)1p) has only a finite 
number of poles and none of the poles faIl on the 
branch cut Eo::;;; Re (z) < 00. 

4 See, e.g., N. I. Akhiezer and I. M. Glazman, Theory of Linear 
Operators in Hilbert Space (Frederick Ungar Pub!. Co., New York, 
1963), Vo!. II. 

• See, e.g., A. E. Taylor, Introduction to Functional Analysis 
(John Wiley & Sons, Inc., New York, 1964), Chap. 5. 
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(3) Asymptotically, the function (rp, R(z)1p) -+­

z-1(rp,I1p) as Izl -+- 00 for all z differing from the cut 
Eo ::;; Re (z) < 00. 

The modification occurs in assumption (1) in 
allowing a Laurent expansion of finite order about 
any pole Eb , rather than just a simple pole. 

The product BmBn of two operator coefficients 
Bm and Bn can be computed with the aid of the 
operator identity 

(z' - z)R(z)R(z') = R(z) - R(z'), z and z' E p(H), 

(3) 

BmBn = ~ r dz r dz'(z - Ebrm- 1 
(2m) Jrb Jrb' 
X (z' - Eb)-n-1R(z)R(z') 

= ~ r dz r dz'(z - Eb)-m-1 
(2m) Jrb Jrb' 
X (z' - Eb)-n-\z' - z)-1[R(z) - R(z')] 

= [1 - Oem) - O(n)]Bm+n+1, m, n ~ v(b), 

where 
Oem) = 1, if m ~ 0, 

= 0, if m < 0, (4) 

and for ease of computation, one contour (say r~) 
should be placed completely inside the other contour 
(rb)' By letting m and n assume various admissible 
integral values, relations between various Bm can be 
deduced: 

B_1 = (B_1)2, or Pb = P;, 

B = (B )m-1 == N m- 1 
-m -2 b , 

(Nby<b) = 0, 

Bn = (-rB~+1, 
and 

a projection operator, 

m = 2, 3, ... , v(b), 

a nilpotent operator, 

n = 0, 1, ... , C?, (5) 

B_2B_1 = B_1B_2 = PbNb = Nb, 

BoB_1 = B_1BO = PbBO = 0, (6) 

BoB_2 = B_2BO = NbBO = O. 

By a method of computation similar to Eq. (4), the 
product of two operator coefficients Am and ,Bn 
associated with two distinct isolated poles Ea and Eb 
vanishes for m and n less than zero: 

AmBn = BnAm = ~ r dz r dz'(z - Ea)-m-1 
(2m) Jr. Jrb' 

X (z' - Eb)-n-1R(z)R(z') 

= ~ r dz r dz'(z - Ea)-m-1 
(2m) Jr. Jrb' 
X (z' - Eb)-n-1(z' - z)-1[R(z) - R(z')] 

= 0, m, n < o. 

In particular, we have the following important 
identities: 

A_1B_1 = PaPb = PbPa = 0, 
A_1B_2 = PaNb = NbPa = 0, (7) 

A_2B_1 = NaPb = PbNa = O. 

It should be noticed that the properties of Eq. (7) are 
those of projection operators. With the definition of 
Eq. (2) and with the operator identity Eq. (3), the 
operator product PbP(E) and NbP(E) can be shown to 
satisfy the following projection operator identities: 

PbP(E) = P(E)Pb = 0, 

NbP(E) = P(E)Nb = 0, Eo::;; E < 00. (8) 

The completeness relation of the projection opera­
tors Pa, Pb, Pc, ... , and P(E) can be derived with the 
assumptions (1), (2), and (3) by equating two analyti­
cally identical expressions (as was done in Ref. 1): 

Q = ~ r dz( rp, R(z)1p) = I (rp, Pb 1p), 
2w/JG b 

Q = ~ r dz(rp, R(z)1p) = (rp, 1p) - (,LJdE(rp, P(E)1p), 
2m Jr. JEo 

(9) 

where r 1 is a counterclockwise-oriented contour 
encircling only the poles of (rp, R(z)1p) and r 2 is the 
analytic deformation of r 1 = (1) a counterclockwise: 
oriented circle at Izl '" 00 and (2) a contour wrapping 
around the cut Eo::;; Re (z) < 00. Equating the two 
expressions of Eq. (9) and dropping the arbitrary 
functions of rp and 1p of an everywhere-dense set D, 
we arrive at the completeness relations 

IPb+roodEP(E)=I. (10) 
b JEo 

The remainder of the discussion on the completeness 
relation should be the same as that of Ref. 1 except 
for their Eq. (13) because of our Eq. (6). We have 
instead 

H = I (EbPb + Nb) + rooEP(E) dE. (11) 
b JEo 

Hence, 

PbH = HPb = EbPb + Nb. (12) 

But this should present no difficulty as far as the com­
pleteness relation is concerned. 

Now we cite a class of physically reasonable 
operators that are special examples for this note. 
The class of operators discussed in Ref. 3 possess 
compact operator properties for their point spectrum 
and selfadjoint operator properties for their contin­
uous spectrum. They can be easily shown to satisfy 
all the assumptions (1), (2), and (3). A completeness 
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relation for them can be written down readily with the 
biorthonormal sets of eigenfunctions {4>b} and {"Pb} , 
where 

H"Pb = Eb"P, 

Ht 4>b = ENb' (4)a' "Pb) = t5ab . (13) 

Furthermore, the eigenmultiplicities y(b) of the 
eigenvalues Eb and E: must be the same because, in the 
proof of Theorem A of Ref. 3, the eigenspace of Eb 
is the null space of T(z) - I, where T(z) is a compact 
operator. With the help of the outgoing-wave boundary 

JOURNAL OF MATHEMATICAL PHYSICS 

condition for the unrenormalizable eigenvectors 
4>+, "P+ (see Ref. 1), we write a completeness relation 

! I "Pb.m(b»(4)b.m(b)1 + ("'dE l"PilJ) (4)ilJl = I, 
b JEo 

m(b)=1,2 ... · .v(b) (14) 

where {"Pb.m(b)} and {4>b'.m'(b)} span the associated 
eigenspaces of Eb and E:, respectively, and can be 
chosen such that 

(4)b',m'(b) ' "Pb,m(b») = t5b'b t5 m'(b)m(b)' 

VOLUME 10, NUMBER 8 AUGUST 1969 

Partial Sums of Vacuum Polarization Graphs * 
JAMES P. FINK 

Department of Mathematics and Department of Physics 
University of Pittsburgh, Pittsburgh, Pennsylvania 

(Received 17 January 1969) 

This paper contains results on the logarithmic asymptotic behavior of certain partial sums of photon 
self-energy graphs. 

I. INTRODUCTION 

The question of obtaining logarithmic asymptotic 
estimates for renormalized Feynman integrals, in 
particular, those arising from the vacuum polarization 
graphs of quantum electrodynamics, has been con­
sidered in Refs. 1 and 2. In Ref. 1, techniques were 
developed enabling one to obtain rigorous logarithmic 
estimates for a single Feynman graph. The problem of 
summing different graphs was not considered there. 
In Ref. 2, renormalization-group arguments were 
used to obtain logarithmic estimates on the sum of all 
the photon self-energy graphs of a given order. 

In this paper, we use the result of Jost and 
Luttinger3,4 and the techniques of Ref. 1 to obtain 
logarithmic estimates on certain partial sums of 
photon self-energy graphs. All of the notation and 
terminology used in the following is described in 
detail in Ref. 1. 

II. SUMMING GRAPHS 

The analysis of sums of graphs using the results of 
Ref. 1 seems, in general, to be a difficult problem. 

• Supported in part by the U.S. Atomic Energy Commission 
under Contract No. AT{30-1)-3829. 

1 J. Fink, J. Math. Phys. 9, 1389 (1968). 
2 J. Fink, Phys. Rev. 170, 1580 (1968). 
S R. Jost and J. M. Luttinger, Helv. Phys. Acta 23, 201 (1950). 
4 J. Bjorken and S. Drell, Relativistic Quantum Fields (McGraw­

Hill Book Company, New York, 1965). 

FIG. I. Fourth-order photon self-energy graphs. 

For a special collection of graphs, however, we can 
determine upper bounds on the logarithmic asymp­
totic coefficients of their sums. 

We begin by considering the three fourth-order 
photon self-energy graphs shown in Fig. 1. tach 
graph has logarithmic asymptotic coefficient 2,1 but 
in summing these graphs the log2 (q2J),2) terms cancel 
so that the sum has logarithmic asymptotic coefficient 
1.3.4 

Consider now any three nth-order photon self­
energy graphs which can be.obtained from the fourth­
order graphs in Fig. 1 by IDserting the same m 
irreducible insertions into each one. For example, 
the eighth-order graphs in Fig. 2 are obtained from 
those in Fig. 1 by inserting first the irreducible inser­
tion shown in Fig. 3(a) followed by the irreducible 
insertion shown in Fig. 3(b). 

FIG. 2. Eighth-order photon self-energy graphs. 
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relation for them can be written down readily with the 
biorthonormal sets of eigenfunctions {4>b} and {"Pb} , 
where 

H"Pb = Eb"P, 

Ht 4>b = ENb' (4)a' "Pb) = t5ab . (13) 

Furthermore, the eigenmultiplicities y(b) of the 
eigenvalues Eb and E: must be the same because, in the 
proof of Theorem A of Ref. 3, the eigenspace of Eb 
is the null space of T(z) - I, where T(z) is a compact 
operator. With the help of the outgoing-wave boundary 
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condition for the unrenormalizable eigenvectors 
4>+, "P+ (see Ref. 1), we write a completeness relation 

! I "Pb.m(b»(4)b.m(b)1 + ("'dE l"PilJ) (4)ilJl = I, 
b JEo 

m(b)=1,2 ... · .v(b) (14) 

where {"Pb.m(b)} and {4>b'.m'(b)} span the associated 
eigenspaces of Eb and E:, respectively, and can be 
chosen such that 

(4)b',m'(b) ' "Pb,m(b») = t5b'b t5 m'(b)m(b)' 
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This paper contains results on the logarithmic asymptotic behavior of certain partial sums of photon 
self-energy graphs. 

I. INTRODUCTION 

The question of obtaining logarithmic asymptotic 
estimates for renormalized Feynman integrals, in 
particular, those arising from the vacuum polarization 
graphs of quantum electrodynamics, has been con­
sidered in Refs. 1 and 2. In Ref. 1, techniques were 
developed enabling one to obtain rigorous logarithmic 
estimates for a single Feynman graph. The problem of 
summing different graphs was not considered there. 
In Ref. 2, renormalization-group arguments were 
used to obtain logarithmic estimates on the sum of all 
the photon self-energy graphs of a given order. 

In this paper, we use the result of Jost and 
Luttinger3,4 and the techniques of Ref. 1 to obtain 
logarithmic estimates on certain partial sums of 
photon self-energy graphs. All of the notation and 
terminology used in the following is described in 
detail in Ref. 1. 

II. SUMMING GRAPHS 

The analysis of sums of graphs using the results of 
Ref. 1 seems, in general, to be a difficult problem. 
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FIG. I. Fourth-order photon self-energy graphs. 

For a special collection of graphs, however, we can 
determine upper bounds on the logarithmic asymp­
totic coefficients of their sums. 

We begin by considering the three fourth-order 
photon self-energy graphs shown in Fig. 1. tach 
graph has logarithmic asymptotic coefficient 2,1 but 
in summing these graphs the log2 (q2J),2) terms cancel 
so that the sum has logarithmic asymptotic coefficient 
1.3.4 

Consider now any three nth-order photon self­
energy graphs which can be.obtained from the fourth­
order graphs in Fig. 1 by IDserting the same m 
irreducible insertions into each one. For example, 
the eighth-order graphs in Fig. 2 are obtained from 
those in Fig. 1 by inserting first the irreducible inser­
tion shown in Fig. 3(a) followed by the irreducible 
insertion shown in Fig. 3(b). 

FIG. 2. Eighth-order photon self-energy graphs. 
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(0) (b) 

FIG. 3. Irreducible insertions added to the graphs of Fig. I 
to obtain the graphs of Fig 2. 

Each of the three nth-order graphs so obtained has 
logarithmic asymptotic coefficient m + 2.1 Hence, 
the logarithmic asymptotic coefficient of their sum is 
less than or equal to m + 2. Using the known 
cancellation in the sum of the fourth-order graphs in 
Fig. 1, we can improve this ppper bound. 

Let (J(n), n ~ 4, be the logarithmic asymptotic 
coefficient of the sum of three nth-order photon self­
energy graphs obtained as described above. We know 
that 

(J(4) = 1, 

(J(n):s:; m + 2. 

Furthermore, since the dimension of the Feynman 
integral corresponding to an nth-order photon self­
energy graph is 2n, we obtain1 from that 

2n 

(J(n) = ~ Pi - 2n, 
i=1 

where the dimension numbers Pi are defined explicitly 
in Ref. 1. Thus, 

2n 

(J(n) = ~ Pi - 2n 
i=1 
2·4 2n 

= ~ Pi - 2 . 4 + ~ Pi - (2n - 2·4) 
i=1 i=2'4+1 

2n 

= (J(4) + ~ Pi - 2(n - 4) 
i=2'4+1 

:s:; 1 + m. 

Here we have used the fact that (J(4) = 1. The estimate 
on the remaining terms is derived in Ref. 1. 

We have, therefore, proved the following theorem: 

Theorem 1: Let G be the sum of any three nth-order 
(n ~ 4) photon self-energy graphs obtainable from 
the three fourth-order photon self-energy graphs by 
inserting the same m irreducible insertions into each. 
Then G has logarithmic asymptotic coefficient 
(J(G) :s:; m + 1. 

Two corollaries follow immediately. 

Corollary 1: Let G be a sum of nth-order (n ~ 4) 
photon self-energy graphs consisting of sums Gi , 

i = 1, ... , k, of th, type described in Theorem 1. 
Let mi , i = 1, ... , k, be the number of irreducible 
insertions added to the fourth-order graphs in order 
to obtain Gi • Then G has logarithmic asymptotic 
coefficient 

(J(G):S:; max {mJ + 1. 
i=I,'" ,k 

The second corollary follows by observing that the 
maximum number of irreducible insertions that can 
be added to a fourth-order photon self-energy graph 
in order to obtain an nth-order graph is (n - 4)/2. 

Corollary 2: Let G be the sum of three nth-order 
(n ~ 4) photon self-energy graphs as described in 
Theorem 1. Then G always has logarithmic asymptotic 
coefficient (J(G) :s:; tn - l. 

III. CONCLUDING REMARKS 

Corollary 2 gives one hope that perhaps these 
techniques can be used to show that the highest 
power of the logarithm cancels when all the graphs 
of a given order are summed together. This result was 
derived in Ref. 2 using renormalization-group argu­
ments, but it does not follow from the above results 
as they stand. 
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We have obtained an appreciably simplified derivation of the expansion in inverse range of the 
thermodynamic functions of a system of particles with sh~rt-range repulsion and weak l?ng~range lI:ttrac­
tive interaction. We assume all properties of the system with only the short-range repulslV~ IllteractlO~ to 
be known and consider this system as a reference system for the purpose of a per.turbatlOn expa?-slOn. 
We derive corrections to the van der Waals equation and to the Maxwell constructIOn. The terms III our 
expansion are integrals over products of the mOdifie.d Urse~1 function~ of. the reference ~ystem only a~d 
factors which are the transformed long-range potential. A Simple rule IS given to determille the order, III 
the inverse range of the attractive potential, of each term in the expansion .. The simplificati~n of the 
derivation is achieved by avoiding the expansion and subsequent resummatIon of any functIOns per­
taining to the reference system. 

SECTION 1 

Because of the tremendous mathematical difficulties 
of calculating the thermodynamic functions of systems 
of interacting particles, even in the classical limit and 
with pair interactions only, it is natural to look for 
perturbation methods. In such a method, one has to 
start from a reference system whose properties are 
assumed to be known. Expansions in number density 
or fugacity use as reference system the ideal gas, and 
their limitations are well known. 

For the case of the Ising model of the ferromagnet, 
it was suggested first by Brout l that one should con­
sider as perturbation a long-range, weak interaction 
with the reciprocal effective number of neighbors as 
expansion parameter, because it was surmised that 
the Weiss theory of ferromagnetism would become 
exact in the limit of infinitely weak, infinitely long­
range integrable interaction potential. 

For the fluid, the corresponding procedure of 
using as reference system a system of particles with 
strong short-range repulsive interaction and as a 
perturbation a weak long-range attractive interaction 
has been used by many authors. 2 The attractive part 
of the potential energy of interaction is usually taken 
to be of the form _yv<I>(y If I - f 2J), where v is the 
dimensionality of the space and the parameter y-l is a 
measure of the range of the attractive force. It is now 
established that for a wide class of repulsive potentials 
and for a wide class of functions <1>, in the limit 

• Program at Northwestern University.supported by Office of 
Naval Research and National Science Foundation. 

1 R. Brout, Phys. Rev. 118, 1009 (1960). 
2 See J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6,1282 

(1965), and references given there. 

y --* 0, the equation of state is determined by applying 
the Maxwell construction to the van der Waals type 
equation 

pep) = h(P) - tvop2, 

where P is the number density, pep) and h(P) the 
pressures of the system and the reference system, 
respectively, and Vo = f <I>(x) dVX.3 Corrections to the 
van der Waals equation, in the form of expansions in 
powers of y, explicit to order y2V, have been obtained 
by several authors: yV by Hemmer, 4 y2V-I by Zit­
tartz,5 and y2V by Lebowitz, Stell, and Baer.2 The last 
authors also develop a method of obtaining the 
expansion to all orders of y. 

We are aware of the objections to the expansion in 
powers of y. It fails in an obvious manner at the 
critical point of the van der Waals theory, and it 
predicts a phase transition of the one-dimensional 
model for y ~ ° which, from the exact calculation of 
Kac, Uhlenbeck, and Hemmer,3 is known not to 
occur. It is not known whether partial resummation of 
the expansion can remove these shortcomings. The 
expansion may, however, be valid, at least as an 
asymptotic series, for the two- and three-dimensional 
fluid in single-phase regions including the first-order 
phase transition at any fixed temperature above or 
below the critical temperature for sufficiently small 
y. For this reason, and because of the desirability of 

3 For the one-dimensional system of particles with hard-rod 
interaction and (I)(x) = e-Izl, this was established by M. Kac, G. 
E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4,216 (1963). The 
general result was obtained heuristically by N. G. van Kampen, 
Phys. Rev. 135, 362 (1964), and made rigorous by J. L. Lebowitz and 
O. Penrose, J. Math. Phys. 7, 98 (1966). 

4 P. C. Hemmer, J. Math. Phys. 5, 75 (1964). 
• J. Zittartz, Z. Physik 180, 219 (1964). 
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having the expansion in a transparent form, facilitating 
attempts at resummation, we have reconsidered the 
expansion and a possible modification. 

In the present paper, we derive corrections to the 
van der Waals equation and to the Maxwell con­
struction. Our derivation is made comparatively simple 
and straightforward by avoiding any expansion and 
subsequent resummation of functions pertaining to 
the reference system. The terms in our expansion are 
given as integrals over products of the modified 
Ursell functions6 of the reference system only and 
factors which are the transformed potential of the 
Debye type, but of long range. This potential is 
obtainable by Fourier inversion from the Fourier 
transforms of the two-particle correlation function of 
the reference system and the original attractive 
potential. We give a simple rule for determining the 
order in y of any term in the expansion. 

We use the method of random functions, originated 
by Kac.7 In Sec. 2, we introduce our notation and 
state restrictions on the potential in order to use the 
method of random functions in its most convenient 
form. In Sec. 3, we write the grand partition function 
of the system as an average over random functions 
(function-space integral) and motivate the expansion 
of the integrand. In Sec. 4, we carry out the expansion 
and the average over the random functions. The terms 
of this expansion are conveniently written as diagrams. 
While our diagrams consist of circles (hyper vertices) 
and lines, like those of Lebowitz, Stell, and Baer, 2 the 
interpretation of these diagrams is different. Our 
circles represent the modified UrseH functions of the 
reference system and are independent of the long­
range part of the potential. In Sec. 5, we show how to 
determine the order in y of any term in the expansion. 
In Sec. 6, we obtain the correction terms to pressure 
and number density and to the Maxwell construction 
in the grand canonical form and give the formal 
perturbation expansion of the Helmholtz free energy 
as function of the density. Section 7 contains a sum­
mary and discussion of our results. 

SECTION 2 

We consider a system of particles in a v-dimensional 
cube of volume V. The interaction potential is taken 
to consist of a hard-cores interaction and an attractive 
pair potential -vCr) S O. We restrict our considera­
tions to functions v(r) which can be represented as the 
covariance of real-valued Gaussian random functions 

6 J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 1495 (1963). 
1 M. Kac, Phys. Fluids 2, 8 (1959). 
8 By "hard core" we mean any repulsive potential which satisfies 

the conditions of Lebowitz and Penrose, Ref. 3. 

4>(r) with 

<4>(r»av <p = ° (2.1) 
and 

<4>(r)4>(r'»av <p = {3v(r - r'), (2.2) 

where f3 = (kT)-1 with k Boltzmann's constant and 
T the absolute temperature. The restriction to real­
valued random functions requires that the eigenvalues 
Vq of vCr - r'), considered as a kernel, are positive 
and that v(O) is finite. 9 An explicit representation of 
the functions ep(r) can be obtained by expanding them 
in the eigenfunctions of vCr - r') in the volume V, 
i.e., 

4>(r) = 2 c,,({3v,}u,,(r), (2.3) 

" where 

f/vr'v(r - r')u,,(r') = v"uuCr). (2.4) 

In (2.3) the random variables c" are defined by the 
probability density 

II (~ e-h /). 
" (27T)! 

For convenience, we make the interaction po­
tentials (both hard-core and attractive parts) periodic 
in space with period Vl/v, and impose Born-von 
Karman conditions. In this case, the eigenfunctions 
u,,(r) are simply the trigonometric functions and we 
have, for the largest eigenvalue Vo and corresponding 
eigenfunction uo(r), 

Vo = Lv(r) dVr, (2.5) 

1 

uo(r) = V-"2". (2.6) 

While the assumption of periodicity makes v(r) volume 
dependent, for finite volumes, it is generally accepted 
that the correct thermodynamic functions are obtained 
in this way in the thermodynamic limit. 

We are interested in the case where the attractive 
potential is weak and long range, and we introduce a 
reciprocal range y by assuming that for the infinite 
system the potential is of the form _yv<D(y Irl - r21). 
The potential v(r) is then defined by making this 
potential periodic. 

We take <D(r) to satisfy the conditions of Lebowitz 
and Penrose.3 These guarantee that the equation of 
state of our system, in the limit y --+ 0, approaches the 
van der Waals type equationlO with Maxwell con­
struction. 

9 The restriction to real-valued random functions could easily be 
avoided, but we need the positivity of the v" and the finiteness of 
v(O) for carrying out the estimates of Appendix B. 

10 By "van der Waals type" we mean the van der Waals equation 
with the van der Waals approximation to the hard-core pressure 
replaced by the exact hard-core pressure. 
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SECTION 3 

We denote by SN(rl, ... ,rN) the Boltzmann factor 
for the hard-cores potential alone. The Gibbs integral 
for our system is 

ZN(f3, V) = LdvNrSN exp [-~f3ifjV(fi - f i)} (3.1) 

and introducing the random functions defined in the 
previous section, we obtain the well-known representa­
tion 

ZN(f3, V) = exp [-!Nf3v(O)] 

x 1\ r dvNrSN exp [~4>(ri)]\1 ,(3.2) Jv ._1 av4J 

which is easily verified by using the representation 
(2.3) and carrying out the integral over the vari­
ables c". 

The grand partition function at fugacity z, defined by 

00 zN 
Q(z) = I - ZN' (3.3) 

N=oN! 

For the extrema of the integrand, one has the set of 
equations 

a 00 (ze-!PV(O»N 
C =-lnI~-~ 
TaCT N=O N! 

x [ dvNrS N exp [I. caCf3va)!Ua(fi )]. (3.5) Jv O',t 

Carrying out the differentiation explicitly, one finds 
that these equations have some simple solutions, 
namely, 

C~O) = 0, for T"e 0, (3.6) 

and c~O) given by the roots of the equation 

CO/(f3voV)! = Ph{Z exp [-tf3v(O) + co(f3vo/V)t]}, 

(3.7) 

where Ph(Y) is the density of the hard-core system at 
fugacity y. This equation becomes more transparent 

in y 

FIG. I. Hard-core density vs In (fugacity), schematic. 

with the notation 

In Y = In z - tf3v(O) + co«(Jvo/V)! = /-t, (3.8) 

Ph(Y) = Ph(/-t), (3.9) 

In z - tf3v(O) = ~, (3.10) 

so that 

We then have 

(/-t - ~)/f3vo = Ph(/-t)· (3.12) 

Ph(/-t) is a nondecreasing nonnegative bounded func­
tion and, from any of the known approximations, 
one expects the shape indicated schematically in Fig. 
1. The possible values of /-t and, therefore, of c~O) are 
thus obtained by the construction familiar from the 
Weiss theory of magnetism. Choosing that root of 
Eq. (3.12) which maximizes the integrand in (3.4), this 
construction is the grand canonical form of the Max­
well construction applied to the van der Waals type 
equation. The construction is discussed in Appen­
dix A. 

With this as motivation, we separate 4> into its 
spatial average and its spatially inhomogeneous part 
1p(r), defined by 

1p(r) = 4>(r) - co(f3vo/V)!. (3.13) 

Equation (3.4) then becomes 

Q(z) = I If yN r, dvNrSN 
\ \N=oN!.v 

x exp [~1p(ri)]/\ ) ,(3.14) 
.-1 av fI! av Co 

where Y is given by (3.8). For 1p(r) = 0, we obtain 

Q(z) '" Qo(z) = <exp [f3VPh(Y)])av co' (3.15) 

where Ph(y) is the pressure of the hard-core system at 
fugacity y. According to the preceding arguments, 
this gives the van der Waals equation with Maxwell 
construction. 
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Quite generally, the representation (3.14) can be 
written in the form 

Q(z) = (exp [fWPll(Y) + Vh(Y)])av co' (3.16) 

where h(y) is defined by 

hey) == V-lIn / ~ .yN r dvNrSN 
\N=O N! Jv 

X exp L~lJ!(ri)])av'l' - f3Pll(Y)' (3.17) 

It is now convenient to introduce a functional A{lJ!} 
defined by 

A{tp} == ln~ yN r dvNrSNexp [I1fJ(r£)] 
N=O N! Jv i=l 

_ In i yN r dvNrSN' (3.18) 
N=oN!lv 

so that (3.17) can be written in the form 

h(y) = V-lIn (expA{tp})avtp' (3.19) 

We have seen that setting tp(r) = 0 gives the van der 
Waals type equation of state. Thus, it is natural to 
expand the functional A{1jJ} in a functional Taylor 
series about lJ!(r) = O. This expansion is well known 
to be 

A{tp} 

= i ~ r dVrl '" r dVrn,un(rl ,'" ,rn I y)tp(rl ) " '1jJ(rn), 
n=ln.Jv Jv 

(3.20) 

where the functions ,un(rl , .•• , rn I y) are the modified 
Ursell functions for a hard-core system at fugacity y. 

A 

They are defined in Ref. 6 and denoted there by :F n • 

In terms of the Ursell (or correlation) functions for a 
hard-core system :F n(rl , ..• , rn I y), the first few are 
given by 

,ul(rl I y) = :FI(rl I y), 

,uZ(rl, rzl y) = :F2(rl , r21 y) + :FI(rl I y)o(rl - r2), 

,us(rl , ra, ral y) = :FS(rl' r2 , ral y) 

+ :Fa(rI' ral y)o(r2 - rs) + :F2(r1 , ral y)o(rl - r2) 

+ :F2(ra, raly)CJ(rl - ra) 

+ :F1(rlly)(J(rl - r2)o(rZ - ra)' (3.21) 

Because of the Born-von Karman conditions, all 
the functions ,un are translation ally invariant and, in 
particular, ,u1(rI I y) is independent ofr}. In the fluid, 
the range of ,un will be of order n times the range of the 
repulsive potential, which will be used later. Since 
fv lJ!(r) dVr = 0, by definition, the term linear in 1J! 
in (3.20) vanishes. Keeping only the term quadratic in 
1J! in (3.20) and writing out the average over 1J! as a 

multiple integral over the random variables c, 
introduced in Sec. 2, we obtain 

where the coefficients ,ua./1 are defined byll 

r ,ua(r, r' I y)u/1(r') dVr' = ,u2.aU,,(r). (3.23) JfT 

The result (3.22) was obtained by Zittartz.5 The result 
of Hemmer' may be obtained from (3.22) by replacing 
,u2,,, by #2,0 where 

(3.24) 

Equation (3.24) is a special case of the general 
fluctuation theorem 

r dVrz' .. r dVr n,un(r1 , ••• , rn I y) 
Jv Jv 

= irpPlI(y)/o(ln yy'~ (3.25) 

Zittartz's result contains all contributions to hey) of 
orders yV through 1'2.-1 inclusive. (It also contains, in 
general, higher-order terms.) Hemmer's result gives 
the terms proportional to y' exactly, because the 
coefficients Va decrease rapidly while the coefficients 
,u2,a decrease slowly in Fourier space. 

In order to obtain terms of higher order in y, we 
make a transformation in function space similar to the 
one which turned out to be useful in the case of the 
Ising model.12 We introduce a function x(r - r'), 
periodic with period pl., and its expansion 

x(r - r') = 2: x"uaCr)ua(r'). (3.26) 
a 

This function is arbitrary except for the restrictio~ 

(3.27) 

where () is a fixed positive number which we impose. 
Starting from the form 

0() 

(eA{~»a. tp = r . J 1]' (~;;t) exp [ - ! ~' c! 
-0() 

+ A{~' ciPVaiUa(r)}} (3.28) 

where the prime indicates exclusion of (J = 0, we add 
and subtract in the exponent 

(3.29) 

11 Under the assumption of Born-von Karman conditions the 
function fJa(r, r' I y) depends only on the relative vectorial distance 
r - r', so that its eigenfunctions are also the trigonometric functions 
ua(r). 

10 A. J. F. Siegert and D. J. Vezzetti, J. Math. Phys. 9, 2173 (968). 
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and obtain 

x exp [ - ! ~' c!(1 - fJvaXa) 

+ A{~' CaCfJVa)tuacr)} - ! ~' C!{JVaXa} 

(3.30) 

We now introduce new variables ba defined by 

ba == ca(l - f3vaXa)t (3.31) 
and obtain 

00 

<eA{~)av ~ = 1]' (1 - {JvaXa)-! r . J 1]' (~:;l) 
-00 

X exp [ - ! ~' b! 

+ A{2,' ba( {Jv" )! ua(r)} 
a 1 - f3vaXa 

- ! 2,' b! {JVaXa ]. (3.32) 
a 1 - {Jv"X" 

Introducing new random functions "p(r) defined by 

( 
f3v )! "p(r) == 2,' ba a uir), 

a 1 - {Jv"Xu 
(3.33) 

where the random variables b a are defined by the 
probability density 

IT ( dba e-h /) , (3.34) 
a (21T)t 

we can eliminate the explicit representation and write 
(3.32) in the form 

<eA{~})av~ = 1]'(1 - f3VaXa)-!(exp [A{"p} 

- ! r dVrl dVr2"p(rl)x(rl - r2)"p(r2)]/\ . Jv Of 

(3.35) 

The functions "p(r) are Gaussian random functions 
with mean value < "p(r) )av f = 0 and covariance 

("p(r)"p(r'»avf = f3v(r, r' 1 13), (3.36) 
where 

vCr, r' I fJ) = v(r - r' 1 13) = 2,' vaua(r)ua(r') (3.37) 
a 

with 

satisfies the integral equation 

vl(r - r' IT) 

= vCr - r') + T J/Vr"K(r - r")vI(r" - r' 1 T), (3.40) 

where 

K(r - r") =Ldvr'V(r - r')x(r' - r"). (3.41) 

This transformation thus extracts from the average a 
factor of the form of Zittartz's approximation (3.22). 
For the special choice of the arbitrary function X' 
namely X = P2, this factor becomes identical with the 
result of Zittartz. 

This factor can be expressed in terms of the function 
v(r I T). Since 

a
a In II' (1 - TV"Xu)-! 
T a 

= t 2,' vaXa = ! V r dVrv(r I T)x(r), (3.42) 
a Jv 

we have 

-i2,' In (1 - {JvaXa) = tv rp 
dT r dVrv(r I T)X(r). 

a Jo Jv 
(3.43) 

With these results, we may now write hey) in the form 

hey) = t J: dT JvdVrv(r I T)x(r) 

+ V-lIn (exp [Aa{"p} +! fvdVrl d
Vr2 

X "p(rl)(P2(rl , r21 y) - x(rl , r2»"p(r2)]\/ _' 

av'l' 

(3.44) 
where 

Aa{ "p} 

00 1 i == 2,,. dVrl" . dVr npnCrl ,' . " rn I y)"p(r1)· •• "p(rn)· 
n=3 n. v 

(3.45) 

Before we proceed to a systematic expansion of 
h(y) , we note that we can quickly derive the next­
order result, which includes the result of Lebowitz, 
Stell, and Baer. 2 With the above-mentioned special 
choice of x(rl, r2), we expand the logarithm of the 
average in (3.44) in a cumulant expansion, i.e., 

In (eA 3{1f)av If 

= (A 3 {"p} )av If + H (A;{ "p} )av If - (Aa{"p} )!v Iji] + ... 
(3.46) 

We note that the function 

vl(r - r' I 13) == v(r - r' I fJ) + vofV 
and retain only the first non vanishing term in each 

(3.39) cumulant (the term with /1-4 in (Aa) and the terms with 
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two l"a'S in [(Ai) - (Aa)2]). We then have, as we will 
show later, all terms which contribute to hey) 
through order yaV-l. This may be shown to contain 
all contributions to the free energy through order 
yav-l and thus includes the terms through order y2V 

which have been calculated explicitly by Lebowitz, 
Stell, and Baer. 

SECTION 4 

We now proceed to a systematic evaluation of hey) 
with the special choice X = 1"2' Defining h(l)(y) by 

(1) {-} 

eVh (y) = <~3 If ) _' - avtp, (4.1a) 
we have 

eVh(l)(II) 

= / IT exp r I"n(rl ,'" ,rn I y) IT "p(r;) dvnr\ . 
\n=a Jv n! ;=1 /av.:p 

(4.1b) 

Expanding each factor of the product, we obtain 

where the prime indicates the restriction 

(4.3) 

and where 

is the product of ms factors I"a, m4 factors 1"4' etc., 
with the arguments r; (j = 1, ... , ex) in natural order. 

The average in (4.2) is zero if ex is odd. For ex even, 
we have 

("p(rl)' . ·"p(ra)av.:p 

= I (Jfj(ril - ri .) ... (Jfj(ria_l - ria)' (4.4) 
(pairings) 

The sum is to be taken over all different ways of pair­
ing the variables, that is, over all different ways of 
choosing ex/2 pairs (iI' i2), (is, i4), ••• , (ia-l' ia) from 
the numbers 1, 2, ... , ex. Two ways of pairing count 
as different only if they cannot be made the same by a 
permutation of the pairs and a pair is defined regard­
less of order. 

The terms resulting from substituting (4.4) into 
(4.2) can now be associated with labeled diagrams. 

The diagrams are defined as follows: A circle con­
taining n points ril , ... ,r

in 
represents I"n(ril , .•. , 

rin I y). A line connecting points r ik and r ik, represents 
(Jfj(rik - rik')' Each integral in (4.2) is therefore 
associated with a diagram consisting of S circles (S ~ 
1) containing the appropriate number of points, these 
points labeled 1, 2, ... , ex, and ex/2 lines connecting 
these points such that each point is connected to one 
and only one other point by a line. By observing the 
order in V or by the usual diagram arguments, it 
now follows that 

Vh(l)(y) =a~ m~ •• ".n m
n

! ;n!)mn Iv n (I"n)(m
n
) 

x I' (Jfj(ril - ri2)' .. (Jfj(ria_l - ri) dvar, 
(pairings) 

(4.5) 

where the prime on the last sum indicates that only 
such pairings are permitted which result in a connected 
diagram. 

Many of the integrals have of necessity the same 
value, because they arise from different ways of 
labeling the variables of integration. It is therefore 
sufficient to take into account in Eq. (4.5) only a 
subset ~ of the original diagrams obtained by selecting 
only one diagram G from all the connected diagrams 
which give the same value, fa, for the integral. Thus, 
we have 

h(l)(y) = V-I ~ IT
oo 

1 .N' [ (4.6) 
£.. 1 (l)m a a, aefl n=S m n • n. n 

where .N' a is the number of integrals in (4.5) which 
have the value fa. The number.N' a can be obtained as 
the product of the total number of permutations of the 
points in each circle times the total number of per­
mutations of the circles with the same number of 
points divided by the number Sa of such permutations 
which give the same pairing. The first number is just 

00 

IT mn! (n!)mn 
n=S 

and cancels the denominator in (4.6). We can thus 
write (4.6) in the form 

h(l)(y) = V-I I [a/Sa. (4.7) 
aEg 

The symmetry number Sa can be written as follows: 
Consider the graph G with the circles labeled from 
1 to In mn , and the points unlabeled. Let Ii; be the 
number of lines connecting circle i and circle j (tii is 
not necessarily zero). The matrix Ii; characterizes the 
graph with labeled circles and unlabeled points 
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uniquely. Then 

( b) 

FIG. 2. Example of diagram. 

So = IT tij! IT (2tlltll!)S~, (4.8) 
i< i Z 

where Sa is the number of permutations , including the 
identity, of the labels 1, 2, ... , !~=3 mn which leave 
the matrix til invariant. The factor preceding Sa is just 
the number of ways of labeling the points in each 
circle which all give rise to the same pairing. 

As an example, we calculate the coefficient of 

10 == V-I L,ui1, 2, 3, 4),ua(5, 6, 7),u3(8, 9, 10) 

x P5v(1, 2)v(3, 5)v( 4, 10)v(6, 9)v(7, 8) dIOVr, (4.9) 

which corresponds to the diagram in Fig. 2(a). To 
evaluate the coefficient by (4.8) we label the circles as 
indicated in Fig. 2(b) and obtain t11 = t12 = t13 = I, 
t23 = 2, all others being equal to zero, and Sa = 2, 
since only the identity and the permutation (~m leave 
the tii invariant. Thus So = (2 !) (21) (2) = 8. 

To evaluate the coefficient from (4.6) we note that 
ma = 2, m4 = 1. To obtain .N' 0, the number of 
pairings, we note that the re-entrant line of circle 1 
can be chosen in m ways and the two lines connecting 
circles 2 and 3 can be chosen in (~)2. 2 ways. The 
remaining point in circle 2 can be paired with either 
of the two remaining points in circle 1, giving another 
factor 2, and we obtain .N' 0 = 216 and 

IT 1 .N' _ 1 . ~ (3!)2 . 2 _1 
mn!(n!)mn 0-2!1!(3!)24! (2!?(2!)2 -8' 

(4.10) 

in agreement with the value obtained from (4.8). It is 
clear that (4.8) is more convenient than (4.6), espe­
cially for more elaborate diagrams. 

SECTION 5 

Having defined the diagrams and determined the 
symmetry numbers So, we will now estimate the order 
in y of any given diagram. The range of the factors 
v(r;, r;) is at least of order y-l, while the range of ,un 
is independent of y by definition and is of order n 

times the hard-core diameter. For purposes of esti­
mation, we can then replace each ,un by 

,un(r1,"',rnl y) 

'" IT t5(r1 - rk) r ,un(r1,"', rn I y) dVr2" . dVr n 
k=2 Jv 

= IT t5(r1 - r
k

) anpPh(y) . (5.1) 
k=2 a(ln y)n 

The order in y of any integral 10 is then the order of 

where S == !z tu and where the matrix tii was defined 
in Sec. 4, and S is the number of circles in the diagram. 
For vCr) = yV<!>(yr), we find, using (5.1) in (3.39)­
(3.41) with X = ,u2' 

iJ(r) = yVf(yr). (5.3) 

The exact form of ,u2 would contribute to v only terms 
of higher order in y. Introducing new coordinates 
Xi = yri' we obtain from (5.2) 

where S is defined as after Eq. (5.2). If/(O) and 

r dVX2' .. dVxs IT [f(x; - XjWi l 

Jv lS;i<jS;S 

are finite even for V ~ 00 (the proof and discussion 
are in Appendix B), then (5.4) is of order 

in y. Here, 

Sf == L Tij' 
lS;iS;SS;S 

(5.5) 

The sum in the bracket is just the number of lines in 
the diagram which we will denote by B. We can 
summarize by writing, for a diagram with B bonds 

Ot----tO 
(8) (12 ) 

FIG. 3. Diagrams 
needed through order 
y3V-i, The last of 
these diagrams gives 
a contribution of 
zero. Symmetry num­
bers are shown in 
parenthesis. 
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~ 0 0 
(48) (48) 

CO (12) 0 ct) 
(16) 

()) 

FIG. 4. Diagrams needed through order y4V-l. Symmetry numbers 
are shown in parenthesis. 

and S circles, the dominant contribution is of order 

yv[B+1-SJ. (S.6) 

In this manner, each diagram in the sum we are con­
sidering may be classified according to its dominant 
order in y, and the sum of diagrams may be ordered 
accordingly. 

From (S.6) we can prove that each term in h(l)(y) is 
of order at least y2V. This is seen as follows. Since each 
circle contains at least three points, we have B 2: t. 
The expression (S.6) then shows that all diagrams with 
S circles are of order at least yv[S/Hll. For S 2: 2, we 
obtain terms of order y2V or higher. If S = I, then 
B 2: 2, and (S.6) then gives y2V or higher. Q.E.D. 

In order to obtain all terms whose dominant 
contributions are of order yvM, we simply write 

B+I-S=M (S.7) 

and consider the various B (2: 2) and S (2: I) 
(B ~ 3S/2) which can give this M. To obtain the 
expansion through order yvM, only diagrams with not 
more than 2(M - 1) circles need to be considered. 
(Since the next dominant term is of order yv(M+l), this 
actually gives all terms through order yv(M+ll-l.) 

For instance, for M = 2, we have to take diagrams 
with S = 1,2, i.e., the diagrams in Fig. 3. The last 

of these diagrams has the value zero. The first two 
diagrams of Fig. 3 are all that we need in order to 
compute the thermodynamic functions through order 
y3V-1, since the remaining diagrams contribute y3V 
and higher. These two diagrams include the result of 
Lebowitz, Stell, and Baer.2 To compute the thermo­
dynamic functions to order y4V-l we need those 
diagrams whose dominant contributions are of order 
y3v. For M = 3, we need S = I, 2, 3,4. The only 
ones of these diagrams which are not necessarily zero 
are shown in Fig. 4. 

SECTION 6 

We have shown how to evaluate the function hey) 
as an expansion in y. Combining our results to this 
point, we have 

hey) = i f: dr LdVrV(r I r)!l2(r I y) + h(l>Cy), (6.1) 

where h(l)(y) is given by the diagram sum (4.7). 
To determine the thermodynamic functions of our 

system we must evaluate the pressure given by 

~P(z) = lim 1.. 1nJoo dco 
v .... oo V -00 (27T)! 

X exp [-ic~ + ~VPh(Y) + Vh(y)], (6.2) 

where y is given by (3.8). The saddle-point approxi­
mation gives 

fJP(z) = max [- c~ + ~Ph(Y) + hey)]. (6.3) 
Co 2V 

The extrema are the roots of the equation 

Co = V ~ [~Ph(Y) + hey)]. (6.4) 
oCo 

Since 

~ _ (fJvo)!_o 
oCo - V 0 In y' 

(6.S) 

the extrema are the roots of the equation 

In y - In (ze-Pv
(0)/2) = ~V{Ph(Y) + :~~~l (6.6) 

where Ph(y) is the density of the hard-core system at 
fugacity y, 

We then have 

[In y* - In (ze-Pv (o)/2)]2 
~ P( z) = - -"--'------'--------'-=-

2~vo 

(6.7) 

+ fJPh(y*) + h(y*), (6.8) 
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where y* is that root of (6.6) which gives the largest 
value of P(z). 

To obtain the density p(z), we differentiate (6.8) 
and get 

p(z) = d{JP(z) = [_0_ + din Y* _0 -](JP(Z) 
d In z 0 In z d In z 0 In y* 

In Y* - In (ze-Pv (O)/2) 
= (6.9) 

(Jvo 

since the second term in the brackets does not con­
tribute because of (6.8). Using (6.6) once more, we 
have 

and 

oh(y*) 
p(z) = Ph(Y*) + 0 In Y* (6.10) 

(JP(z) = (JPh(y*) - l{JVOp2(Z) + h(y*). (6.11) 

Equations (6.6), (6.10), and (6.1 1) constitute our 
formal result. For hey) ---+ 0, this result approaches the 
van der Waals equation with Maxwell construction in 
the grand canonical form as discussed in Sec. 3, 
starting with Eq. (3.8). 

In order to compare our results with those of pre­
vious authors who have given the Helmholtz free 
energy as a function of density (p) through order y2V, 
we have to eliminate the fugacity from our equations. 
We first change variables from y* and z to Ph and P 
by the definitions 

p(z) == p, 

Ph(Y*) == Ph' 

P(z) == P(z(p» == pcp), 

(6.12a) 

(6.12b) 

(6.12c) 

and Ah(Ph) is the Helmholtz free energy per particle of 
the hard-core system at density Ph' Using (6.14), we 
can express the left side of Eq. (6.16) in powers of 
'YJl : 

(JA(p) = f3A(Ph + nl(Ph» 

= PA(Ph) + ~ (nl(p;»n d: (JA(Ph)' (6.18) 
n~1 n. dph 

Inserting (6.18) into (6.16), we see that we have 
completely eliminated the variable p. Thus Ph takes on 
the status of independent variable, and we can rename 
it p. Hence, we obtain 

PA(p) = F(p) - ~ (nl(p»n.!!: (JA(p) 
n~l n! dpn 

== F(p) - q{JA(p), (6.19) 

where the last line defines the (differential) operator 
q. Solving this equation by iteration, we obtain the 
final result 

OC! 

f3A(p) = 2, ( - t}t F(p). (6.20) 
n~O 

By this equation, we have succeeded in expressing 
the free energy .in terms of the hard-core functions 
Ah and Ph, which we assume are known, and the 
function nl' The equation of state follows from (6.20) 
in the usual manner: 

o 0 OC! 

(Jp(p) = p2;:{JA(p) = p2_ 2,(-qtF(p). (6.21) 
vp op n~O 

Ph(y*) == Ph(Y*(Ph» == Ph(Ph)' 

h(y*) == 1I(Ph), 

For reference purposes and for our future use, we give 
(6.12d) A(p) explicitly to third order in n: 

oh(y*)jo In y* == 1h(Ph)' 

Equations (6.10) and (6.11) then become 

(Jp(p) = (JPh(Ph) + n(Ph) - l{Jvop2 
and 

(6.12e) 

(6.12f) 

(6.13) 

(6.14) 

Eliminating Ph from these equations, we obtain pep). 
This is conveniently done by using the relation between 
Helmholtz free energy per particle A(p) and the 
fugacity z: 

(JA(p) = In z - (JP(z)jp(z). (6.15) 

Using (6.6) for In z and (6.13) and (6.14), we obtain 

(JA(p) = (JAiPh) + l{Jv(O) - lf3VO(Ph + 'YJl(Ph»2 

(6.16) 

where the prime indicates differentiation with respect 
to p. The terms explicitly exhibited in (6.22) are 
sufficient to obtain the Helmholtz free energy to order 
y4V-l. Evaluated to order y2V, this equation gives the 
results of Lebowitz, Stell, and Baer,2 which in turn 
contains the results of Zittartz5 and Hemmer.4 

Since our result in its grand canonical form includes 
the Maxwell construction, it is understood that this 
construction in its appropriate form is to be applied 
to these equations. 

SECTION 7 

with In this section we summarize and discuss our results, 
(JAh(Ph) == In y* - (JPh(y*)/ Ph(Y*) (6.17) first in a special form, then in a more general form. 
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The pressure P(z) and number density p(z) of the 
system described in Sec. 2 are obtained in the form 

(JP(z) = (JP,ly*) - !(Jvol(z) + h(y*), (7.1) 

* oh(y*) 
p(z) = Ph(y ) + 0 In y* ' (7.2) 

where y* is that root of the equation 

In y - In (ze-ilJv(o» = (Jv{p,ly) + ~~~:} (7.3) 

which maximizes the pressure P(z). Here Ph(y) and 
Ph(Y) are the pressure and number density of the 
hard-core system at fugacity y and Vo is defined by 
Eq. (2.5). The function hey) is given by 

hey) = ~J: dT Iv d"rv(r I T),u2(r I y) + h(1)(y) (7.4) 

and h(l)(y) is a diagram series defined as follows. Draw 
S circles (S;;:: 1) labeled C1 , ••• , Cj , ••• , Cs , each 
containing nj ;;:: 3 points such that I!l nj is even. Con­
nect these points by lines such that each point is con­
nected to one and only one other point. (Lines 
connecting two points in the same circle are permitted.) 
Disconnected diagrams and diagrams which would 
become disconnected upon removal of one line are 
excluded. With any diagram G, we associate an 
integral fG in the following way. Label the points 
in circle C j by r j •1 , ri .2,··· ,rj •n .• For each circle 
C; write a factor ,un/rj,1' ••• , ri .n ; (Y), where,un is the 
nth modified Ursell function of the hard-core system 
at fugacity y, defined in Ref. 6 and denoted there by 

A 

:F n' For a line connecting points rj,1e and r1' .k, write a 
factor (Jv(ri •1e - r1' ,Ie')' where v is defined by Eqs. 
(3.38)-(3.41) with the special choice 

x(r - r') = ,u2(r, r' I y). 

fa is then the integral over all coordinates of the 
product of these factors. With any diagram G, we also 
associate a symmetry number Sa. Let tii be the number 
of lines connecting circles Ci and Ci and let S; be the 
number of permutations of the labels of the circles 
which leave all lij invariant. Then 

We call two diagrams G and G' equivalent if the 
integrands of fa and la' are the same, except for 
the labeling of the variables of integration. Divide the 
class of diagrams described above into subclasses of 
equivalent diagrams. Select one member from each 

subclass to form the class ~t Then 

hU\y) = V-I I la/SG' (7.6) 
aE~ 

We have shown that a diagram with B bonds and 
S circles cannot contribute any power of y less than 
v[B - S + 1] and that the coefficient of yv[B-S+l] is 
finite provided that 

1 - (Jv °Ph(y) > () (7.7) 
0 0 In y , 

where () is any fixed, positive number. The meaning of 
this condition is explained more fully in Appendix B, 
Eqs. (BS)-(B6). The requirement is a direct con­
sequence of the condition (3.27) imposed on the 
arbitrary function X(r, r') and the special choice 
x(r, r') = ,u2(r, r' I y). This condition can be weakened 
by not making this special choice of X. We hope to 
exploit the freedom of choosing X in a future paper 
and for that reason have kept the present development 
general except for the diagram series and the estimates 
of the individual terms. The diagrams for the case 
X ¥: #2 are of the same type, except that now circles 
with two points are permitted and are interpreted as 
[#2(r, r' Iy) - x(r, r'»), and the bonds are interpreted 
as v(r - r' I (J), defined by the original equation 
(3.37). The estimate of these diagrams is not difficult 
if condition (3.27) is satisfied. However, the introduc­
tion of X ¥: ,u2 may be expected to lead to interesting 
results only when this condition is relaxed to the extent 
of having 1 - jJv"X(f (for some a) go to zero for 'Y --° 
though not as strongly as 1 - (JVO,u2,O' 

With X = #2, for temperatures below the van der 
Waals critical temperature, our method can yield hey) 
only outside an excluded interval of y values as dis­
cussed in Appendix B following Eq. (BS). For small 
enough y, the value of y* given by Eq. (7.3), with 
oh(y)/a In y determined by truncating our expansion 
at a finite order in y, will not fall in the excluded 
interval. This means that our result predicts a phase 
transition to any finite order in 'Y, and therefore cannot 
be used to decide whether a phase transition occurs. 
In fact, Kac, Uhlenbeck, and Hemmer3 show that 
their one-dimensional model has no phase transition 
for any y > 0, but that the expansion of their exact 
result in powers of y exhibits a phase transition to any 
order in y. In the context of our work, this can be 
understood physically because the Kac, Uhlenbeck, 
and Hemmer model has, for small y > 0, even well 
below the van der Waals critical temperature, instead 
of a phase transition, a very high compressibility in 
the region near the van der Waals first-order transition, 
and therefore has very large density fluctuations in that 
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region. It is then inappropriate to consider the 
spatially inhomogeneous part of the random functions 
as a small perturbation. If, however, a first-order 
phase transition occurs for y > 0, as is expected for 
the three-dimensional case, and if the compressibility 
is not abnormally large, then it is physically reason­
able to treat the inhomogeneous part of the random 
field as a perturbation, because under those conditions 
large density fluctuations occur only in the coexistence 
region which does not enter into the calculations in the 
grand canonical formulation. 

Our y expansion is not subject to the objection­
raised by some of the previous authors against their 
results-that the two-particle distribution function 
does not vanish when the distance between the two 
particles is less than the hard-core diameter. The 
two-particle distribution function obtained from our 
result by functional differentiation with respect to the 
repulsive potential vanishes in the hard-core term by 
term, when the repulsive potential becomes a potential 
with hard core. This will be shown in detail in a 
forthcoming publication. 

APPENDIX A 

The van der Waals theory with Maxwell construc­
tion takes the following form in the grand canonical 
formalism. In Fig. 5, we have Ph(Y) == Ph(ft) plotted 
versus ft == In y. To solve (3.12) graphically, we 
draw on this graph the straight lines (ft - m flvo. 
When 

aph(ft) < 1 max-- -
(It) aft - flvo ' 

(AI) 

there is only one solution ft for any ~; otherwise there 
is a range of values ~ for which three solutions occur. 
The critical temperature Tc = (kflc)-l is thus deter­
mined by 

max aph(ft) == max aph(Y) = _1_ . (A2) 
(It) aft (y) a In Y flcvo 

FIG. 5. Maxwell construction (without correction) in the grand 
canonical formulation. 

Taking only the maximum of the integrand in (3.4), 
we have 
flP(z) = lim V-lIn Q(z) 

V-.C1O 

= max {_ C&O)2 + flP
h 

2V 

x {zexp [- flv;O) + c~o)(fl;o)!]}}. (A3) 

Since at the extrema 

c2 (II. _ ~)2 
0_ r R _2() V = flv

o 
= ,..,VOPh ft , (A4) 

we have 

flP(z) = max [flPh(y) - tflvop~(y)], (A5) 

i.e., the pressure is obtained by taking that solution 
ft* = lny* for which the expression in brackets is 
largest. One then shows easily that 

p(z) = a:~(; = Ph(Y*)' (A6) 

It is also easily shown that an extremum y. obtained 
from (3.12) is a minimum if 

(
aPh(Y») >-.l. 
a In Y II, flvo ' 

so that the intermediate solution in Fig. 5 is never of 
interest. 

The value of z at which the transition occurs can be 
obtained by application of an equal area construe ion 
in Fig. 5. The two maxima obtained from solutions 
yg and YL are in fact equal if 

i lnll![ (In Y - In ze-!/lV(O»] 
piy) - dlny = 0, (A7) 

In 11. flvo 
since the integral is equal to 

[
(In Y - In ze-!/lV(O»]II=1I! 

flPh(y) - ~'------, 
2flvo II=Y. 

= (flP"(YI) - tflVOP~(YI» - (flP,,(Yg) - tflvop~(Yg». 

APPENDIX B 
(A8) 

We have seen that we can obtain the order in y of 
any diagram if the factors in Eq. (5.4) are finite, even 
for V -+ 00. To establish this, we shall work directly 
from expression (5.2). First, using (3.27), (3.37), and 
(3.38), we have 

-(0) 1 "" _ 1 "" V <1 e-l 
"" v = - k v = -k < - k v 

V <1 <1 V <1 1 - flVaX<1 V <1 <1 

= e-I(V(O) - ~), (B1) 

where e is a fixed, positive number. Thus V(O) is finite, 
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since v(O) is by assumption. Further, since v(O)/yV is 
nonzero as y - 0, we have 

lim V(O) = Kyv (B2) 
v-+oo 

with K constant and independent of y. 
We next show that our choice x(r, r') = 1'2(r, r' I y) 

is permissible. Since 1'2(r I y)is not everywhere positive, 
the Fourier components 1'2,a are not necessarily 
smaller than 1'2,0' which is known to be 

0Ph(y)/o(lny) == Ph(Y)· 

Since, however, 1'2.a is of course independent of y, 
while va decreases very rapidly in Fourier space for 
sufficiently small y, we have 

IVa1'2,al :::;;; V01'2.0 (B3) 

for sufficiently small y. For the purpose of our esti­
mate, we therefore need only 

1 - flV01'2,0 = 1 - flvoA(y) ;;::: e. (B4) 

The critical temperature Tc = (kflc)-l of the van der 
Waals approximation is given by 

flcvo max Ph(Y) = 1. (BS) 
(y) 

For T > Tc our estimate requires, therefore, only that 
T - Tc is bounded away from zero. For T < Tc, 
however, an interval of values of y has to be excluded, 
namely, the interval where 

Ph(y) > (l/flvo)(1 - e). (B6) 

Our estimate therefore is valid for T < Tc only if 
y :::;;; YI - € or y ;;::: Y2 + € with YI and Y2 indicated in 
Fig. S, and € positive. 

Next, we have to show that the factor 

q == V-I r dVrl ... dVrs II (v(ri - riWil (B7) Jv l:<:;i<j:<:;S 

is bounded. To do this, we first draw a diagram 
representing (B7), which consists of points representing 
rl , ... , rs and lines representing Veri - rj). Select a 
point from this diagram which is not an articulation 
point. Call this point rl . Let the points connected to 
rl by v bonds be labeled rl .a , rl,b, ... , rl,k' Then 

Iql :::;;; V-I r dVrl ... dVrs II Iv(ri - rjWii 
Jv l:<:;i<j:<:;S 

= V-I r dVr2 ... dVrs II Iv(ri - rjWil 
Jv 2:<:;i<i:<:;S 

X Iv dVrl Iv(rl - rl,aWt.I •... Iv(rl - rl,kWl,lk 

:::;;; V-I r dVr2' .. dVrs II Iv(rt - riWil 
Jv 2:<:;t<j:<:;S 

X max I dVrl Iv(rl - r1,aWl,l •... 
(rl dU ' .. ,rl,k) V 

Iv(rl - r1,k)1 t1.lk • (BS) 

The last factor in (B8) has a finite upper bound which 
we can establish as follows. Clearly, 

max r dVrl Iv(rl - rl,aWI.I •... Iv(rl - r1,kW1,lk 

(rl,.,·· . ,rlok) J v 

< [max Iv(r)l]t1'la+" ·+tl,lk-l r dVr Iv(r)l. (B9) 
(r) Jv 

From (3.40) and (3.41), with 

x(r) = 1'2(r I y) '" op,,(y) b(r) = p,,(y)b(r), (BIO) o In y 
we obtain 

vl(r - r') = vCr - r') 

+ flPhIvv1(r - r1)v(r1 - r') dVrl' (Bll) 

Iterating this equation, we find 

00 

i\(r - r') = vCr - r') + L (flp"tv(n)(r - r') (BI2) 
I 

with 

v(n)(r - r') = IvdVrl ... dVr n 

x vCr - r1)v(rl - r2) ••• vern - r'). 

(Bl3) 
Now using 

v(n)(r - r') = IvdVrlV(r - r1)v(n-I)(r1 - r') 

:::;;; [max V (n-l)(r)] r dVrlv(r - r1) 
(r) Jv 

= [max v(n-l)(r)]vo (BI4) 
(r) 

and 

v(U(r - r') = IvdVrlV(r - r1)v(rl - r') 

:::;;; [max vcr)] r vCr - r1) dVrl 
(r) Jv 

= [max v(r)]vo, (BIS) 
(r) 

we obtain by induction 

v(n)(r) :::;;; v~[max v(r)]. (BI6) 
(r) 

Then, from (BI2), 

i\(r) :::;;; v(r) + [max vcr)] 1 (flVOPh),n 
(r) 1 

:::;;; [max V(r)](l - flvoA)-I. (B17) 
(r) 

Next, using 
vI(r) == v(r) + volV, (BIS) 
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we find 

iv(r)1 = I vI(r) - ~ I < vI(r) + ~ 

~ [max vCr) + !J!](1 - (JVOh)-I. (B19) 
(r) V 

We also have 

Iviv(r)i dVr ~ Iv [vI(r) + ~ J dVr 

= 2vo = 2vo(1 - (Jvop,,)-l. (B20) 

Inserting (B19) and (B20) into (B9), we obtain 

max i dVri Iv(r! - rl.aWl.la' .. Iv(ri - rI.kW1
•1k 

(rl.a.···,rl.k)Jv 

[( 
V) Jtl.la+·· ·+f,.lk-I 

~ ~~x vCr) + # (1 - (Jvop"r
l 

x 2vo(1 - (JVOh)-l. (B21) 

We can now use the bound (B21) in (BS). We continue 
the process by choosing from among the points 
r2 , ••• , rs another point which is not an articulation 
point of the diagram containing r2 , ••• , rs' In this 
manner, we successively reduce the number of inte­
grations in (BS) until we have integrated over all 

points but one. This last integral then gives a factor V. 
Our final result is then 

(

max vCr) + !J!)8 s I 

Iq/ ~ (e) V ( 2vO ) - , 
1 - (JvoP" 1 - (JvoP" 

(B22) 

where 8 here is defined as 

i<j 

which shows that /ql is bounded provided 1 - (JvoP" > 
0, i.e., provided that we are not at the critical point of 
the van der Waals approximation. 

Taking the limit V -- 00 of (B22) and setting 

max vCr) = K'yV, 
(r) 

with K' a finite number independent of y, we obtain 

(B23) 

with 8 defined as above. Combining this with the 
bound (B2) on v(O), we have then that the expression 
(5.2) is bounded by the quantity 

Kif! yv8 = Kif! yvIB-S+1) , (B24) 

with 8 as defined after Eq. (B22). 
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. By employin& coordinate trans~or".1ations, a generalized WKB quantization condition is derived which 
Includes a modl~e.d WKB quantIzation. rule and th~ related higher-order integrals. It is observed that 
a .necessary C?ndltIOn for the fir.st-orde: !nte.gral ~o gIve an exact quantization rule is the vanishing of the 
hlgher-ord~r Integrals. When thIS condItIon IS satIsfied, the resulting quantization condition is of the form 
of al~ prevIOusly. known exact-qua~tization rules. The higher-order integrals are shown to vanish for 
certaIn ~ases of Interest. An e:ror. In Paper I ~c. Rosenz-.yeig and J. B. Krieger, J. Math. Phys. 9,849 
(1968~1Is noted .and an exammatlon of the higher-order Integrals shows that a proposed quantization 
rule gIven there IS not exact. 

I. INTRODUCTION 

In a previous work! (hereafter referred to as I) the 
method of Froman and Froman2 was employed to 
prove rigorously the exactness of WKB or modified 
WKB quantization conditions for all potentials for 
which such rules were known to be valid.3 The 
advantage of the method of Froman and Froman lies 
in the fact that exact quantization rules are proved 
without recourse to a comparison with exact analytic 
solutions of the Schrodinger equation. Thus this 
method has the potential of providing exact quantiza­
tion conditions even for potentials for which no 
analytic solutions are known to exist. The dis­
advantage of this method lies in the fact that it 
requires a detailed examination of the potential in the 
entire complex plane and, furthermore, it does not 
provide a means to determine whether a proposed 
quantization rule is not exact, i.e., either one can 
prove exactness by some clever choice of contour, 
or else no definite conclusion can be drawn about the 
correctness of the proposed quantization condition. 

A second method to determine exactness of a 
quantization condition proceeds by showing that all 
additional higher-order correction terms to the 
WKB integral vanish for the given potential.4.5 This 
condition is not rigorously sufficient, however, 
because it is well known that the WKB approximation 
is valid only asymptotically as Ii ~ ° so that it is 
still possible to have correction terms of say O(e-Ial/Ii), 
which would have an asymptotic expansion consisting 
entirely of zeros. The condition is necessary, however, 
because if the correction term of O(lin) is not zero, 
then the terms having an asymptotic expansion 
entirely of zeros cannot cancel it. It should also be 

1 C. Rosenzweig and J. B. Krieger, J. Math. Phys. 9, 849 (1968). 
• N. Froman and P. O. Froman, JWKB Approximation; Con­

tribution to the Theory (North-Holland Pub!. Co., Amsterdam 
19M~ , 

• P. B. Bailey, J. Math. Phys. 5, 1293 (1964). 
4 J. L. Dunham, Phys. Rev. 41, 713 (1932). 
• P. N. Argyres, Physics 2, 131 (1965). 

noted that, although the condition that the higher­
order WKB integrals vanish is only a necessary 
condition for exactness of the WKB quantization 
condition, there is no known potential for which 
both the second- and third-order integrals vanish 
for which the first-order WKB integral does not 
provide an exact quantization rule. In I, however, it 
is pointed out that there are known cases for which 
the WKB integral does not give rise to the exact 
eigenvalues (the second- and third-order terms are 
not both zero here), but a modified WKB integral 
does. In these cases it is not clear what "correction" 
terms we must show to be actually zero. In this note 
we report a method which employs a generalized 
Langer transformation6 and which gives a necessary 
condition for the validity of modified WKB quanti­
zation rules. We also point out an error in the proof 
of Case VIII of I and demonstrate that the quantiza­
tion rule proposed for that case is incorrect. 

II. MODIFIED WKB QUANTIZATION 
CONDITIONS 

If E is the energy eigenvalue of an equation of the 
form 

1i2 d2 
- 2m dx2 X(x) - q2(X, E)X(x) = 0, (1) 

where X(x) ~ ° for x ~ ± 00 and X is single-valued 
and finite, then a generalization of Dunham's4 deriva­
tion yields the result that the WKB quantization 
condition, through the third-order integral, may be 
written as7 

q dx - - - (q2) q-5 dx _ --f 1i2 f [ d ] 2 1i4 
64m dx 8192m2 

x f {49[:x (q2)T - 16[:x (q2)] [::3 (q2)}-7} dx 

= (N + t)h, (2) 
(2m)! 

6 R. E. Langer, Phys. Rev. 51, 669 (1937). 
7 J. B. Krieger and C. Rosenzweig, Phys. Rev. 164, 171 (1967). 
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where the integrals are taken about a contour that 
includes the two real zeros of q and no other singu­
larities. This quantization condition cannot always 
be directly applied to problems of interest because 
the boundary condition on X may be different from 
those required by Dunham's derivation, i.e., in radial 
problems the radial wavefunction U(r), where 
1p(r) = [U(r)/r] Y!m(O, 4», satisfies the boundary con­
ditions U -+ ° for r -+ ° and r -+ 00. One can also 
consider cases for which the wavefunction vanishes 
at two points for which x is finite. l •s Furthermore, 
even in those cases where the wavefunction vanishes 
at ± 00, Eq. (2) may not be the most convenient form 
from which to prove exact quantization rules because 
the higher-order integrals may not vanish. 

We consider the following transformation: 

z = z(x), 

with a singled-valued inverse, 

x = x(z), 

such that, ifEq. (I) is defined in an interval a ~ x ~ b 
with X(a) = X(b) = 0, then - 00 ~ z ~ 00. 

Defining 
X(x) = 4>(z), 

we immediately obtain the result that 4> satisfies 

_ ~ {d2
4> + d4>[d

2
Z/dx2]} + (V[x(z)] - E)4> = ° 

2m dz2 dz (dz/dx)2 (dz/dx)2 
(3) 

with the boundary conditions 

4>(z) -+ 0, Z -+ ± 00. 

Equation (3) is not of the same form as Eq. (1), so that 
it is not yet possible to employ Eq. (2) as the quanti­
zation condition in the new coordinate system. 
However, if 

d24>(z) d4> ---;J;2 + p(z) dz + r(z)4>(z) = 0, 

then, defining 

4>(z) = fez) exp -i lOpez') dz', 
we find %0 

d2j(z) [ 2 1 dp] -- + r(z) - ip (z) - - - fez) = ° 
dz2 2 dz ' 

so that Eq. (3) may be transformed into an equation 
of the form of Eq. (1). The result is 

1i2 d2j 
- -- - q2(Z E)/= ° 

2m dz2 ' , 

where 

2 (E - V) 1i
2 [1 (Z")2 1 d (Z")] q (z, E) = - - - - + -- - . (4) 

Z,2 2m 4 Z,2 2 dz Z,2 

Substituting Eq. (4) into Eq. (2) (where the integra­
tion is now over z) and transforming back to x as the 
integration variable, we obtain 

f [E - Vex) - S(X)Z'2]! dx 

_ L 1 {~[E - Vex) _ S(X)]}2Z'4 
64m j dx Z,2 

X {E - Vex) - S(X)Z'2t~ dx 

- 81~m2 f {49{:X[E z~ V - S(X)]f 

X {E - V - S(X)Z'2t"\:!.. 

_ 16 1. {~[E - V - sex)] 
z' dx Z,2 

X [;,(:X) ]TE ;2 V - S(X)]}Z'8 

X {E - V - S(X)Z,2tt dx 

= (N + !)h/(2m)!, (5) 
where 

Sex) = - - - - - - - -1i
2 {I [ d (1)] 2 1 d2 (1 )} 

- 2m 4 dx z' 2z' dx2 Z' . 
(6) 

We note from Eqs. (5) and (6) that if the trans­
formation has made the new second- and third-order 
integral zero, then the quantization condition becomes 

f [2m(~; V) - 2/j7 Sz'2r dx = (N + !)7T, 

where SZ'2 is a function of x but not of E, which is 
precisely the form or' all known exact quantization 
conditions given in 1. Furthermore, we observe that 
even if the transformation has not made the second­
and third-order integrals identically zero, it will often 
be possible to reduce their value, leaving the first­
order integral as a better approximation to the 
energy than it would have been if the transformation 
had not been employed. Finally, although the second­
and third-order integrals appear incredibly compli­
cated, we show below that by using the technique of 
contour integration, it is often easy to demonstrate 
that they are identically zero. 

III. POTENTIALS FOR WIDe" UNMODIFIED 
IDGHER-ORDER INTEGRALS ARE ZERO 

The references below to Case I, etc., refer to the 
case numbers in I. Since the unmodified WKB 
quantization condition is employed here, Z = x and 
all potentials are defined for - 00 < x < 00. 
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Case I: V(x) = tkx2 (simple harmonic oscillator). 
The higher-order integrals have previously been shown 
to be zero.s 

Case VII: V(x) = Ae-2ax - Be-ax, A, B> 0 
(modified Morse oscillator). The second-order integral 
is proportional to 

-----::' dx = • dx. f V,2 f (2aAe-2ax - aBe-ax)2 

[E - V]! [E - Ae-2ax + Be-aX]~ 

Making the change of variables 

e-ax = y, 
we obtain 

----, dx - -f V,2 f (2aAy2 - aBy)2 dy 

[E - V]! - [E - Ai + By]! y . 

As Y - 0, the integrand - y and thus the only singu­
larities of the integrand occur at the zeros of the 
denominator which are the two classical turning points. 
Deforming the contour to a large circle with center 
at the origin, we see that as y - 00 the integrand 
- 1/y2, and hence evaluating the integral along a 
circle of radius R gives zero as R - 00. 

Similarly, making the same change of variables in 
the third-order integral, we find that as y - 0 the 
integrand _ y3 and hence the only singularities are 
at the two classical turning points. Furthermore, as 
y - 00, the integrand - l/y4, and hence evaluating 
the integral along a circle of radius R again gives zero 
as R- 00. 

Case VIII: V(x) = Ae2ax + Be-2ax. The proof given 
in I that the unmodified WKB quantization condition 
is exact for this case is in error. The argument pre­
sented there is incorrect because, unlike Case VII, the 
quantity F22 is not real here, since q is real on the 
contour instead of imaginary as asserted there. 
Furthermore, the fact that the eigenvalue for the 
ground state for A = B is the same to three significant 
figures as the eigenvalues calculated by the quantiza­
tion rule! is not a convincing argument of the exactness 
of the quantization condition because for a particle 
in the ground state the potential between the classical 
turning points is essentially parabolic and hence 
corresponds to a simple harmonic oscillator for which 
this quantization rule is known to apply.9 In fact, 
expanding the potential about its minimum and 
keeping terms to O(X2), we find, by applying the rule 

8 J. B. Krieger, M. L. Lewis, and C. Rosenzweig, J. Chern. Phys. 
47, 2942 (1967). 

8 The above observations are due to Professor G. Wannier 
(private communication). 

in Case I, that the eigenvalue is the same as that given 
by the result of numerical integration for the exact 
potential to three significant figures. Thus, from the 
above considerations it is not clear whether the 
quantization rule is incorrect or a rigorous proof, 
different from that previously given, can be constructed 
to justify it. 

However, by investigating the higher-order WKB 
integrals we have been able to show that the second­
and third-order integrals are not zero and thus the 
propos6d quantization rule is not exact. 

IV. POTENTIALS FOR WHICH MODIFIED 
HIGHER-ORDER INTEGRALS ARE ZERO 

Case II: 

Vo bli2 1(1 + 1)1i2 

V = - - + - + , 0 < r < 00. 
r 2mr2 2mr2 

Case III: 

V 
~k 2 bli2 1(1 + 1)1i2 

= ~ r +-- +~-=--
2mr2 2mr2 

0< r < 00. 

Cases II and III correspond to the effective radial 
potential when the Schrodinger equation is separated 
in radial coordinates for the case of the coulomb 
potential plus degeneracy-breaking term and the 
harmonic oscillator with degeneracy-breaking term, 
respectively. The wavefunction U(r), which is the 
eigenfunction of the effective radial equation, is 
related to the radial part of the wavefunction R(r) by 

R(r) = U(r)/r, 

and thus U(r) - 0 as r - 0 at least as fast as r. If we 
let6 r = eZ

, then r = 0 and r = 00 correspond to 
Z = - 00 and z = + 00, respectively, and 

S(r)zI2 = !£ ..L . 
2m 4r2 

Hence, the quantization rule becomes 

! [2m 1 Ji J fz2 (E - V) - 4r2 dr = (N + t)1T, 

provided that the second- and third-order integrals 
are zero. The proofs that these higher-order integrals 
are zero for Case II and Case III have been given 
previously7 for the case b = O. Since letting b ¢ 0 is 
equivalent to changing the value of I, the same 
arguments as in the case b = 0 are valid here and 
will not be repeated. 

Finally, we observe from Eqs. (5) and (6) that it is 
trivial to test whether or not a given transformation 
suffices to make the transformed higher-order integrals 
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zero. However, given a conjectured exact quantization 
rule, i.e., given S(X)Z'2, it is not a simple matter to 
determine precisely what are the higher-order integrals, 
since this requires knowing S(x) and Z'2 separately. 
In fact, given a choice for S(X)Z'2, we may obtain z' 
by solving a second-order nonlinear differential 
equation obtained by multiplying Eq. (6) by Z'2. We 
have not yet been successful in finding the appropriate 
z' for Cases IV, V, and VI, and thus cannot explicitly 
demonstrate that the higher-order integrals are zero 
in these cases also. 

V. DISCUSSION 

Using the method of coordinate transformations, 
we have derived a generalization of the usual WKB 
quantization condition through the third-order inte­
gral. Since a necessary condition for the first-order 

JOURNAL OF MATHEMATICAL PHYSICS 

integral to give an exact quantization condition is the 
vanishing of the higher-order integrals, this method 
leads to the possibility of finding exact quantization 
conditions in those cases where the usual first-order 
integral in the original coordinate system is not 
sufficient. Furthermore, even in those cases where the 
transformed higher-order integrals are not zero, the 
technique is still useful in providing a means of 
reducing the size of these terms and hence increasing 
the accuracy of eigenvalues computed from the 
first-order integral alone. 
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I. INTRODUCTION 

The use of explicitly time-dependent invariants in 
applications of quantum theory has received little 
attention, if any. Presumably, the reason for this lack 
of attention has been the dearth of examples in which 
the use of such quantities was both possible and fruit­
ful. Recently, a class of exact invariants for time-

* Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

dependent harmonic oscillators, both classical and 
quantum, was reported. l The simplicity of the rules 
for constructing these invariants and the instructive 
relation of the invariants to the asymptotic expansion 
of adiabatic invariant theory have stimulated an 
interest in using the invariants for solving some 
explicit quantum-mechanical problems. We discuss 

1 H. R. Lewis, Jr., J. Math. Phys. 9, 1976 (1968); also, H. R. 
Lewis, Jr., Phys. Rev. Letters 18, 510, 636 (1967). 
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for constructing these invariants and the instructive 
relation of the invariants to the asymptotic expansion 
of adiabatic invariant theory have stimulated an 
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1 H. R. Lewis, Jr., J. Math. Phys. 9, 1976 (1968); also, H. R. 
Lewis, Jr., Phys. Rev. Letters 18, 510, 636 (1967). 
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two systems in detail: the time-dependent harmonic 
oscillator and a charged particle in a particular type 
of time-dependent, classical electromagnetic field. 

In Sec. II we consider the theory of explicitly time­
dependent invariants for a general quantum system 
whose Hamiltonian operator R(t) is explicitly time­
dependent. Of course, such a system is not closed, 
in the sense that some external influence, which need 
not be specified, may change the parameters of the 
system, alter its total energy or angular momentum, 
etc. The semiclassical theory of radiation provides a 
well-known example. In that case the quantum system 
is taken to be an atom or molecule which undergoes 
radiative transitions, and the explicitly time-dependent 
term in the Hamiltonian operator is the interaction 
with the classical radiation field. The usual approxima­
tion techniques for treating such a system are 
time-dependent perturbation theory (in which the time­
dependent term is considered small), the adiabatic 
approximation (in which the time scale of variation 
of the time-dependent term is long compared to all 
of the characteristic periods of the system), and the 
"sudden" approximation (in which the external 
changes are fast compared to the shortest character­
istic period). The results of the adiabatic and "sudden" 
approximations will be deduced as limiting cases of 
rigorous results that are presented in this article for 
the time-dependent harmonic oscillator. 

The central feature of our discussion of general 
systems is the derivation of the relation between 
eigenstates of an explicitly time-dependent invariant 
and solutions of the Schrodinger equation. A time­
dependent phase transformation can be found for 
each eigenstate of an invariant such that the eigenstate 
becomes a solution of the Schrodinger equation, and 
the phase is determined by solving a simple, first-order 
differential equation. Later in the article, for the two 
special systems that we discuss in detail, we derive 
explicit formulas for the eigenstates and eigenvalues 
of the invariants and for the phases. Also, in these 
examples, we evaluate all physically relevant matrix 
elements elegantly by operator techniques. 

To provide a specific well-posed application of these 
ideas, we consider a Hamiltonian which settles into 
constant operators in the sufficiently remote past and 
future, and we assume that each of these two limiting 
operators has a known complete set of eigenstates 
and eigenvalues. The time dependence of R(t) for 
intermediate times is to be at least piecewise con­
tinuous, but otherwise arbitrary, and we calculate 
the transition amplitude connecting any initial state 
in the remote past to any final state in the remote 
future. 

The first special physical system to which we apply 
the general results, in Sec. III, is that of a time­
dependent harmonic oscillator, that is, a system whose 
Hamiltonian has the form of the Hamiltonian of a 
simple harmonic oscillator, but for which the fre­
quency parameter is allowed to vary with time. 2 

To begin with, we derive a class of exact invariants 
for this system by means of a method different than 
that used previously.! Then we calculate the eigen­
values and eigenstates of these invariants, and we also 
calculate the appropriate time-dependent phase 
factors that make the eigenstates solutions of the 
Schrodinger equation. Finally, as in Sec. II, we 
specialize to the case that the Hamiltonian is a 
constant operator in the remote past and future and 
calculate explicit formulas for the transition amplitude 
between arbitrary states at these times. Using these 
exact formulas, we discuss the adiabatic and "sudden" 
approximations and deduce the usual formulas for 
those limiting cases. 

In Sec. IV we consider a charged particle in the 
classical, axially symmetric electromagnetic field 
consisting of an arbitrarily time-dependent, uniform 
magnetic field, the associated induced electric field, 
and the electric field due to an arbitrarily time­
dependent, uniform charge distribution. The dynam­
ical variables of this system are simply related to those 
of the time-dependent harmonic oscillator by a 
noncanonical transformation. We use this non­
canonical transformation to derive a class of invariants 
for the particle system from the invariants for the 
oscillator. These invariants for the particle system are 
not Hermitian. However, it turns out to be possible 
to derive from them a class of Hermitian invariants 
that are formally identical to the Hamiltonian for a 
particle in a uniform, time-independent magnetic 
field. Using operator techniques, we derive the 
eigenstates and eigenvalues of this class of Hermitian 
invariants, and we find the phases for which the 
eigenstates are solutions of the Schrodinger equation. 
The results are a generalization of the solution3•4•5 for 
~ particle in a uniform, time-independent magnetic 
field. 

2 The two special systems that we consider in Sees. III and IV 
have been treated along different lines by M. Kolsrud: (a) "Exact 
Quantum Dynamical Solutions for Oscillator-Like Systems," 
Institute for Theoretical Physics, University of Oslo (Norway), 
Institute Report No. 28 (1965); (b) Kg!. Norske Videnskab. Selskabs 
Forh. 31, No.5 (1958); (c) Phys. Rev. 104, 1186 (1956). 

3 L. Landau, Z. Physik 64, 629 (1930). 
4 R. B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952). 
• L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non­

relativistic Theory (Addison-Wesley Pub!. Co., Inc., Reading, Mass., 
1965), 2nd. ed., p. 426. There is an error in this derivation: the 
wavefunction is assumed proportional to eim</>, but the subsequent 
formulas are derived for rim</>. 
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II. EXPLICITLY TIME-DEPENDENT INVARIANTS 
AND THEIR RELATION TO SOLUTIONS 

OF THE SCHRODINGER EQUATION 

We consider a system whose Hamiltonian operator 
H(t) is an explicit function of time, and we assume the 
existence of another explicitly time-dependent non­
trivial Hermitian operator I(t), which is an invariant. 
That is, I(t) satisfies the conditions 

and 

dJ == aJ + 1. [I, H] = 0 
dt at iii 

l =1. 

(1) 

(2) 

The equation determining the time-dependent Schro­
dinger state vector I ) is 

iii £.1 ) = H(t) I ). (3) 
at 

By operating with the left-hand side of Eq. (1) on 
I ) and using Eq. (3), we obtain the relation 

ili£.(l I » = H(I I », (4) 
at 

which implies that the action of the invariant operator 
on a Schrodinger state vector produces another 
solution of the Schrodinger equation. This result is 
valid for any invariant, even if the latter involves the 
operation of time differentiation. If the invariant does 
not involve time differentiation, then we are able to 
derive a simple and explicit rule for choosing the 
phases of the eigenstates of l(t) such that these states 
themselves satisfy the SchrOdinger equation. In what 
follows, we assume that let) does not involve time 
differentiation. The invariants with which we treat 
the time-dependent harmonic oscillator, described in 
Sec. III, and the motion of a charged particle, 
described in Sec. IV, satisfy this requirement. 

We assume that the invariant operator is one of a 
complete set of commuting observables, so that there 
is a complete set of eigenstates of I. We denote the 
eigenvalues of I by A, and the orthonormal eigenstates 
associated with a given A by lA, K), where the label K 
represents all of the quantum numbers other than A 
that are necessary for specifying the eigenstates: 

I(t) lA, K) = A lA, K), (5a) 

(A', K' I A, K) = O.!,.!OK'K' (5b) 

The eigenvalues A are real by virtue of Eq. (2). They 
are also time independent, as we can deduce in the 
following simple way. By differentiating Eq. (5a) 
with respect to time, we obtain 

M a ~ a 
at lA, K) + I ~ lA, K) = at lA, K) + A ~ lA, K). (6) 

We also operate with the left-hand side of Eq. (1) on 
lA, K) to obtain 

iii aJ lA, K) + IH lA, K) - AH lA, K) = O. (7) 
at 

The scalar product of Eq. (7) with a state lA', K') is 

iii (A', K'I aJ lA, K) + (A' - A)(A', K'I H lA, K) = 0, (8) 
at 

implying 

(A, K'I aJ lA, K) = O. 
at 

(9) 

Now taking the scalar product of Eq. (6) with lA, K), 
we obtain 

aA = (A, KI al lA, K) = O. (10) 
at at 

Since the eigenvalues are time independent, it is clear 
that the eigenstates must be time dependent. 

In order to investigate the connection between 
eigenstates of I and solutions of the SchrOdinger 
equation, we first write the equation of motion of 
lA, K), starting from Eq. (6) and using Eq. (10): 

(A - I) ~ lA, K) = al lA, K). (11) at at 
By taking the scalar product with lA', K') and using 
Eq. (8) to eliminate 

we get 

(A', K'I al lA, K), 
at 

inCA - A')(A', K'I ~ lA, K) = (A - A')(A', K'I H lA, K). at 
From this, for A' ¢ A, we infer 

(12) 

iii (A', K'I £.IA, K) = (A', K'I H lA, K). (13) at 
Equation (12) does not imply 

iii (A, K'I £.IA, K) = (A, K'I H lA, K). 
at 

If Eq. (13) held for A' = A as well as for A' ¢ A, then 
we would immediately deduce that lA, K) satisfies the 
Schrodinger equation, i.e., is a special solution for I ). 

The phase of lA, K) has not been fixed by our 
definitions. We assume that some definite phase has 
been chosen, but we are still free to multiply lA, K) 
by an arbitrarily time-dependent phase factor. That is, 
we can define a new set of eigenvectors of let) related 
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to our initial set by a time-dependent gauge trans­
formation 

lA, K)a = eia;'K(t) lA, K), (14) 

where the CX;'K(t) are arbitrary real functions of time. 
Because I(t) is assumed not to contain time-derivative 
operators, the lA, K)a are orthonormal eigenstates of 
I(t) just as are the lA, K). For A' =/= A, Eq. (13) also 
holds for matrix elements taken with respect to the 
new eigenstates. Each of the new eigenstates will 
satisfy the SchrOdinger equation if we choose the 
phases CX;'K(t) such that Eq. (13) holds for A' = A. 
This requirement is equivalent to the following 
first-order differential equation for the CX;'K(t): 

li ll dCX;'K (' 'l'li a UKK , -- = 11., K Z - - H lA, K). 
dt at 

In order to satisfy this equation, the states lA, K) must 
be chosen such that the right-hand side vanishes for 
K' =/= K. This diagonalization is always possible 
because the operator ili(a/at) - H is Hermitian. Once 
the states have been so chosen, the phases CX;'K(t) are 
chosen to satisfy the simple equation 

Ii 
dCX;'K • a dt = (A, Klzli at - H lA, K). (15) 

Since each of the new set of eigenstates of I(t), 
lA, K)a' satisfies the Schrodinger equation, the general 
solution is 

It) = I C;'Keia;'K(t) lA, K; t), (16) 
;',K 

where the C;'K are time-independent coefficients. All 
of the state vectors with which we have dealt so far 
are time dependent, and we have revised the notation 
in Eq. (16) slightly by indicating the dependences on 
time explicitly. Now the SchrOdinger state vector is 
denoted by It) and the eigenstates of the invariant 
by lA, K; t). 

We now assume that in the remote past the Hamil­
toni.an H(t) settled into a constant operator H( - 00) 
havI~g a complete, orthonormal set of time-independ­
ent elgenstates In; i), n being a label for all relevant 
quantum numbers including the energy eigenvalue 
and i standing for "initial state." Similarly, we assume 
that the Hamiltonian settles into a constant operator 
H( 00) in the distant future and that it possesses time­
independent eigenstates 1m; 1>, m labeling the quantum 
~umbers ~n?1 standing for "final state." The explicit 
tIme vanatIOn of H(t) for intermediate times is 
arbitrary except for piecewise continuity; in particular, 
we do not exclude the possibility of variations rapid 
eno~gh to render an analysis in terms of quasi­
statIOnary states of H(t) impossible. Our aim is to 

calculate the transition amplitude T (n -4 m) con­
necting an initial state In; i) to a final state 1m ;/). 
Thus we consider the case in which the SchrOdinger 
s~ate vector 1- 00) in the remote past corresponds to an 
eIgenstate In; i) and, after tracing the exact time 
evolution of It) into the distant future, we compute 
the overlap of 100) with the desired final state 1m;!) 
to obtain the exact transition amplitude. The super­
position coefficients of Eq. (16) for this problem are 
given by 

C;'K = e-ia;'K<-oo\A, K; - 00 I n; i), (17) 

from which we obtain 

It) = Iexp {i[cx;.it) - cx;.i-oo)]} lA, K; t) 
;',K 

x (A,K;-ooln;i). (18) 

The transition amplitude is therefore given by 

T(n-4m) = (m;fl 00) 

= I exp {i[cx;.i (0) - cx;.i - oo)]} 
;',K 

X (m;f I A, K; oo)(A, K; -00 I n; i). 

(19a) 

Our discussion of the properties of I(t) applies 
equally well to any operator that is an invariant 
corresponding to a given H(t). In general, for a 
system of 1 degrees of freedom, there is an infinite 
family of such invariants, the members of which are 
functions of a set of 1 independent invariants. Two 
invariants I 1(t) and I 2(t) will, in general, have different 
eigenstates, different time derivatives, and different 
commutators with the Hamiltonian. In Secs. III and 
IV we give examples of this by constructing families of 
invariants for our two special systems in detail. Of 
course, we must obtain the same physical results no 
matter what invariant we use and, therefore, the 
choice of which particular invariant to use may be 
made on the basis of mathematical convenience. In 
order to illustrate explicitly that the physical results 
~o not depen? on our choice of invariant, we give a 
s.Imple and dIrect proof that a transition amplitude 
lIke that of Eq. (l9a) is indeed independent of our 
choice of invariant. 

Suppose that we have two complete orthonormal 
s~ts of states, Iv; t) and Iw; t), all of which satisfy the 
time-dependent Schrodinger equation; and suppose 
that the states Iv; t) are eigenstates of one set of 
operators, whose eigenvalues are labeled by v, and 
that the states Iw; t) are eigenstates of a different set 
of operators, whose eigenvalues are labeled by w. 
The transition amplitude T (n -4 m) can be expressed 
as 

T (n -4 m) = I (m;f I v; oo)(v; - 00 I n; i) (19b) 
v 
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or as 

• T(n--+m) = "i,(m;f I w; oo)(w; -00 I n; ii. (19c) 
w 

We want to show directly that these two expressions 
are the same. The completeness of the states /w; t) 
requires 

Iv; t) = ! Iw; t)(w; t I v; t). (20) 
w 

Operating on this equation with (ili(a/at) - H), and 
using the facts that alI of the states satisfy the Schro­
dinger equation and that the states /w; I) are orthog­
onal, we obtain 

a 
-(w; t I v; t) = O. 
at 

(21) 

Thus the quantity (w; t I v; t) is independent of time. 
We now use the completeness of the states Iv; t) 
and Iw; t), Eq. (21), and the orthonormality of the 
states Iw; t) to rewrite Eq. (19b) as 

T (n --+ m) = !!! (m;f! w; oo)(w; oo! v; (0) 
v w w' 

x (v; -oo! Wi; -oo)(W'; -00 I n; i) 

= 222(m;fl w; oo)(w; -00 I v; -00) 
v w w' 

x (v; -00 I w'; -oo)(w'; -00 I n; i) 

=2(m;flw;00)(w;-00!n;i). (22) 
IV 

Thus, Eqs. (19b) and (l9c) are the same, as asserted. 
We have used the t --+ ± 00 limits in the above 

expressions as if the limits exist. In fact, however, the 
factors entering Eq. (19a) are generalIy undamped 
oscillating quantities for t --+ ± 00 [for example, see 
Eq. (62), which gives the form of ,x;'K(t) for a time­
dependent harmonic oscillator]. Nevertheless, this 
circumstance generates no difficulties in the calcula­
tion of transition probabilities in this limit. If t1 and t2 

are finite times in the sufficiently remote past and 
future, respectively, then it is easily shown with the 
argument leading to Eq. (21) that the dependence of 
the transition amplitude of Eq. (19) on t1 and t2 is 
only exp [i(Ent1 - Emt 2)/Ii], where En and Em are the 
initial and final state energies, respectively. The 
transition probability does not involve this phase 
factor, and therefore we shall continue to use the 
limits t --+ ± 00. 

Suppose for simplicity that the eigenstates of I are 
nondegenerate, so that the eigenvalue of I is the only 
quantum number required for describing the system. 
When this is so, as it is in our discussion of the time­
dependent harmonic oscillator, then it is particularly 
convenient to choose an invariant having the property 
that it becomes time-independent as t --+ - 00 so that 
the commutator [1(- (0), He - 00)] vanishes. Then 

the normalized eigenvectors of H( - (0) and I( - 00) 
are identical to within arbitrary constant phase fac­
tors. Consequently, we may choose the initial state 
In; i) simply to be a given eigenstate of 1(-00), say 
IAn; - 00). Equation (19a) then reduces to 

T (n --+ m) = exp {i[,xnC 00) - ,xn( - 00 )]}(m;f I An; (0), 

(23) 
and the transition probability is given by 

P nm = IT (n --+ m)1 2 

= I(m;fl An; 00)12. (24) 

As t --+ 00, the invariant operator I(t) in general 
remains time dependent and does not commute with 
the Hamiltonian. Therefore, the state IAn; 00) in Eq. 
(24) is a superposition of eigenstates of H( (0); this is 
another expression of the fact that energy is not 
conserved in our system. 

From the structure of Eq. (l9a), it is apparent that 
we may express the transition amplitude as a matrix 
element of an S matrix by writing [keeping in mind 
the comment following Eq. (22)] 

S = ! eia;.,,(oo) lA, K; (0)(,1, K; - 001 e-ia;'K(-OO), 

;',K 

T(n --+ m) = (m;fl S In; i). (25) 

It is easily verified that this operator is unitary: 

sts = sst = 1. (26) 

In the special case that the Hamiltonian operators in 
the remote past and distant future are identical, 
H(-oo) = H(oo), so that the initial and final states 
are the same set, we may define an elastic scattering 
operator R in the standard fashion: 

S = 1 + 27TiR. (27) 

The operator R describes the nondiagonal transitions 
just as S does, but subtracts a noninteracting part 
from the diagonal amplitudes so that (nl R In) 
represents a "forward reaction amplitude" from the 
state In) to the same state. The unitarity of the S 
matrix implies 

21(ml R In)1 2 = 1. 1m «nl R In», (28) 
m 7T 

which is a statement of the optical theorem: the total 
reaction probability is proportional to the imaginary 
part of the forward reaction amplitude. 

m. APPLICATION TO TIME-DEPENDENT 
HARMONIC OSCILLATORS 

A. A Family of Invariant Operators for a Time­
Dependent Harmonic Oscillator 

A time-dependent, one-dimensional harmonic oscil­
lator is a system whose Hamiltonian operator is of the 
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form 
H(t) = (1j2M)[p2 + 02(t)q2], (29) 

where q is a canonical coordinate, p is its conjugate 
momentu)ll, O(t) is an arbitrary, piecewise-continuous 
function of time, and M is a real, positive mass 
parameter. The variables q and p satisfy the canonical 
commutation relation 

[q,p] = iii, (30) 

and the canonical equations of motion are 

q. = 1.- [q, H] = 1.- p, 
iii M 

Ii = i~ [p, H] = - ~ 02(t)q, (31) 

where the dots denote time derivative operators. To 
obtain the simple harmonic oscillator in the limit that 
O(t) is time independent, we would have to require 
that 0 be a real function. However, our discussion is 
equally valid if 0 is imaginary; all that is necessary is 
that 0 2 be real, either positive or negative. Therefore 
we allow 0 2 to be a positive or negative real function. 
In order for the usual adiabatic approximation to be 
applicable, M and O(t) must satisfy the criterion 

l» -.L I dO I 
M 0 2 dt 

(32) 

for all t. However, except where we discuss the adia­
batic approximation specifically, we do not impose 
such a restriction on M and O(t). 

For such oscillator systems, a convenient repre­
sentation has been derived for the class of invariants 
which are homogeneous, quadratic expressions in the 
dynamical variables p and q.1 This representation was 
constructed as a result of an examination of the 
classical trajectories, and the invariants were normal­
ized in such a way as to reduce to the usual adiabatic 
invariant (energy divided by frequency) in the limit 
that the inequality (32) is satisfied. Here we present a 
purely quantum-mechanical derivation of this rep­
resentation of the quadratic invariants. 

We assume the existence of a Hermitian invariant 
of the homogeneous, quadratic form 

I(t) = t(iX(t)q2 + f3(t)p2 + y(t){q,p}+], (33) 

where IX, f3, and yare real functions of time, the 
multiplicative numerical factor has been chosen for 
convenience, and we have used the conventional 
anticommutator notation {q, p}+ :; qp + pq. The time 

derivative of I(t) is given by 

In order to satisfy Eq. (1), we demand 

202 

oc = M y, 

. 2 
f3 = - MY' 

1 0 2 

Y = - - IX + - f3. 
M M 

(35) 

It is convenient to introduce another function a(t), 
defined by 

f3(t) = a2(t), (36) 

where a2(t) is a real function of time. The second of 
Eqs. (35) then becomes 

Y = -Maa, 

and the third equation yields 

(37) 

IX = M2(a2 + aij) + 02a2. (38) 

The first of Eqs. (35) imposes a constraint on aCt) 
which may be expressed in the form 

a!!. (M2ij + 02a) + 3a(M2ij + 02a) = O. (39) 
dt 

A first integral of Eq. (39) may immediately be 
written in the form 

(40) 

where c is an arbitrary real constant of integration. 
Then Eq. (38) becomes 

(41) 

The invariant may therefore be expressed in the form 

1= t[Ccj(2)q2 + (ap - Maq)2], (42) 

with Eq. (40) as a subsidiary condition. The arbitrari­
ness implied by the presence of the constant c is 
illusory, as may be verified by making the scale 
transformation 

aCt) = cl-pet), (43) 

pet) being a new auxiliary function of time. After 
discarding a constant multiplicative factor cl , we may 
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write Eq. (42) in the form 

1= ![(I/p2)q2 + (pp - M,oq)2], (44) 

and the auxiliary condition given by Eq. (40) becomes 

M2p + 0.2(t)p - I/p3 = o. (45) 

In order to make l(t) Hermitian, we choose only the 
real solutions of this equation. 

Any particular solution of Eq. (45) may be used to 
construct an invariant operator of the form given by 
Eq. (44). We thus have obtained a family of operators 
which is in one-to-one correspondence with the family 
of solutions of the nonlinear differential equation (45). 
Later in this section we shall consider the special case 
of a system for which 0. is a constant function in the 
remote past and in the remote future, and we shall 
calculate transition amplitudes connecting states at 
these two times. In obtaining these transition ampli­
tudes, we shall need the general solution of Eq. (45) 
for constant 0., which we now derive. 6 The problem is 
not quite so trivial as it appears at first glance because 
the obvious time-independent, real solution, 

p = ± 1001-i, (46) 

is by no means the most general solution. According 
to the discussion of Sec. II, we are free to choose the 
solution given by Eq. (46) for t -- - 00 if we like. But 
then we shall find that the time dependence of o.(t) 
produces a more general solution for pet) as t -- 00. 

The above choice for p as t -- ....:.. 00 leads to the 
condition [1(-00), H(-oo)] = 0, which, according 
to the discussion preceding Eq. (23), is a particularly 
convenient choice. 

To find the general solution of Eq. (45) for constant 
0., we note that ,0 is an integrating factor of this 
equation and immediately obtain the first integral 

M2,o2 + 0.2p2 + 1/ p2 = 2 10.1 cosh t5, (47) 

where t5 is an arbitrary real constant. The right-hand 
side of Eq. (47) is the integration constant, which, it 
turns out, must be greater than or equal to 2 10.1 if p 
is to be real. The integration constant has been 
written in this way so that p will be real for all values 
of the real parameter t5. Solution of Eq. (47) is 
straightforward and leads to the result 

p(t) = Yl IQI-i [cosh b 

+ Y2 sinh t5 sin «20./ M)t + rp)]i, (48) 

where Yl and Y2 can each independently assume the 
values ± 1, and rp is a real phase constant. The special 

• A method for expressing the general solution of Eq. (45) for 
arbitrary 11(1) in terms of indepeildent solutions of the equations for 
a classical oscillator has been described in Ref. 1. 

solution of Eq. (46) corresponds to the case t5 = o. 
Whenever o.(t) becomes constant, the solution for 
pet) is necessarily of the form given by Eq. (48). 
Therefore, the transition amplitudes that we shall 
calculate are completely determined by the parameters 
in this expression that are appropriate to the limit 
t -- 00, no matter how complicated or violent the 
time dependence of o.(t) for earlier times. We shall 
express the transition amplitudes in terms of these 
parameters in Part C of this Section. 

B. Eigenstates and Eigenvalues of I(t) and the Phases 

The eigenstates and eigenvalues of the invariant 
operator let) may be found by an operator technique 
that is completely analogous to the method introduced 
by Dirac7 for diagonalizing the Hamiltonian of a 
constant-frequency harmonic oscillator. Thus we 
define time-dependent canonical lowering and raising 
operators a and at by the relations 

a = (2n)-i[(I/p)q + i(pp - M ,oq)], 

at = (2n)-i[(I/p)q - i(pp - M ,oq)]. (49) 

These operators satisfy the canonical commutation 
rule 

[a, at] = 1, (50) 

so that the operator at a is a number operator with 
nonnegative ~nteger eigenvalues. The invariant opera­
tor given by Eq. (44) can be written in terms of a and 
at as 

1= n(ata + t), (51) 

from which it follows8 that the normalized eigenstates 
IA) of I are the same as the normalized eigenstates 
Is) of ata: 

ata Is) = sis), s = 0, 1,2, . . . . (52) 

We specify the relative phases of these normalized 
eigenstates Is) by requiring the standard lowering and 
raising relations: 

a Is) = sils - 1), 

at Is) = (s + I)ils + 1). (53) 

The eigenvalue spectrum of I is given by 

.1.8 = (s + t)n, s = 0, 1,2, . . . . (54) 

To effect the transformation of Eqs. (14) and (15) 
we need to calculate the diagonal matrix elements of 
the operators H and a/at. The former are obtained by 

7 P. A. M. Dirac, The Principles of Quantum Mechanics (Claren­
don Press, Oxford, 1947), 3rd ed. Also see A. Messiah, Quantum 
Mechanics (Interscience Publishers, New York, 1962), Vol. 1. 

8 For the present we are omitting the time label t in our notation 
for these eigenstates. When it is required for clarity, we shall replace 
Is) by Is; t) to denote an eigenstate at time t. 
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using Eqs. (49) to express H in terms of a and at and 
then applying Eqs. (53): 

(sl His) = ~(M2p2 + Q2p2 + 12) (sl {a, a t }+ Is) 
4M p 

= _1_(M2P2 + Q2p2 + \)(s + t)li. (55) 
2M P 

The Hamiltonian, of course, also has nondiagonal 
matrix elements since the representation defined by 
Eqs. (52) and (53) does not diagonalize this operator. 

To evaluate the diagonal matrix elements of a/at, 
we take the partial derivative of the second ofEqs. (53) 
with respect to time, and then take the appropriate 
scalar product, obtaining 

a a 1 oat 
(sl-Is) = (s - II-Is - I) + s- (sl-Is - 1). at at at 

(56) 
The expression for oat/at in terms of a and at is 

oat 1 {[ 2p + 'M(" .2)J + 'M(" .2) t} at = 2" - -;; I pp - p a I pp - p a , 

(57) 
so that Eq. (56) becomes 

(sl ~ Is) = (s - 11 ~ Is - 1) + i M (pp _ p2) 
at Ol 2 

= (01 ~ 10) + i !. M(pp - p2). (58) 
at 2 

It is clear that the anti-Hermitian character of a/at 
requires all diagonal matrix elements of a/at to be 
purely imaginary. However, no further information 
about (01 a/at 10) can be determined from Eq. (58); 
indeed, the choice of relative phases given by Eqs. (53) 
leaves the phase of a given state, say the state 10), 
undetermined. This time-dependent state can, in 
general, have a time-dependent phase factor, the 
choice of which is arbitrary. A convenient choice, 
which we now adopt, is one which makes (01 a/at 10) 
vanish in the limit that p becomes a constant, and 
which makes a "zero-point" contribution to Eq. (58): 

(01 ~ 10) = i M (pp - I}). (59) at 4 

With this convention we can now write the general 
diagonal matrix element of a/at as 

(sl ~ Is) = i M (pp - p2)(S + t). at 2 
(60) 

(55) and (60) into Eq. (15) to give 

da., 1 [M2(.. .2) + M2 .2 -= -- pp- p P 
dt 2M 

+ Q2p2 + ;2}S + !) 

1 1 
= - M (s + t) p2' (61) 

where we have made use of the subsidiary condition 
of Eq. (45). Thus the phase functions may be written 
in the form 

1 It 1 a.,(t) = - - (s + t) dt' -2- . 
M p (t') 

(62) 

It is interesting to note that these phases are closely 
related to a quantity that occurs in the analysis of 
classical time-dependent harmonic oscillators. l In the 
classical case, the invariant / can be chosen as a 
generalized canonical momentum and the corre­
sponding cyclic canonical coordinate is then equal to 
-a..!(s + t). 

The off-diagonal matrix elements of H and a/at, 
though not requir~d for the purpose of the present 
discussion, are straightforward to compute and are 
given for completeness. The expression of H in terms 
of the raising and lowering operators immediately 
yields 

(s'l His) 

= (1i/4){[M(p2 - pp) - 2i(pJ p )][s(s - 1)]tb"+2.' 

+ [M(p2 - pp) + 2i(pJp)][(s + 1)(s + 2)]tb".S+2}' 

s' :F s; (63a) 
and from Eq. (13) we obtain 

(s'l ~ Is) = 1 (s'l His), S':F s. (63b) at iii 

C. Calculation of the Transition Probability 

We assume that the Hamiltonian operator in the 
remote past, H( - 00), corresponds to a harmonic 
oscillator whose frequency parameter QI is constant 
and positive, and we choose the convenient form of 
let) that leads to Eq. (23) by taking 

p( - 00) = Q I !, (64a) 

from which follows 

/( - 00) = (M/QI)H( - 00), (64b) 
so that 

[/(-00), H(-oo)] = O. (64c) 

The phases required for carrying out the transforma- In the distant future the Hamiltonian is to settle into a 
tion of Eq. (14) may be calculated by substituting Eqs. harmonic oscillator Hamiltonian H( 00), with a 
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constant and positive frequency parameter O2 , The 
form of the invariant at any time is given by Eq. (44) 
or Eq. (51), and, as t ---+ 00, the auxiliary function p 
necessarily satisfies Eq. (48) with 101 replaced by O2 , 

The detailed dynamics of the time variation deter­
mines the parameters t5 and f{J. We assume these 
parameters to be known, and we shall express the 
transition amplitude of Eq. (23) in terms of them. In 
general, specific numerical values for t5 and f{J can only 
be obtained by integrating Eq. (45) numerically. 

Let us first suppose that the initial state In; i) is the 
ground state of H( - (0). From Eq. (64b) it is clear 
that this state, apart from an arbitrary phase factor, 
is the same as the "ground state" 10; - 00) of I( - 00). 
The Schrodinger state vector of the system at all later 
times is piao(t) 10; t), where oco(t) is given by Eq. (62), 
and this state vector is at all times an eigenvector 
(corresponding to the "ground state") of I(t) = 
n[at(t)a(t) + H We seek the transition amplitude 
to an eigenstate 1m;!> of the final Hamiltonian, and, 
according to Eq. (23), this transition amplitude is 
given by 

T(O---+m) = exp{i[oco(oo) - oco(-oo)]}(m;fl 0; 00). 

(23') 

The final Hamiltonian may be written in the form 

where 

b = (~~)\ q + i ~2 p), 

bt 
= (~~)! (q - i ~2 p), [b, btl = 1. (66) 

The lowering and raising operators of the invariant, 
a(oo) and at(oo), may be expressed in terms of the 
lowering and raising operators of the final Hamilton­
ian, band bt , by use of Eqs. (49): 

a(oo) = 'YJ(oo)b + '(oo)bt , 

ate 00) = '*( oo)b + 'YJ*( 00 )bt, (67a) 
where 

'YJ(t) = (402)-i((1/p) + 02P - iMp), 

'(t) = (402)-!«(1/p) - 02P - iMp), (67b) 

and P is given by the final state form of Eq. (48). The 
condition that the transformation of Eq. (67) satisfy 
Eq. (50), 

11712 - 1'1 2 = 1, 

clearly is satisfied. 
To calculate the matrix element (m;f 10; (0), we 

expand the state 10; (0) in terms of the eigenstates 

In;/) of H(oo): 
co 

10; (0) = I In;f)(n;fl 0; (0). (68) 
n~O 

By applying the lowering operator a( 00) to the left­
hand side of this equation, we obtain zero, while the 
right-hand side may be transformed by use of Eq. (67). 
Af~er regrouping terms, the resulting equation may be 
wntten as 

0= 10;f)'YJ(1;fl 0; (0) 
co 

+ ~ In;f)['YJ(n + 1)!(n + 1;fl 0; (0) 
n~1 

+ 'n!(n - 1;f) 0; oo)J. (69) 

In this equation and in what follows, by 'YJ and, we 
mean 'YJ( 00) and '(00). The orthonormality of the 
eigenvectors In;!> then yields the recursion relations 

(1;f) 0; (0) = 0, 

'( n )i (n + 1;fl 0; (0) = - ~ n + 1 (n - 1;f) 0; 00), 

which have the solution 
(70) 

(2r + 1;f) 0; 00) = 0, 

(2r;fl 0; 00) = (-~) [(~:~t (O;fl 0; 00), 

(71) 

where r is an integer. The first of Eqs. (71) expresses 
the usual parity selection rule: states of negative 
parity have vanishing overlap with a state of positive 
parity. By combining Eqs. (71) with the expansion of 
Eq. (68) and imposing the normalization requirement 
on the state 10; 00), we obtain 

1(0;f) 0; 00)12 = [i Ifl2r (2r)! J-1 

r~O 'YJ 22r(r !)2 

( I'ld = 1 - ~ ) 

1 
= 1nI' (72) 

where we have used the summation formula 

Therefore, 

IT (0---+0)1 = I(O;fl 0; 00)1 = I'YJI-! 

= (402)![ G + 02pr + M2p2rl 

= C + ~OSh t5t (73) 
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where we have used Eqs. (23'), (47), and (67b). This 
corresponds to a transition probability 

Poo = C + ~OSh S:· (74) 

Similarly, Eqs. (71) lead to the more general transition 
probability 

m ! (COSh r5 - 1)m/2 ( 2 )t 
POm = 2m[(mj2)!]2 cosh r5 + 1 cosh r5 + 1 ' 

m even, 

= 0, m odd. (75) 

By repeatedly applying the raising operator ate (0) to 
Eq. (68), we may express any eigenstate Is; (0) of I 
in terms of the states 1m; f), and thus we may compute 
the general amplitude T (s ---+ m). The resulting tran­
sition probability is, according to Eq. (24), given by 

Psm = I(m;fl S; (0)1
2 

= 1- 1 i (m;fl a*b + r/bt)" In;f)(n;jl 0; (0) 12 
s1 n=O 

1 ( 2 )t 
= s! cosh r5 + 1 

x Ii (_lS [(2r)!]t 
r=O 2r" r! 

x (m;fl a*b + '1)*b ty 12r;f) 1

2

• (76) 

These probabilities, of course, obey the sum rule 
1m Fsm = 1. This is easily verified by direct sum­
mation of Eq. (76): 

00 1 ( 2 )t 00 00 ( s* '( ( S )r 
1:,/sm = ;! cosh r5 + 1 r~or~o - 2'1)* J - 2'1) 

x 
[(2r)! (2r') !]k 

r! r'! 

x (2r';fl ('f}b + ~btY(s*b + 'f}*bty 12r;f). 

On the other hand, to within a phase factor Eq. (68) 
leads to 

Is; (0) = (s!rk( 2 )1 
cosh r5 + 1 

xi (_1\,"[(2r)!]t (s*b + 'f}*bt ),12r;j), 
r=O 2'1)J r! 

so that we obtain 

00 

1, Fsm = (s; 00 I s; (0) 
m=O 

=1. 

Of course, Fsm vanishes unless the initial and final 
states have the same parity. 

The case b = 0 corresponds to a situation in which 
lim p(t) is equal to the constant Q2t, so that 'f} = 1, 
t--+ 00 

and S = O. Eq. (76) then yields 

(77) 

which also is the result given by the adiabatic approxi­
mation. We conclude that the rigorous transition 
probability coincides with the adiabatic transition 
probability whenever the continuous time evolution 
of the auxiliary function pet) leads to a final form 
p( (0) = 02t , starting from the initial form p( - (0) = 
n1t. It is clear that only a restricted class of Q(t) 
functions will produce such a result, but the members 
of this class need by no means satisfy any adiabaticity 
requirement. The time evolution of such systems, 
while leading to Eq. (77), will in general be non­
adiabatic. 

D. The Adiabatic and Sudden Approximations 

In the adiabatic limit, 

M dO 
Q2(t) dt == (J(t), 1(J(t)l« 1, (78) 

it has been shown for the classical theory1 that the 
leading term in the expansion in powers of (J of the 
invariant of Eq. (44) is the usual adiabatic invariant, 
energy divided by frequency. In the quantum theory 
this statement becomes the assertion that the quantum 
number remains constant, implying Eq. (77). This 
equation, of course, holds independently of any 
particular representation for p(t); however, the 
choice p( - (0) = OIl is especially convenient, and 
with this assumption the adiabatic condition implies 
r5 = O. For the sake of completeness we furnish an 
outline of a simple proof of the adiabatic theorem. 

We let the frequency parameter O(t) evolve con­
tinuously from an initial value Q 1 in the remote past 
to a final value O2 in the distant future, such that Eq. 
(78) remains valid for all times - 00 < t < 00. 

Since, according to Eq. (78), the frequency cannot 
change sign, we take 0 1 and O2 both to be positive 
constants. Eq. (45) may be formally integrated to yield 

M2p2 + Q2(t)p2 + l 
p2 

= 201 + 2ft dt' p2(t')0(t') dQ 
-00 dt' 

= 201 + 1. ft dt' p2(t')!!3(t')(J(t'), (79) 
M -00 

provided that p( - (0) = OIl. We make the ansatz 

pet) = O-l(t) [1 + vet)], 

v(-oo) = o. (80) 
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In the limit that 0 vanishes so that O(t) becomes 
constant, the function vet) also must vanish. Hence, if 
o is an infinitesimal quantity, so is v. The essence of the 
adiabatic theorem is that v is a higher-order infinites­
imal than O. By differentiating Eq. (80) with respect 
to time, we obtain 

p = -(1/2M)0!O{1 + v) + O-!v, (81) 

which implies that v is an infinitesimal of the same 
order as O. To see that v is of higher order than 0, 
we substitute the ansatz of Eq. (80) into Eq. (79), 
retaining terms only up to first order in 0: 

0[{1 + V)2 + 1 2J 
(1 + v) 

= 201 + 2 re dt' dO [1 + v(t')t (82) J-oo dt' 

Since the left-hand side of this integral equation has 
no first-order contributions in v, it follows that the 
solution to first order in 0 consistent with the con­
dition O( - 00) = 0 1 is 

vet) = 0, (83) 

establishing the theorem. Equation (80) then asserts 
p( (0) = 02!' leading to 15 = 0 and the result of Eq. 
(77). 

The sudden approximation is used to describe the 
time evolution of systems in which the Hamiltonian 
operator experiences a rapid change during a time 
interval which is short compared to the characteristic 
periods of the system. Such a change might be rep­
resented by a jump discontinuity in the function O(t) 
at a specified instant of time. The sudden theory 
asserts that the state vector remains constant across 
such a discontinuity; the transition amplitudes 
bridging the discontinuity are therefore given by 
simple overlap integrals of eigenstates of the Hamil­
tonian just before and after the discontinuity. This 
result, which is rigorous for instantaneous dis­
continuities, is the basis of the sudden approximation 
for "fast," but not instantaneous, changes in the 
Hamiltonian operator. 

The rigorous transition amplitude of Eq. (19) 
contains all the features of the sudden theory for O(t) 
whose time histories involve jump discontinuities. We 
may easily derive the result of the sudden theory for 
the harmonic oscillator on the basis of a simple 
example. The continuity of let) as an explicit function 
of time is guaranteed by requiring p and p to be 
continuous. The possibility of jump discontinuities 
in the piecewise-continuous Hamiltonian operator 
H(t) is retained by making Ii discontinuous. 

Our example is conveniently based on a representa­
tion of p in the form 

pet) = G1(t)01!, t < 0, 

= G2(t)Y10 2! 

x [cosh 15 + Y2 sinh 15 sin «202/M)t + tp)]!, 

t > 0, (84) 

where G1{t) and G2(t) are continuous functions of 
time with continuous derivatives, possessing the limits 

lim Git) = 1, 
t-+-oo 

(85) 

and the remaining symbols are defined as in Eq. (48). 
Thus p(t) corresponds to a time history with constant, 
positive frequency parameters 0 1 and O2 in the 
remote past and future, respectively, and arbitrary 
behavior at intermediate times. We demand that p 

and p be continuous at t = 0 and retain the possibility 
that p, and thus O(t), experience a jump discontinuity 
at this point that depends on the behavior of the G 
functions. For compactness we introduce the notation 

g1,2 == G1,lO), 

GiO) 

l:!.. == dG1 (0) 
dt 

dG2 CO) 
dt 

(86) 

The continuity conditions at t = 0 determine the 
parameters tp and 15, the latter of which, after some 
algebra, may be written in the form 

cosh b = !(g~02 + g:01 + ~2l:!..2). (87) 
2 g201 g102 g20102 

It is easily verified that the right-hand side of Eq. (87) 
is greater than unity for positive frequencies. Sub­
stitution into the transition probability of Eq. (75) 
yields 

[(g

20 _ g20 )2 + M~2(g~2]n 
(2 )' 1 2 2 1 P _ n. g 

O,2n - 22n( ,)2 ( )2 
n. (g~02 + g;(1)2 + M2l:!.. 2 :: 

X [ 4gigi0 1
0

2 ]!. (88) 

(gi02 + gi(1)2 + M2
l:!..2(:J 

The special case G1 (t) = 1, G2(t) = 1 corresponds to a 
step-function discontinuity in the frequency 0 at 
t = 0, from a constant value 0 1 to a constant value 
O2 , In this case we have l:!.. = 0, and the exact formula 
of Eq. (88) reduces to the usual result of the sudden 
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theory: 

P (sudden) = (2n)! (02 - (1)2n 2(010 Ji
. (89) 

O.2n 22n(n !)2 O2 + 0 1 O
2 
+ 0 1 

The right-hand side of Eq. (89) is, of course, simply 
the modulus squared of the overlap between the 
ground state of the initial oscillator Hamiltonian and 
the 2nth state of the final oscillator Hamiltonian, in 
accordance with the fundamental assertion of the 
sudden theory. The more general transition prob­
ability of Eq. (76) can be calculated similarly. 

IV. APPLICATION TO CHARGED PARTICLE 
MOTION IN A TIME-DEPENDENT ELECTRO­

MAGNETIC FIELD 

A. The Physical System 

We consider a particle of mass M and charge e 
moving in a classical, axially symmetric electro­
magnetic field defined by the vector potential 

A = tB(t)k x r (90a) 

and the scalar potential 

Ie 21e 22 CP=--1](t)r =--1](t)(x +y), (90b) 
2 Mc2 2Mc2 

where r is the position vector, k is a unit vector along 
the symmetry axis, r is perpendicular distance from 
the symmetry axis, x and yare Cartesian coordinates 
perpendicular to the symmetry axis, B(t) and 1](t) are 
arbitrary piecewise-continuous functions of time, and 
c is the speed of light. The potential cp corresponds to 
an axially symmetric, time-dependent uniform charge 
density equal to -(l/21T)(e/Mc2)1](t). The electric and 
magnetic fields are 

E = -Vcp -!A 
c 

= - _e_1](t)(xi + yj) - ~ B(t)k x r (91) 
Mc2 2c 

and 
B = V x A = B( t)k, 

where i and j are unit vectors along the positive x and y 
directions, respectively, and k = i X j. Since the 
axial motion of a particle in these fields is trivial, we 
shall ignore it and treat only the motion perpendicular 
to the symmetry axis. The Hamiltonian for this 
system is 

H = _1_(p _ ~A)2 + ecp 
2M c 

1 2 2 e
2 

(B2 ) = 2M (p", + P,) + 2M c2 4" + 1] 

X (x
2 + y2) + 2~C (yp", - xp,), (92) 

where the operator p = ip", + jPII is the canonical 
momentum of the particle. The only nonvanishing 
commutators between the coordinates and momenta 
are, as usual, 

[x,p .. 1 = [Y,PII1 = iii. (93) 

We introduce cylindrical coordinates rand () and 
their conjugate momenta pr and Pe by the definitions 

r = (x2 + l)i, 

() = tan-1 (~), 

Pr = -21(~ p", + p",~ + l py + Pill) 
r r r r 

(94) 

1 iii 1 
= - (xp", + YPII) - -2 -, 

r r 

Pe = xPII - yp",. 

These operators are Hermitian, and the only non­
vanishing commutators between them are 

(95) 

Expressed in terms of these variables, the Hamiltonian 
given by Eq. (92) is 

H = _1 [2 (pe - ~) (pe + ~)] 
2M Pr + ,2 

e
2 

(B2 ) eB + 2Mc2 "4 + 1] r2 - 2McPe. (96) 

Because of the axial symmetry, Pe is a constant of the 
motion, as is clearly evident from this form of the 
Hamiltonian. The usual wave equation5 can be 
obtained from Eq. (96) by substituting 

P -+- -ili(.£. + .1) 
r or 2r' 

which is the standard coordinate representation of 
the Hermitian operator Pr . 

B. Connection with the Time-Dependent 
Harmmonic Oscillator 

The Cartesian operator variables for the particle 
can be related to variables that satisfy the same 
equations of motion as time-dependent harmonic 
oscillator variables by means of the non canonical 
transformation 

Q = (x + iy) exp [i 2~c fB(t') dt} 

P = ~ (p", + iPII) exp [i _e_ ItB(t') dt']' (97) 
e 2Mc 



                                                                                                                                    

1470 H. R. LEWIS, JR., AND W. B. RIESENFELD 

It is easily verified that the variables Q and P satisfy 

Q=~P, 
Mc 

. e 2 
P = - - Q (t)Q, 

Me 

where Q2(t) is defined by 

Q2(t) = l-B2(t) + 'rI(t). 

(98) 

(99) 

Equations (98) are identical in form to Eqs. (31) for 
the time-dependent harmonic osciIIator. However, we 
emphasize that the transformation given by Eqs. (97) 
is not canonical, because Q and P satisfy the commuta­
tion relation [Q, P] = O. Nevertheless, the trans­
formation can be used to obtain an invariant for the 
charged particle because the I defined by Eq. (44) for 
the osciIIator is an invariant as long as q and p 
satisfy Eqs. (31). It is not necessary that the canonical 
commutation relation, Eq. (30), be satisfied, nor that 
q and p be Hermitian. The invariant that we obtain 
from Eq. (44) (and also denote by I) is 

let) = ~ k-2(x + iy)2 + (~e)2 

X [~ p(p", + ipi/) - p(x + iy)r} 

X exp [i ~e fB(t
l

) dt} (100) 

where p is any particular solution of 

(~e) p + Q2(t)p _ p-3 = 0, (101) 

with Q2(t) given by Eq. (99). It is easily verified by 
direct computation that the I defined by Eq. (100) 
satisfies 

J == 01 + 1- (I H] = 0 at iii ' 

with H given by Eq. (92). The invariant I is neither 
Hermitian nor anti-Hermitian, but we shall derive 
from it a Hermitian invariant to which the theory 
discussed in Sec. II is applicable. 

C. Derivation of a Hermitian Invariant9 

We introduce time-dependent Cartesian coordinates 
and momenta such that the explicit time dependence 
of I(t) is contained solely in a phase factor. These 
coordinates and momenta are defined by 

1 
X = -x, 

p 

1 
Y = - y, 

p 

Px = pp", - Mpx, P y = PPy - Mpy. (102) 

In order that the new variables be Hermitian, we 
choose p to be a real solution of Eq. (101). The 
transformation is canonical because the only non­
vanishing commutators between the variables are 

(X, Px ] = (Y, Py ] = iii. (103) 

Expressed in terms of the new variables, I(t) can be 
written as 

let) = ~ {(X + iy)2 + (~r(px + iPy )2} 

X exp [i ~e fB(t
l

) dt} (104) 

Because of the axial symmetry, it is also convenient 
to introduce cylindrical operators associated with 
X, Y, Px , andPy : 

R = (X2 + y2)! = ! r, 
p 

o = tan-
1 (~) = tan-1 e), 

PR = ~(!Px + px! + r Py + Py X) (l05) 
2R R R R 

1 iii 1 
= -(XPx + YPy) - - - = PPr - Mpr, 

R 2 R 

Po = XP y - YPx = XPy - yp",. 

This transformation is also canonical because, as 
before, the only nonvanishing commutators are 

(106) 

In terms of these operators, I(t) can be written as 

I(t) = Hexp [2i(O +2~e fB(t
l

) dt
l

) ]}(C + iD), 

(107) 

where C and D are Hermitian operators given by 

C = R2 + (~r(pk _ (Po +~: -tli), 
D = (~r(Po + 1i)(PRi + i PR). (108) 

Equation (07) can also be rewritten in the similar 
form 

I(t) = i(CI + iDI ) exp [2i( 0 + 2~c fB(t
l

) dt
l

) J. 
(109) 

where C1 and Dl are obtained from C and D, respec­
tively, by replacing (Po + Ii) by (Po - Ii). 
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From Eqs. (107) and (109) it follows that the 
Hermitian operators It I and lIt are invariants that 
are independent of 0 and differ from each other only 
by a constant operator depending on Po. Motivated by 
results for the corresponding classical system,9 we seek 
to construct a O-independent invariant of biquadratic 
form in R, PR , and R-l which can be written as a 
linear function of It I: 

where f3 and yare Hermitian constant operators that 
may dependonpo but not on e,PR,or R. Thenumerical 
factor multiplying It I in Eq. (110) is immediately 
obtained from the normalization of I given by Eqs. 
(107) and (108). Use of the operator lIt in Eq. (110) 
would merely have changed the value of y. The 
solution of Eq. (110) is 

f3 = (~)2(PO - ih)(po + th), 

(C)2 2 Y = 4 ~ (Po + h) . (111) 

Therefore the operator 

I~ = {R2 + (~)lp~ + (Po - th~~o + th)]f (112) 

is the desired biquadratic invariant. Moreover, direct 
calculation shows that the operator II [defined as the 
inside of the curly brackets of Eq. (112)] is itself a 
Hermitian invariant, i.e., it satisfies Eqs. (1) and (2) 
for the Hamiltonian of Eq. (96). 

Finally, instead of working with h directly, we 
define another Hermitian invariant K by 

where 

K = Hlel/c)Il - tspo 

= _C_[p2 + (Po - tli)(po + th)] . 
41el R R2 

lei R2 1 + - - "2sPo, 
4c 

s = ellel. 

(113) 

(114) 

The form of K is identical to the form of the Hamil­
tonian for a particle moving in a time-independent 
magnetic field [see Eq. (96)]. The general theory 
developed in Sec. II is applicable to K, and the 
eigenvalues and eigenvectors of K can be found 
elegantly by operator methods. 

9 This derivation is closely related to a derivation of an analogous 
invariant for the corresponding classical system. The treatment of 
the classical system is given in H. R. Lewis, Jr., Phys. Rev. 172, 
1313 (1968). 

D. Eigenvalues and Eigenstates of K 

Since the invariant K has the form of the Hamil­
tonian for a particle moving in a time-independent 
magnetic field, its eigenvalues and eigenvectors are 
known. The usual derivation4•5 is in terms of confluent 
hypergeometric functions. However, it is possible to 
derive the eigenvalues and eigenvectors by purely 
operator techniques. This derivation, which we 
present here, was motivated by the work of Infeld,lO 
although his method differs somewhat in detail from 
ours. 

We define operators a, at, b, and bt by 

b = !(~)!{PR - i[~ R + (Po + ih)]}, 
2 lei h c R (115) 

bt 
= H (1:lchtr{PR + i[~ R + (Po ~ th)]}, 

b 
-iO t iObt a=e,a=e. 

The commutator of a with at is 

[a, at] = s. (116) 

In terms of a and at, the expression for K can be 
written as 

K = haat - sCpo + til) 
= Ilata - sCPo - til). (117) 

The commutators of K with a and at are 

[K, a] = [K, at] = 0, (118) 

which implies that operation with a or at on an eigen­
state of K produces another eigenstate of K with the 
same eigenvalue. The commutators of Po with a and at 
are 

[Po, a] = -Ila 
and 

(119) 

Therefore, a and at are, respectively, lowering and 
raising operators for the eigenvalues of Po . 

Since K and Po commute, we can define simultaneous 
eigenstates of these two operators. Let Ij, n) denote 
a normalized eigenstate for which the eigenvalue of 
K is (j + t)1l by definition, and the eigenvalue of Po 
is nh, where n is an integer: 

(j,nlj,n)=l, 

K Ij, n) = (j + !)h ij, n), (120) 

Po Ij, n) = nlllj, n). 

10 L. lnfeld, Phys. Rev. 59, 737 (1941). Later developments of this 
interesting method can be found in the following references: (a) 
T. lnui, Progr. Theoret. Phys. (Kyoto) 3, 168, 244 (1948); (b) L. 
lnfeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951); (c) A. Joseph, 
ibid. 39, 829 (1967); (d) c. A. Coulson and A. Joseph, ibid. 39, 
838 (1967). 
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Because a and at are lowering and raising operators 
for the eigenvalues of Pe' the states Ij, n - 1) and 
Ij, n + l) are proportional to a Ij, n) and at Ij, n), 
respectively. Therefore, the requirement that all 
admissible states be normalizable means that the 
matrix elements (j, nl ata Ij, n) and (j, nl aat Ij, n) 
must be nonnegative: 

(j, nl ata Ii, n) = 1 (j, nl K + S(Pe - iii) Ii, n) 
Ii 

= (j + t) + (n - i)s ~ 0, 

(j. nl aa t Ii. n) = ~ (j, nl K + SCPo + iii) Ii, n) 

= (j + t) + (n + i)s ~ O. (121) 

From this we immediately conclude that j must be an 
integer; otherwise, by repeated application of a or at 
we could obtain an unnormalizable state from an 
admissible state. The first of the inequalities (121) is 
the more restrictive for s = 1 and the second is the 
more restrictive for s = -1. Therefore we can replace 
these inequalities by the single inequality 

j+ ns ~ O. (122) 

We can restrict the values of j further by expressing 
Kin terms of X, Y, Px , and Pyas 

and 

Polj,j) = jli Ij,j), 

at Ij,j) = 0, 
} for s = -1. (125b) 

All other admissible states are obtained by repeated 
operation with at on Ij, -j) (for s = 1) or with a on 
Ij,j) (for s = -1). Finally, by using Eqs. (121) and 
making a suitable choice of relative phases for the 
states, we obtain the following recursion formulas for 
the admissible normalized eigenstates: 

Ij, n + 1) = (j + n + I)-lat Ij, n) for s = 1, } 

Ij. n - I) = (j - n + 1)-ta Ij. n) for s = -1. 

(126) 
E. Calculation of the Phases 

The matrix element (j, n'l ili(%t) - H Ij, n) van­
ishes for n' :F n because Po commutes with a/at and 
with H. Therefore the state e'rtln Ij. n) will be a 
normalized solution of the Schrodinger equation if 
we choose oc;n(t) as a solution of Eq. (15): 

doc in . • a 
Ii - = (J, nilli ;- - H Ii. n). 

dt ut 
(15') 

We begin by finding a recursion formula for the 
right-hand side of Eq. (15') for s = 1 and for s = -1. 
For s = 1 we have 

(j, nl ili~ - H Ii, n) 

K = 4 ~el[ (Px + ~ yr + (PY - ~ x)]. (123) at 
= -. _1_(j, n - 11 a(ili~ - H)a t Ii, n - 1) 

Thus we see that 

(j + i)1i = (j, nl K Ij. n) 

is the expectation value of the sum of the squares of 
two Hermitian operators and therefore cannot be 
negative. 

With these results we can write the allowable 
solutions of the inequalities (121) as 

j = I + t<lnl - sn), (124) 

where I is an integer that can assume any nonnegative 
value (0, 1, 2, .. '). For fixed j and s = 1 the mini­
mum value of n that is allowed is - j, whereas the 
maximum value of n allowed for fixed j and s = -1 
is j. Therefore the state Ij, -j) for s = 1 and the 
state Ij,j) for s = -1 are determined by 

Pelj. -j) = -jli Ij, -j),} f 1 
ors = , 

alj, -j) = 0, 
(125a) 

J + n at 
= -. _1_ (j, n - 11 {(iii ~ - H)a 

J + n at 
+ [a. iii :t - H J}a t Ii, n - 1) 

= (j, n - 11 iii :t - H Ii, n - 1) 

+ -. _1_ (j, n - 11 [a. ili.E. - HJa t Ii, n - O. 
J + n at 

Similarly, for s = -1 we obtain 

(j, nl ili~ - H Ii, n) at 
= (j, n + 11 iii ~ - H Ii, n + 1) at 

(127) 

+ -. _1_ (j, n + 11 [at, iii E.. - HJa Ii, n + 1). 
J - n at 

(128) 
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We only need calculate the commutator [a, ili(a/at) -
H] that appears in Eq. (127) because the commutator 
in Eq. (128) is related to it by 

[at, iii :t - H] = -[a, iii :t - Hr· 
To evaluate [a, ili(a/at) - H] we use the expressions 

for H and a in terms of r, pr , and Pe. The expression 
for H is given by Eq. (96), and the expression for a is 

1 ( se \! 
a ="2 lelliJ 

X {PPr - Mpr - {~~ + P (Pe ~ tli)]}e-ie. 

(129) 

The commutator may be expressed in the form 

[a, iii :t - H] = - ilia, (130) 

where the right-hand side refers to the total time 
derivative operator. The evaluation is straightforward 
and particularly simple if one uses the Heisenberg 
equations of motion in evaluating a. The result is 

[a, iii ~ - H] = ~(~ - .1) a 
at Me 2 p2 

and (131) 

[at, ili~ - H] = - ~(~ - !)at . 
at Me 2 p2 

We now substitute the commutators given by Eqs. 
(131) into Eqs. (127) and (128) and use Eqs. (121) to 
obtain 

(i, nl ili~ - H Ij, n) 
at 

= (i, n - 11 iii ~ - H Ij, n - 1) + ~(~ - .1) 
at Me 2 p2 

for s = 1 (132) 

and 

(i, nl ili~ - H Ij, n) 
at 

= (i, n + 11 iii ~ - H Ij, n + I) - ~(~ - 1.) 
at Me 2 p2 

for s = -1. (133) 

We are still free to choose the phase of Ij, -j) for 
s = 1 and the phase of Ij, j) for s = -1 arbitrarily. 
We choose these phases in such a way that the 
solution of Eqs. (132) and (133) is 

(i, nl iii ~ - H Ij, n) 
at 

= [n + (j + t)S]~(~ - !) . 
Me 2 p2 

. (134) 

The expression for the phase lX;n(t) that we obtain 
by substituting the matrix element given by Eq. (134) 
into Eq. (15') is 

lX;n(t) = [n + (j + !)s]...!!..- ftdt'[tB(t') - p-2(t')]. 
Me 

(135) 

Using Eq. (135), we may construct the time­
dependent Schrodinger state vector according to the 
prescription of Eq. (16), and hence we may compute 
transition probabilities for processes analogous to 
those treated in Sec. III. It should be pointed out that 
the definition of Eq. (99) may lead to both positive 
and negative values of .Q2(t). The latter situation arises 
when the sign of the particle charge is the same as the 
sign of the background charge density, provided that 
the instantaneous Larmor frequency leBI/2Me is less 
than the "electrostatic oscillation frequency" (21Tea/ 
M)!, where a is the background charge density. Under 
these circumstances the asymptotic form for real pet) 
given by Eq. (48) has to be modified appropriately. 
The transition probability formalism of Sec. III is 
directly transcribable to the present case of charged 
particle motion only if .Q2(± 00) is positive. 
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The Mth power of an N x N matrix is expressed via the Cayley-Hamilton theorem as a linear combi­
nation of the lower powers of the matrix. The polynomial coefficients of the lower powers of the matrix 
are expressed in terms of polynomials in N variables, termed the generalized Lucas polynomials. The 
independent variables in the generalized Lucas polynomials are the traces of the lower powers of the 
matrix. 

1. INTRODUCTION 

Many problems in applied mathematics require a 
knowledge of the Mth power of an N x N matrix. 
If purely numerical results are desired, then the well­
known Sylvester interpolation schemel is probably 
the most elegant and efficient algorithm. Unfortu­
nately, the scheme requires a knowledge of the eigen­
values of the matrix under consideration and thus is 
not particularly useful for obtaining explicit algebraic 
results in terms of the matrix elements. An alternative 
method is to employ the Caley-Hamilton theorem, 
along with continued matrix multiplication, in order 
to exhibit the Mth power of the matrix as a linear 
combination of lower powers of the matrix. 

We will show in the present paper that the coeffi­
cients of the lower powers of the matrix are poly­
nomials in the traces of the powers of the matrix. 
Furthermore, these polynomials (in many variables) 
are natural generalizations of the Lucas polynomials 
employed in number theory. Various properties of 
these polynomials are listed, and the Mth power of an 
N X N matrix is explicitly written in terms of these 
generalized Lucas polynomials. 

2. CAYLEY-HAMILTON THEOREM 

If X be an N x N matrix, the Cayley-Hamilton 
theorem states that X satisfies its own characteristic 
equation 

N 

2, (-l)ltPt'Xl-l = 0, XO == I, (1) 
1=0 

where cf>:N) is the lth symmetric polynomial formed 
out of the eigenvalues of X. Note that tP~N> == det X. 

Rather than deal with the eigenvalues of X, let us 
work with the traces of Xl, aiN) == Tr (X!), where N 

• On lea,ve of absence from Itek Corporation, Lexington, 
Massachusetts. 

1 F. R. Ganthmacher, The Theory of Matrices (Chelsea Publishing 
Co., New York, 1959), Vols. I and 2. 

denotes the size of the matrix. It is a well-known fact 
that if X is N x N, then a set of invariants of X is 
aiN) (l = 1, 2, ... , N). Any value of aiN> for I > N 
can be expressed in terms of the N invariants 
a~N), ... , aJvV). The connection between tPl and ul is 
outlined in Ref. 2 and is given by the following 
sequence of relations: 

tPi = aI' 
2tP2 = tPi UI - U2, 

3tP3 = tP2al - tPi a2 + U3, 

4tP4 = tPaal - tP2a2 + tPIUS - U4' 

5tPs = tP4aI - tP3U2 + tP2U3 - tPlU4 + as, 

These equations can be sequentially solved for 
UI, U2' ... ; the final result is 

tPl = Ul , 

tP2 = t(ui - (2), 

tPa = t(u~ - 3ala2 + 2(3), 

tP4 = 4\(2at - 9a;a2 + 16ulu3 + 3a~ - 12a4), 

tPs = 2lo(2a~ - 17a~u2 + 40U;U3 + 27ulU~ 
- 60a1a4 - 40a2a3 + 48(5), 

We employ Eq. (1) in our quest for determining the 
Nth power of an M x M matrix, by continued post 
multiplication of Eq. (1) by X. If, for example, 

2 H. Weyl, The Classical Groups (Princeton University Press, 
Princeton, N.J., 1946). 
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N = 3, we easily obtain the sequence 

Xa = f1 X2 - f2 X + fa l, 

X4 = (fi - f2)X 2 + (fa - f1f2)X + f1fa l, 

x5 = (f~ - 2f1f2 + fa)X2 

+ ( -fif2 + f1fa + f~)X + fa( fi - f2)1, 

We can always express the Mth power of an N X N 
matrix (M ~ N) in terms of a set of polynomials in 
the N variables f1' f2' ... , fN multiplied by XN-1, 
XN-2,'" ,X, I. 

The case N = 2 frequently occurs in a variety of 
physical problems (iterated networks, thin films, etc.) 
and the special case of unit determinant (i.e., f~2) = I) 
has been exhaustively studied.a The general case, 
f~2) ¥- 0, was treated independently by Herpin4 and 
Barakat5 ; they showed that the appropriate polyno­
mials in two variables are the Lucas polynomials. 
Extension of the analysis to N > 2 is the subject of 
the present note. 

3. GENERALIZED LUCAS POLYNOMIALS 

Lucas,6 in his work on number theory, studied a 
class of polynomials in two variables. The polynomial 
is termed Un(P, Q) and is defined by the recurrence 
relation 

together with the initial conditions Uo = 0, U1 = 1. 
In the special case Q = 1, these polynomials reduce 
to the Chebyschev polynomials of the second kind 
Sn(P), as defined in Lanczos 7 ; in fact, 

U (P 1) = S _ (P) = {Sin n(}/sin (), 
n' 711 'h A./·hA. sm n,/", sm '/"', 

P == 2cos (), 

P == 2cosh f, 
n ~ 1. (3) 

The former expression holds for IPI ~ 2, the latter 
for IPI ~ 2. With Q = -1, the Lucas polynomials 
are equivalent to a set of polynomials, termed the 
Fibonnacci polynomials,8.9 which have found some 
application in the theory of ladder networks. 

3 V. Moweny, IRE Trans. Circuit Theory 11, 232 (1964). 
4 A. Herpin, Compt. Rend. Acad. Sci. Paris 22S, 17 (1947). 
5 R. Barakat, J. Math. & Phys. 43, 332 (1964). 
• E. Lucas, Theorie des nombres (Gauthier-Villars, Paris, 1891). 
7 C. Lanczos, Applied Analysis (Prentice-Hall, Inc., Englewood 

Cliffs, N.J., 1956). 
8 E. Jacobsthal, Sitzungsber. Berliner Math. Ges. 17, 43 (1919). 
• S. Basin, Math. Mag. 37,83 (1964). 

An explicit expression for Un(p, Q) is 

Un+l(P, Q) = pn _ (n ~ 1)pn-2Q 

+ (n ~ 2)pn-4Q2 + .. " (4) 

the series terminating when the exponent of P or Q 
is negative. 

Motivated by the discussion contained in the 
previous section, we introduce a generalization of the 
Lucas polynomials to a class of polynomials (here­
after termed generalized Lucas polynomials) in N 
variables, namely U~"l) (rP1' rP2"" ,rPN)' This func­
tion is defined by the recurrence relation 

U~j.( f1' f2' ... , rPN) 
A. U (N) A. UrN) + A. UrN) = '/"'1 n+N-1 - '/"'2 n+N-2 '/"'a n+N-3 
- f4u~!f,.j.-4 + ... ± rPNU~N) (5) 

together with the initial conditions: 

UrN) = UrN) = ... = UrN) = ° UrN) = 1 o 1 N-2' N-1 . 

N = 2, of course, is the usual Lucas polynomial 
situation. The first members of the polynomials u~a), 
U~4), and U~5) are listed in Table I. Examination of 
Table I and simple induction yields the reduction 
formulas 

U~N)( rP1' f2' ... , fN-1, 0) 

= u~1'!.11)( f1' f2' ... , f N-1) , 

U~N)( f1' f2' ... , rPN-2' 0, 0) 

= U~1'!.22)( f1' f2' ... , f N-2) , (6) 

U~N)( f1' 0, ... , 0, 0) = rP~-N+l. 

Although we were unable to obtain explicit expres­
sions for general N, we found that uta) could be 
expressed in closed form as 

U ~a~2( f1' rP2' fa) 

= U~~l( rP1' f2) 

+ ~ ~ (_I)!-k( 1) (n - 1 - k) f~-2!-kf~-kf~, 
k=ll=k k I 

(7) 

subject to the convention that if any exponents of 
f1' rP2' rPa are negative, then the term is taken to be 
zero. 

A closed form for UrN) is desirable, but it is just as 
easy to generate the polynomial via Eq. (5). In fact, 
Eq. (5) is ideally suited for programming on a com­
puter using algebraic routines. 
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TABLE I. First members of the polynomials U~3), u~'), and U~5). 

n = 3,"',8 

U~3) = </>1 

U~3) = </>~ - </>2 

U~3) = </>~ - 2</>1</>2 + </>3 

U:3
) = </>~ - 3</>~</>2 + 2</>1</>3 + </>: 

U:3
) = </>~ - 4</>~</>. + 3</>~</>3 + 3</>1</>: - 2</>2</>3 

U~3) = </>~ - 5</>~</>2 + 4</>~</>a + 6</>~</>: - 6</>1</>2</>3 - </>: + </>: 

n =4,··· ,9 

U~') = </>1 

U~') = </>~ - </>. 

U~') = </>~ - 2</>1</>2 + </>3 

U~') = </>~ - 3</>~</>2 + 2</>I</>a + </>: - </>. 

U~') = </>i - 4</>~</>. + 3</>~</>s + 3</>1</>: - 2</>1</>' - 2</>2</>' 

U~') = </>~ - 5</>~</>2 + 4</>~</>s + 6</>~</>: - 3</>~</>. - 6</>1</>2</>3 - </>: + 2</>2</>' + </>: 

n = 5,···,10 

U~5) = </>1 

U~5) = </>~ - </>2 

U: 5
) = </>~ - 2</>1</>2 + </>. 

ut) = </>~ - 3</>~</>2 + 2</>I</>S + </>: - </>. 

U~5) = </>i - 4</>~</>2 + 3</>~</>3 + 3</>1</>: - 2</>1</>' - 2</>'</>3 + </>5 

uig) = </>~ - 5</>:</>2 + 4</>~</>3 + 6</>~,g - 3</>~</>. - 6</>1</>2</>3 + 2</>1</>5 - </>: + </>: + 2</>.</>. 

4. Mth POWER OF MATRIX 

Armed with a knowledge of the generalized Lucas 
polynomials, Eq. (1), and a large measure of patience, 
we proceeded, by a tedious induction, to prove that the 
Mth power of an N x N matrix (M ~ N) is given by 

the lower powers of X in terms of linear combinations 
of the appropriate generalized Lucas polynomials. 

In the special cases N = 3, 4, Eq. (8) becomes 

X M - U(3)X2 + [U(3) _ A.. U(3)]X + A.. U(3) I 
- M M+1 '1'1 M '1'3 M-l' (9) 

XM = Uc:I)XN- 1 + [Uc:I~l - <PIUc:I)]XN- 2 

+ [<P3Uc:I~1 - <P4Uc:I~2 
+ ... (±)<PNUc:I~N+2]XN-3 
+ [-<P4Uc:I~1 + <P5Uc:I~2 
- ... (±)<PNU(j:J!_N+3]XN- 4 

+ [<P5U<Jf~1 - <P6U<Jf~2 
+ ... (±)<PNUc:I~N+4]XN-5 
+ ... + [<PNUc:I~l]1. (8) 

We have thus expressed the polynomial coefficients of 

XM - U(4)X3 + [U(4) _ A.. U(4)]X2 
- M M+1 '1'1 M 

+ [<P3 U<tJ-l - <P4 U<tJ-2]X - <P4 U<:J.-ll. (10) 

As an application of these formulas, we have 
employed the case N = 3 in a study of the coupled 
linear differential equations describing the traveling­
wave-tube parametric amplifier.1o The case N = 4 has 
been applied to some problems in the theory of non­
image-forming optical instruments described by 
Mueller matrices.l1 

10 To be published. 
11 To be published. 
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Functions over cosets are used to obtain Clebsch-Gordan coefficients of induced unitary representa­
tions of noncompact groups. In particular, the Clebsch-Gordan coefficients of the Poincare group are 
obtained using functions over cosets. It is also shown how the Clebsch-Gordan coefficients of other 
groups having induced irreducible representations, such as the Lorentz group, may be obtained. 

INTRODUCTION 
One of the problems which has arisen in the applica­

tions of noncompact groups to elementary particle 
physics is the explicit construction of the Clebsch­
Gordan or coupling coefficients defined relative to 
some complete set of commuting observables. 
In higher-symmetry schemes, such as U(6, 6) and 
In SL(6, C),l the Clebsch-Gordan coefficients could 
be obtained because finite-dimensional representations 
of these groups were used; these groups, however, 
were plagued, among other things, by the lack of 
unitarity arising from the finite-dimensional repre­
sentations. In working with higher symmetry schemes 
it is thus important to obtain the Clebsch-Gordan 
coefficients for the unitary (and therefore infinite­
dimensional) representations of noncompact groups. 

There are instances where the Clebsch-Gordan 
coefficients of the unitary representations of non­
compact groups have been obtained. Jacob and Wick2 

obtained the Clebsch-Gordan coefficients for the 
Poincare group, and since their work appeared many 
authors3 have obtained the Clebsch-Gordan coeffi­
cients of the Poincare group using different techniques 
than those of Jacob and Wick. The Clebsch-Gordan 
coefficients for the homogeneous Lorentz group have 
also recently been obtained,4 at least for the so-called 
principal series of representations. 

In both of these groups, the unitary irreducible 
representations can be written as induced representa­
tions, in the sense in which Mackey5 has defined this 
notion. Mackey has also shown how it is possible to 
decompose the tensor products of induced representa-

1 A. Pais, Rev. Mod. Phys. 38, 215 (1966); T. Fulton and G. 
Wess, Phys. Letters 15, 177 (1965); A. Salam, R. Delbourgo, and 
J. Strathdee, Proc. Roy. Soc. (London) A284, 146 (1965). 

• M. Jacob and G.-C. Wick, Ann. Phys. (Paris) 7, 404 (1959); 
G.-C. Wick, Ann. Phys. (Paris) 18, 65 (1962). 

3 See P. Moussa and R. Stora [Lectures in Theoretical Physics 
(University of Colorado Press, Boulder, Colorado, 1964), Vol. VIla] 
for a list of references preceding their work. See also M. Kummer, 
J. Math. Phys. 7, 997 (1966). 

'R. Anderson, L. R. Raczka, M. A. Rashid, and P. Winternitz, 
"Clebsch-Gordan Coefficients for the Lorentz Group. I," IAEA 
Preprint, IC/67/S0, Trieste, Italy, 1967. 

• G. W. Mackey, The Theory of Group Representations (Dept. of 
Mathematics, The University of Chicago, Chicago, Ill., 1955). 

tions into direct integrals over double cosets of groups 
having induced irreducible representations. One ofthe 
difficulties in utilizing Mackey's theory in elementary 
particle physics is that the spaces on which the induced 
repres.entations are defined are fairly abstract as far as 
the physicist is concerned. In this paper it will be 
shown how the use offunctions over cosets enables one 
to make a connection between the abstract notion of 
induced representations and the Clebsch-Gordan 
coefficients of the group. Roughly speaking, the 
irreducible induced representations of noncompact 
groups are defined on function spaces whose functions 
have as arguments coset labels of the group. Let [X] 
be a set of irreducible representation labels of a group 
G and let {x} be a set of eigenvalues chosen from a 
complete set of commuting observables of G. Then the 
quantity 

D~~;(G) == ([X]x'J U(G) J[X]x) 

can be thought of as a function over the group; here, 
U(G) is a unitary irreducible representation of G. 

For example, 

D~}m(R) = (U]m'J U(R) JU]m) 

is a function over the three-dimensional rotation 
group, with R a rotation, and D~}m(R) a "matrix 
element" or a Wigner function. 6 

In particular, D~~~(gc) can be thought of as a func­
tion over a coset; here gc' an element of G, labels 
right cosets of G/H, with H a subgroup of G to be 
specified later. If the direct-integral decomposition 
of tensor products of functions defined over co sets is 
known, then the tensor-product decomposition of 
D~~~(gc) can be obtained. But it will be shown that 
D~~~(gc) can be thought of as a concrete realization of 
the basis elements J [X]x) and the Clebsch-Gordan 
coefficients are precisely the coefficients which reduce 
the tensor products of basis elements J [Xl]X1 ) J [X2]X2). 

In Sec. I, the main ideas needed for getting the 
Clebsch-Gordan coefficients via functions over co sets 

6 E. P. Wigner, Group Theory (Academic Press Inc., New York, 
1959). 
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will be discussed; in order to present these ideas it will 
be necessary briefly to review the notions of induced 
representations, tensor products, and double-coset 
decompositions. As a simple example, the ideas 
sketched in Sec. I will be applied in Sec. II to the 
group P2' the Poincare group involving only one 
spatial dimension. 

In Sec. III, the Poincare group involving three 
spatial dimensions will be discussed; in particular, 
its unitary irreducible representations will be defined 
on functions over its cosets. The tensor-product de­
composition for positive-mass representations of the 
Poincare group will be given in Sec. IV. In this section, 
our work will draw on that of Moussa and Stora3 

and Rideau,7 who have used Mackey's induced­
representation theory to obtain the tensor-product 
decomposition of the Poincare group. Finally, in Sec. 
V, the Clebsch-Gordan coefficients of the Lorentz 
group will be briefly discussed. 

I. REVIEW OF INDUCED REPRESENTATIONS, 
TENSOR PRODUCTS, AND DOUBLE COSETS; 

THE CLEBSCH-GORDAN COEFFICIENTS 

In this section the relevant parts of Mackey's 
theory of induced representations5 will be briefly 
summarized, in order to see how this theory can be 
used to obtain Clebsch-Gordan coefficients. Consider 
a group G and let G be decomposed into right co sets 
with respect to a subgroup H: 

(1) 

with ge an element of G labeling the right co sets. 
Denote a representation of H by Je, defined on a 
vector space cu,(Je), and consider that class of func­
tionsfmapping G into cu,(Je) which have the property 
f(hg) = Je(h)f(g), with h an element of Hand g an 
element of G; this class of functions forms a new 
vector space 

"lJ(Je) = {f If(g) E cu,(Je),j(hg) = Je(h)f(g), 

for all h in H, g in G} (2) 

on which a representation called the induced repre­
sentation is defined: 

(3) 

Notice that the condition f(hg) = 3e(h)f(g) means 
that it is possible to think off(g) as a function over a 
coset, since f(g) = Je(h)f(ge). Further, by restricting 
f(ge) to those functions which are square integrable 
over ge' "lJ(Je) becomes a Hilbert space and U(go) 
becomes a unitary representation.s For the groups 

7 G. Rideau, Ann. Inst. Henri Poincare 3,339 (1965). 

considered in this paper, the measures needed to get 
the norms of/(ge),8 

11/112 = J dge 1/(ge)12 < co, (4) 

are given in Refs. 7 and 9. 
Consider now induced representations on two 

Hilbert spaces "lJ(Je1) and "lJ(Je2). The tensor-product 
space "lJ(Je1) @ (Je2) is the Hilbert space of functions 
F(gel , ge.) with norm 

11F112 = I dgel dge.lF(gel' ge.)12 < co (5) 

and the induced representation on this tensor-product 
space is 

U(go)F(gel , ge.) = F(gelgo, ge,go)· . (6) 

Assume that "lJ(Je1) and "lJ(Je2) are irreducible 
spaces of G; the problem is to reduce the reducible 
tensor-product space into a direct integral of subspaces, 
each subspace being an irreducible subspace. Several 
techniques will be used in this paper to effect the 
direct-integral decomposition; in particular, Mackey 
has shown5 that a partial decomposition of the 
tensor-product space can be obtained via a double­
coset decomposition. 

However, assume for the moment that the direct­
integral decomposition is known and that !r.x. q] (ge) is 
an element of the irreducible subspace, with norm 

II./i:x,q]11 2 = I dge l./i:xq](ge)12 < co; 

[x, 1]] are the irreducible-representation labels and the 
degeneracy labels, respectively; 1] is needed whenever 
the multiplicity is greater than unity. Then, 

(7) 

is a direct integral over [X, 1]] with weight function 
d[X, 1')]. 

Now let S (the notation is that of Ref. 10) be the 
operator carrying functions from the tensor-product 

8 Actually, the norm off, 

is only correct when one-dimensional representations of the inducing 
subgroup are being considered; in cases where higher-dimensional 
representations of the inducing subgroup are used, the definition of 
the norm is modified to be 

S dge II ftge) 11.k ' 
where the subscript Je refers to the length of the vector fin <tY(Je). In 
the case of the Poincare group, the representations of SU(2) are of 
dimension 2S + 1 and, thus, it is necessary to use the more general 
definition of the norm off. 

• M. A. Naimark, Linear Representations of the Lorentz Group 
(The Macmillan Company, New York, 1964). 

10 M. A. Naimark, Am. Math. Soc. Trans. (2) 36, 101 (1964). 
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space 'lJ(JeI ) @ 'lJ(Je2) to the direct-integral sub­
spaces, that is, 

S: F(gOl' go.) -')0 ![x,'Il(gc) = SF(gCl' gc.)' (8) 

Then, since![x.~](gc) is an element of the Hilbert space 
(4), one can consider the inner product 

(f(x] ,!r.x,I/]) = f dgc!iil(gc)!r.x.'ll(gc) 

= f dgc![:](gc)[SF(gcl' gc.)]· (9) 

Up to this point, the functions !(ge) have been 
square integrable. Consider, however, as functions 
over cosets (which in general will not be square 
integrable), 

where [X] denotes a set of irreducible representation 
labels and x', x are eigenvalues of a complete set of 
commuting observables. Choose !~xlge) to be ~~~(gc) 
and F(gcI ,gc.) to be D;~~I (gcl)D~!~;2 (ge.)' Since D~~;(gc) 
can be thought of as a concrete realization of I [X], x), 
the Clebsch-Gordan coefficients are proportional to the 
"overlap"betweenD[~](g )andS{D[x}l (g )D[X,.] (g )}: re x C Xl X!1 Cl X'2 Z2 C2 

([x]x; r; I [XI]XI ; [X2]X2) 

X !X( D~~;(gc), S{ D~~~;l(gCI) D~~~~.(gC2)}) 

= N f dgcD~~~·(gc)SD;~~;I(gCI)D~~~"'2(gC2)' (11) 

with N a normalization factor. Thus, ifit is possible to 
find S and calculate D~~;(gc), it should be possible to 
get the Clebsch-Gordan coefficients from Eq. (11). 

To find the operator S we first decompose F(gcI ,gOg) 
into a direct integral over double cosets. That is, we 
consider the outer product groupS of G, the set of 
ordered pairs of elements {(gl' g2)} = (GI , G2), with 
gi and g2 arbitrary elements of G. This outer-product 
group can be decomposed into right co sets with 
respect to the HI and H2 subgroups: 

(12) 

Now a subgroup of (G1 , G2) is the "diagonal" 
group G itself, consisting of elements (g, g) with g an 
arbitrary element of G. We wish to write a double­
coset decompositionll of (G1 , G2) with respect to 
(HI' H 2) and (G, G): 

(G1 , G2) = U (HI, H 2)(e, gD)(G, G), (13) 
D 

11 A double coset is a subset ofa group G of the form HIgH., with 
HI and H. subgroups of G and g an element of G. 

where e is the identity element of G and gD is the se 
of elements of G labeling the double cosets. 

Mackey has shown that the induced representatiOl 
defined on the tensor-product space (6) is equivalen 
to induced representations defined on subspace 
labeled by the double cosets (13). The inducinl 
subgroup is given by 

HD = (e, gD)-I(Hu H2)(e, gD) () (G, G) 

= (HI' gi/H2gD) () (G, G) 

= Hl () g"IlH2gD (14 

and functions!D(G/HD) carry the induced representa­
tions. Further, Mackey shows what the measure is or 
the double-coset labels so that 

(15: 

Usually the double-coset decomposition does n01 
result in irreducible subspaces and it is necessary to 
decompose further the double-coset subspaces. The 
techniques for doing so will vary from group to 
group, but the end result will be to have a direct­
integral decomposition of the kind given in Eq. (7). 

II. THE CLEBSCH-GORDAN COEFFICIENTS OF 
THE TWO-DIMENSIONAL POINCARE GROUP 

As a simple application of the technique outlined in 
the previous section, we will obtain the Clebsch­
Gordan coefficients for the two-dimensional Poincare 
group consisting of transformations 

(Z,') = (C~Sh (J sinh fJ) (z) + (az) 
t smh {J cosh (J t at' (I 6) 

where (~~) are arbitrary space-time translations. 
Equation (16) can be rewritten as 

and, finally, as a matrix group 

P2 = {(~ ;)}, A = C:~: :::~~), 
(I 8) 

All of the unitary irreducible representations of P
2 

can be written as induced representations,12 induced 
by the subgroup 

H = {(~ ~)} (19) 

12 See Ref. 5, p. 165ff. 
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(I is the identity matrix of A) having representations 

Je(a) == eiP"a (20) 

defined on the one-dimensional vector space '\Y(p). 
p . a is the Lorentz scalar product -p.a. + Eat, with 
P. and E having the usual interpretation of momentum 
and energy, respectively. 

Mackey shows that all momentum vectors p == (k") 
having the same mass generate equivalent representa­
tions of P2 so that it is only necessary to consider a 
standard vector chosen to be 

(21) 

that is, p is the "rest-frame" momentum vector . 
. The right-coset decomposition of P2 with respect 

to H of Eq. (19) can be written as 

(~ ~) = (~ ~)(~ ~), (22) 

so that we consider functions in '\Y(p), Eq. (2), with 
the property that 

f(~ ~) == f[ (~ ~) (~ ~) ] 
= eifJ'af(A). (23) 

The functions over cosets f(A) == f(P) have norm 

IIfl12 == L:"'dP If(P)1 2 < 00. 

The induced representation is 

U(Ao, ao)f(A) ==f[ (~ ~) (~o :0)] 
=f[~o A;oJ 
==f[(~ A;o)(~ ~)J 
== eifi"Aa~(AAo} 

(24) 

(25) 

and it is easily seen that U is a unitary representation. 
The tensor-product space consists of functions 

F(Al' All) == F(Pl' (2) having norm 

(26) 

with the inducing subgroup 

having representations 

Jel Q9 Je2 == eifi,"a'eifi2"aZ (28) 

on the vector space 'U,{pJ ® 'U,{P2)' 
The induced reducible unitary representation on the 

tensor-product space is 

U(Ao, ao}F(A1 , A2) 

== F{[ (~l ~),(~2 ~) J [(~o :o),(~ :o)]} 
== F{[ (~ A~ao),(~ A~ao) J[ (A~Ao ~),(A~ ~)]} 

(29) 

Instead of the right-coset decomposition (27), it is 
possible to write a double-coset decomposition with 
respect to the diagonal group: 

[(~1 ~l), (~2 ;2)J == [(~ ~l), (~ ~2)J 

X [(~ ~), (A; ~) J [ (~ ;), (~ ;) J. (30) 

where 

A == (COSh D sinh D) 
D sinh D cosh D 

is a convenient choice of double cosets. 
Multiplying out Eq. (30) gives 

[(~l ;1), (~2 ;2)] == [(~ :1), (~ ~2) ] 
X [(~ ~), (A~A A~) ] (31) 

so that, with the substitutions 

(32) 
the arguments of F are obtained from the right-coset 
decomposition of the outer-product group: it is possible to define a new function 

[ ( ~1 ~1), (~2 ~2 ) ] == [( ~ ~l), (~ ~2) ] 
X [( ~l ~), (~2 ~) ] (27) 

(32') 

The fact that D is subscripted rather than being 
included in the argument offis meant to indicate that 
it remains invariant under an arbitrary Poincare 
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transformation. To see this, note that 

U(Ao, aO)ID(A) = U(Ao, ao)F(Al' A2) 
= eifit·AlaOeifi.·A.ao F(AIAo, A2AO) 

= ei[fil'Aao+fi2'ADAaolF(AAo, AnAAo) 

= ei[fil+AD-lfi2}AaoID(AAo). (33) 

Defining 

_ A + A-I A _ ( - M 2 sinh D ) (34) 
PD-Pl DP2- M1+MzcoshD 

gives 

which has exactly the same structure as Eq. (25) so that 
Eq. (35) gives a unitary irreducible representation of 
P2 induced by the subgroup H of Eq. (19) with repre­
sentation ei'PD'a on 'U,(PD)' 

Notice that 

M2 = p~ = M~ + M~ + 2MIM2 cosh D, (36) 

so that the subscript D actually gives the "mass" of the 
subspace ID(A) for arbitrary but fixed values of Ml 
and M 2 • In fact D labels the direct-integral decom­
position of F(Al' A2), since 

(37) 

where 

Finally, to get the Clebsch-Gordan coefficients of 
P2 , it is necessary to know the functions D~~l(A) of 
Eq. (10). But it is well known that states Ip, E) = 
I [M], p), with M2 = _p2 + E2, transform under P2 
as 

so that 

U(Ao, ao) I [M], p) = eiAo'P'ao I [M], Aop), (38) 

D~~l(A) = ([M], p'l U(A, 0) J[M]p) 

= ([M], A -lp' I [M], p) 

= E~(A-lp' - p), (39) 

where E = (M2 + p2)l is a standard normalization 
factorP 

We must check that D~~](A) is indeed a function of 
A with the correct transformation properties under 

13 See, for example, J. Werle, Relativistic Theory of Reactions 
(John Wiley & Sons, Inc., New York, 1966). 

P2' namely, those given in Eq. (25): 

U(Ao, ao)D~~](A) 

= D1~][ (~ ~) (~o ~o) ] 
= ([M], p'l U(I,Aao)U(AAo, 0) I[M], p) 

= eip"Aao D1~](AAo). (40) 

In order that (40) agree with (25),p' must be set equal 
to p. But D~~](A) can be thought of as a concrete 
realization of I [M], p), since P is now a fixed vector .14 

Thus, in Eq. (9) and Eq. (10), we choose 

In(A) = D~~j(A), 
F(Al ,A2) = D~~i](Al)D~~:](A2) (41) 

and proceed to change variables in F(Al' A2): 

F(Al , A2) = D~~~](Al)D~!:\A2) 

= D~~~](A)D~!:\AnA) 

= D~~:](A)D~!!:!fi2)P2(A), 
where PD = PI + A;}P2 was defined in Eq. 
Equation (41') shows that 

(41' ) 

(34). 

(42) 

The Clebsch-Gordan coefficients are, according to 
Eq. (11), 

([M]p I [Ml ]Pl; [M2]P2) 

= N(D~!](A), D~~~](A)Dfl!~11)P2(A» 

= NJd R D[M]*(A)D[,MIl(A)D[M2] (A) P PD'P PIPI (PD-fil)P2 

= N f dPE~(A-lpD - p)EI~(A-IA - PI) 

X E2~(A-l(PD - A) - P2)' (43) 

We wish to show that the b functions in (43) can be 
written as 

~(p - PI - PJ~(COSh D - .l!1. . h). 
MI M2 

If this is the case, then in the second ~ function we will 
have the usual expression for the mass M2 = 
(Pt + P2)2, since, according to Eq. (36), 

M = M~ + M~ + 2M 1M 2 cosh D 

= M~ + M; + 2MIM2PIP2/MIM2 
= (PI + P2)2. (44) 

14 It is not difficult to see that Df!,l(A) is a concrete realization of 
pp 

I[Mjp), for DfFl (A) transforms in the same way that 1[M]p) does 
and further h:; the same normalization as ([Mjp' I [M]p), so that 

([Mjp'l [Mjp) = S d.BD[!'~·(A)D[!,l(A) 
fiJI 'PfJ 

(up to a possible factor involving M). 
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Now, 

f df3b(A-lpD - p)b(A-1fit - Pl)b(A-1(PD - fit) - P2) 

= b(p - PI - P2) f df3b(Ml sinh f3 + PI) 

X b(M2 sinh D cosh f3 

+ (Ml + M2 cosh D) sinh f3 - Ml sinh f3 + P2) 

= b(p - PI - p2)b(sinh (D + (3) - sinh sinh-1 P2/ M 2) 

= b(p - PI - P2)b(D - (sinh-1 P2/M 2 - (3» 

= b(p - PI - P2) 

X b(cosh D - (E1E2/M1M 2 - PIP2/M IM 2» 

= b(p - PI - P2)b(M2 - (PI + P2)2); (45) 

mass and energy terms preceding the b functions have 
been dropped in these equations. Also, p = OJ) so that 
p means both the vector and the space component of 
the vector; however, the usage should be clear from 
the context. 

Finally, then, the Clebsch-Gordan coefficients are 

([M]p I [MtlPl; [M2]P2) = Nb(p - PI - P2) 

X b(M2 - (Pt + P2)2) (46) 

and gives, as would be expected, conservation of 
energy and momentum along one space axis. 

m. REPRESENTATIONS AND FUNCTIONS 
OVER COSETS FOR THE 

POINCARE GROUP 

The way in which one obtains the irreducible unitary 
representations of the Poincare group using Mackey's 
theory of induced representations has been given by 
Moussa and Stora.a In this section, the inducing 
subgroups and their representations will be written in 
such a way as easily to obtain the functions over co­
sets needed to obtain the Clebsch-Gordan coefficients 
in Sec. IV. 

Usually one writes the Poincare group as 

x' = Ax + a, (47) 

where x' and x are space-time vectors, A is a Lorentz 
transformation, and a is a space-time translation. 
Equation (47) can be rewritten as 

and thus as the matrix 

P == {(~ ~)}. (48) 

However, in this paper we will be dealing almost 
exclusively with the covering group of P, denoted by 
P. Now, it is well known9 that the covering group of 
{A} is SL(2, C), the set of 2 x 2 complex unimodular 

matrices. Further, the space-time translation a can be 
written as a 2 X 2 Hermitian matrix H(a) with 

H(a) = (at +~. all) - iay) , (49) 
all) + lay at - a. 

where (aXaya.at) are the components of a. Under a 
Lorentz transformation which sends a into a' = Aa, 
H(a) is sent into 

H(a') = AH(a)A+, (50) 

where A is that element of SL(2, C) which corresponds 
to A.9 Further, the length of a, i.e., a2 , is readily seen 
from Eq. (49) to be IH(a)l. 

The question is then: what does P look like as a 
matrix? It is not hard to see that a suitable choice is 

_ = {(A H0)A-l+)} 
P - 0 A-l+ ' (51) 

where A-I is the inverse matrix and A + the adjoint 
matrix of A. The matrix given in (51) combines 
elements in the same way that P in Eq. (48) does. 
Thus, if 

then 

(~l ~l)(~2 ~2) = (A~A2 Ala\+ al) 

= (Aa aa) 
o 1 ' 

H(~)AIH) (A2 , H(~2)A2H) 
AIH 0 A2H 

(52) 

= (AlA2' AIH(a2)A21~ ~ H(al)A1HA2H) 
o [AlA2]-H 

= (AloA2' [AlH(a2)~t _+ H(a1)][AlA2]-H) 
[A

l
A

2
]-H . 

(53) 

But, according to (50), AlH(a2)Ai corresponds to 
Ala2 so that AlH(a2)A+ + H(al) corresponds to 
Ala2 + al as in (52). 

In order to write out the induced representations of 
P, it is first necessary to find the inducing subgroups. 
This is done with the help of little-group theory,l5 
which says that the inducing subgroups which gener­
ate irreducible representations of P consist of all 
translations (& H}a) plus those Lorentz transforma­
tions satisfying Ap = p or, what is equivalent, 

AH(p)A + = H(p). (54) 

P is a "momentum-energy" vector' and arises as an 
irreducible representation label eip

•a of the trans­
lations mentioned above (p' a = -p' a + Eat). 

15 E. P. Wigner, Ann. Math. 40, 149 (1939); J. S. Lomont, 
Applications of Finite Groups (Academic Press Inc., New York, 
1959). 
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It is well knownI5 that there are essentially three 
classes of momentum --energy vectors p satisfying (54): 

(A) p2 = P . P > 0 or I H(p) I > 0; then a con­
venient choice of p is ft = (~), which corresponds to 
H(ft) = M(~ ~) = MI. Substituting into (54) gives 

A(MI)l\+ = MI, AA+ = I, (55) 

which is the definition of SU(2). All other vectors p 
satisfying p2 > 0 generate equivalent representations 
of P. 

The inducing subgroup for p2 > 0 is thus 

= (SU(2) {H(a)}SU(2») 
H 0 SU9)' 

(56) 

which has representations 

.reI = eip ·a D~I?}(R), R E SU(2), (57) 

where D~~l(R) are the irreducible representation 
matrices of SU(2) (Wigner functions). 

(B) p2 = 0; choose 

as a standard momentum-energy vector for this 
class. Then, H(ft) = (~g) and AH(ft)A+ = H(ft), 
since 

- (IX (3) A = y ~ , IX~ - f3y = 1, 

give 

( IX (3) (1 0) (oc* y*) = (1 0) 
Y ~ 0 0 f3* ~* 0 0 ' 

( locl2 ocy *) (1 0) 
(IXY*)* 1~12 = 0 0' (58) 

so that y = 0, IX = 1, and thus the set of elements 
leaving H(ft) invariant is of the form (~!J~I ~!I~I.)' which 
can also be written as 

£ = (ei
<P/2 jJe-i

<P/2) 

2 0 e-i<p/2 
(59) 

with rp/2 = IX/IIXI and f3 = jJe-i <P!2. In this form it is 
not hard to see that £2 is the covering group of the 
two-dimensional Euclidean group, that is, the group 
of transformations 

(X:) = (c~s rp -sin rp) (X) + (f3o;), 
y sm rp cos rp y fly 

with 

The inducing subgroup for p-type representations is 

H = (£2 {H(~)}E2I+). 
o E21+ 

The representations of £2 are themselves induced 
representations, but, in this paper only, the positive­
mass representations will be considered in regard to 
the tensor-product decomposition. 

(C) p2 < 0; choose 

then 

and 

AM(l O)A+ = M(l 0) 
o -1 0 -1 

shows that the set of Lorentz transformations leaving 
(54) invariant is SU(l, 1). 

Returning to the positive-mass representations in 
order to define induced representations on functions 
over cosets, it is necessary to decompose P with 
respect to the inducing subgroup H of Eq. (56). This 
is equivalent to decomposing the Lorentz group 
SL(2, C) into right cosets with respect to SU(2): 

SL(2, C) = U SU(2)Ac' (60) 
c 

The set {Ac} are elements of SL(2, C) labeling right 
cosets; they can be chosen in many different ways, for 
example, as rotationless Lorentz transformations7 

(61) 

Once the right-coset labels are chosen, it is possible 
to write 

p = U (SU(2) {H(a)}SU(2»)(Ac 0). (62) 
c 0 SU(2) 0 A~1+ 

In the following discussion, the "bar" notation for 
the covering groups will be omitted and, in fact, 

(A a) and (A H(a)A -1+) 
o 1 0 J\-1+ 

will denote the same element unless there is a possi­
bility of ambiguity. The functions over right cosets 
are fj(Ac) with norm 

(63) 
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The summation over j comes from the fact that the 
representations of H are themselves of dimension 
2S + 1 (see Refs. 7 and 8). The induced unitary 
irreducible positive-mass representations are 

+S 
= eiP'Acao L D~1,l(R)fi'(Ac') (64) 

;'=-s 

with R E SU(2) and Ac' defined by AcAo = RAc" 
Finally, in this section, we calculate the functions 

over cosets which will be used in the calculation of 
the Clebsch-Gordan coefficients. We must calculate 

where I [MS]p, a) is a nonnormalizable basis element 
having mass M, spin S, momentum p, and "spin 
component" a. Now, the transformation properties of 
I [M, S]pa) are16 

U(Ao, ao) I[M, S]pa) 

+S 
= eiAop·ao L D~~J(p,Ao) I[M, S]Aop, a'), (66) 

a'=-S 

where (p, Ao) is a "Wigner rotation" which must be 
carefully defined. 

Generally one defines (p, Ao) as the rotation 
0-1 (Aop)AoO (p) , where O(p) is a Lorentz trans­
formation from the rest frame of the particle to the 
frame where it has momentum p. There are many 
ways to choosing O(p), but all choices are equivalent 
to a choice of coset representatives. However, be­
cause of the way in which Mackey has defihed an 
induced representation U(go)f(g) = f(ggo) with go 
acting to the right of g, the connection between O(p) 
and Ac is 

(67) 

where A.(p) is that right-coset element which carries 
the particle from the frame, where it has momentum 
p, to its rest frame, where it has momentum p. This 
means that in covering-group form 

H(p) = A;;I(p)H(p)kcl+(p) 

= MA;;I(p )A;;l+(p), 

(p, Ao) = AiAop)AoA~\p). 

16 See, for example, Refs. 3 or 13. 

(68) 

From Eq. (66) we get that 

D~~:J(Ao, ao) 
+S 

= ([M, S]p'jl eiAop·ao L D~~J(p, Ao) I[M, S]Aop, a') 
a'=-S 

= E' eiAop·ao D~~](p, Ao)b3(p' - Aop). (69) 

Thenf/A) is chosen to be D~~;,.Sl(Ac) and we must 
check whether D~~:l(A) transforms properly under 
an arbitrary Poincare transformation: 

U(Ao, ao)D~~:](Ac) 

= ([M, S]ftjl U(Aco O)U(Ao, ao) I [M, S]pa) 

= ([M, S]ftjl U(R, Acao)U(Ac') I[M, S]pa) 
+S 

= eiP'A,ao '" D[,s](pA R)D[MS](A ) k ,1" pi'pa c', (70) 
r=-s 

where AcAo = RAc' as in Eq. (64) and D~~](p, R) = 
D~~l(R) since (ft, R) = Ac(Rp)RA;;I(p) = R. But Eq. 
(70) has the same form as Eq. (64) so that D~~;,.S](Ac) is 
a (non-square-integrable) coset function having the 
correct transformation properties. 

IV. TENSOR PRODUCTS OF POSITIVE-MASS 
REPRESENTATIONS OF THE POINCARE GROUP; 

EXPLICIT FORM OF THE CLEBSCH-GORDAN 
COEFFICIENTS 

The tensor-product space of positive-mass repre­
sentations of the Poincare group consists of square­
integrable functions filis (ACIACs) with norm 

+Sl +Ss f 
IIh.i s112 =il~SI i2~S2 dAcl dAcslh.is(Acl' Acs)12 < 00. 

(71) 

The choice of cosets comes about from the decom­
position of the outer-product group (PI' P2): 

[{(
AI H(al)All+)} {(A2 H(a 2)Az1+)}] 
o Al1+ ' 0 A;-1+ 

= U [(SU(2)1 {H(a1)}SU(2)1) , 
CICS 0 SU(2)1 

(
SU(2)2 {H(a2)}SU(2)2)] 

o SU(2)2 

X [( A~l A~l+ ), (A~2 A~1+ ) J. (72) 

where Ac! and Acs are both of the form given in Eq. 
(62). The representations of the inducing subgroup 

[(
SU(2)1 {H(al)}SU(2)1) 

o SU(2)1' 

are 

(
SU

O
(2)2 {H(a2)}SU(2)2)] 

SU(2)2 
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so that the induced representation on the tensor~ 
product space is 

U(Ao. aO)ki.(Ac1 • Ac.) 

= ki'{[ (~1 A~1+)' (A~2 A~1+) ] 
x [(Ao H(ao)Ao1+). (Ao H(ao)Ao1+)]} 

o Ao1+ 0 Ao1+ 

= ki'{[ (~l ACIH(;~A~Rl). (R; Ac.H(;:A~Rz)] 

[(Ac' 0) (Ac2 0 )]} 
X 0' A;t' 0 A;.l,+ 

+8, +81 
_ eifi1·AclaOeifi.·Ac.ao "" "" D~8tl(R) - k k 11'1' 1 

i.'=-82 i1'=-81 

x Df~:}(Rz)k'i.,(AC1" AC2')' (73) 

where AelAO = R1Ael • and Ac.Ao = RzAc. as before. 
It is also possible to decompose (Pl. Pz) into 

double co sets with respect to the induced subgroups 
given in Eq. (72) and the diagonal subgroup 

) = {[(A H(a)A-1+) (A H(a)A-1+)]}: 
(P. P 0 A-1+ • 0 A-1+ 

[ (~l 

(74) 

Here AD is a Lorentz transformation labeling the 
double coset; a convenient choice is 

AD=(~ l~D) 
with D real. In the form given AD consists of pure 
Lorentz transformations along the "z" axis. 

Once the form of AD has been chosen, it is necessary 
to find the group HD of Eq. (14) which is the subgroup 
that induces representations in the subspace of the 
tensor~product space labeled by the double coset D: 

H = (SU(2)1 {H(a 1)}SU(2)1) n (AD 0 )-1 
D 0 SU(2)1 0 Air 

x (SU(2)z {H(a z)}SU(2)2) (AD 0) 
o SU(2)2 0 AIr 

= (U(l) {H(a)}U(I») (75) 
o U(l) , 

since 

Ai}RzAD n Rl 

= (lID 0)( u2 • vz)(D 0) 
o D -Vz u: 0 II D 

= (~l uOt) E U(l), IUliz 
= 1. 

H D has representations inherited from HI and 
AIJ-HzAD • namely, 

with u an element of U(l). 
In the subspaces labeled by D the representations of 

P are induced by HD of Eq. (75). The induced repre~ 
sentations are defined on functions F(hiIDl(AIU(l», 
where 

A (IX (3) 
U(l) = Y Idl 

is a right-coset decomposition of SL(2, C) in which 

A 
A=u-. 

U(l) 
Then 

F (~) (i1i.Dl V(l) 

is defined as 

F (~) = F . (~ A ~) (ili.Dl U(l) - (il") U(l)' D U(1) 

= ki.(Ae1 ' AeJ (76) 

In order to see how F(ili2m(AIU(1» behaves under 
arbitrary Poincare transformations-and also to see 
that D ought to be subscripted, indicating that it 
remains unchanged under a Poincare transformation­
it is necessary to see how (Ae" Ae.) is related to 
AIV(1) and AD' 

Equation (74) enables one to find in which double 
coset an arbitrary element of (PI' Pz) is; to make (74) 
into an equation specifying all the elements on the 
right-hand side uniquely once the element of (PI' PJ 
is given, it is neccessary to divide out the diagonal 
subgroup elements by HD of Eq. (75). Then 
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In particular, the Lorentz transformations of (PI' P2) 

can be written as 

so that for given (AI' A2), the values of Ul , VI' U2 , V2 , 

(X, p, 1151, and D are all uniquely fixed. Thus, one can 
choose the element (AC1 ' Ac) and find how R1 , R2 , 

AD' and A/U(1) depend on ACI and Ac. so that 
F(i1i.D)(A/U(1» in Eq. (76) is uniquely defined. 
F(i1i.D)(A/U(I» behaves, under an arbitrary Poincare 
transformation, as 

+81 +8. 
= e,pdA/U(l)]aoeip.·AD[AIU(l)]ao I I D~~~l(u) 

it'=-Sl i 2'=-S2 

(79) 

where use has been made of the fact that U(l) com­
mutes with AD' the representations of HD are given 
in Eq. (75), and, as in the case of the right cosets, Ac ' 

u, and A'/U(I) are defined by (A/U(1»Ao = 
u(A' / U(I». Equation (79) can be simplified by 
defining PD = PI + Aj}P2 so that 

R(P ) = (Ml 0) + (M2/ D2 0) 
D 0 Ml 0 M2D2 

= (M 1 + M 2/ D2 0 ) 
o Ml + M2D2 

and noting that D~~](u) = [UNii" Then 

U(Ao, aO)F(ili.D)(A/U(l» 
= eiPD·[A/U(l)]ao[u]it+i·F .. (A'/U(l» 

('l •• D) • 

(80) 

(81) 

Equation (81) shows that the indices (i1i2) on 

are not indices which label the components of a vector 
in the (2S1 + 1) X (2S2 + I )-dimensional vector 
space as in the case of [i1i/ACl' Ac.)' Rather, they are 
degeneracy labels, distinguishing between the different 
ways in which i l + i2 can give the same value. That is, 
i1 + i2 ranges between -(2S + 1)(2S2 + 1) and 
+ (2S1 + 1 )(2S2 + 1); for a fixed but arbitrary value 
of k, Ikl S (2S1 + 1)(2S2 + 1), there will be various 
choices of i1 and i2 such that i1 + i2 = k and the 
subscripts iI, i2 on FU1i.D)(A/U(I» serve to distinguish 
these choices. 

The functions F(i1i.D)(A/U(1» are elements of a 
Hilbert space having norm 

The measure d(A/U(I» is not specified since it is not 
needed. 

We thus have the first stage of the tensor-product 
decomposition completed, namely the direct-integral 
(and sum) decomposition of 

ki.(Ac1 , Ac.) into F(ili.D)(A/U(l»: 

Ilki.II 2 
= .4 JdD IIF(i1i2D)112, (83) 

'1'2 

where dD is the direct-integral measure which is not 
specified, because it is not needed. 

The second stage of the tensor-product decomposi­
tion consists in expanding FU1i.D)(Af U(1» in a series of 
irreducible functions of P. The induced representation 
given in Eq. (81) is reducible since it is induced by the 
subgroup HD , which is a "smaller" subgroup than H 
of Eq. (58) which induces irreducible representations 
of P. The difference is that H contains SU(2) whereas 
HD contains only U(1). We will therefore expand 
F(i1i.D)(A/U(1» with respect to irreducible functions 
over SU(2)/U(1), namely, D~~](SU(2)/U(l». 

Before carrying out this expansion, however, it is 
necessary to look at the representation Eq. (81) some­
what more carefully. Notice that the standard or 
rest-frame vector P has the property that 

SU(2)H(p)SU(2)+ = H(p); 

we must also inquire as to which elements of SL(2, C) 
leave H(PD) invariant. It is clear, first, that U(1) leaves 
H(PD) invariant, for, according to Eq. (80), H(PD) 
has only diagonal entries. 
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Call SU(2)D that subgroup of A which leaves 
H(PD)invariant, i.e. SU(2)DH(PD)SU(2}1 = H(PD).17 
Now, A-;l(PD) [see Eq. (68)] is the Lorentz trans­
formation from the rest frame F to PD. But 

SU(2)H(F)SU(2)+ = H(F) 

and 

so that 

S U(2)nA-;;1(P D)H(F)A;1+(P D)SU(2)t 

= A-;;l(PD)H(F)A;1+(PD) 

and, therefore, 

since any transformation leaving H(ft) invariant is a 
rotation. Clearly the representations of SU(2)D are 
the same as SU(2), namely, 

. [B] ()) SU(2)D ~ Dj';(SU 2 , (84) 

17 The relation SU(2)H(jJ)SU(2)+ = H(jJ) can also be written in 
the more usual form 

(
SO(3) I), _ A 

o 0 P ~r' 
where SO(3) is the three-dimensional rotation matrix whose elements 
are related to SU(2) in a 2 to I fashion. There is obviously a similar 
correspondence between SU(2)>> and SO(3)>>, where SO(3)>> is a 
subgroup of the four-dimensional Lorentz group satisfying 

SO(3)>>Pn = P». 

where the SU(2) element is given by the equation 
Ac(P D)SU(2)DA-;;1(P D). 

We next decompose P into right co sets with respect 
to 

(
SU(2)D {H(a)}SU(2)D) 

o SU(2)D 

in preparation for writing an induced irreducible 
representation of P: 

(
A H(a)A-1+) = (RD 
o A-1+ 0 

H(a)RD) (Ac 0) 
R-1+ 0 A-1+' D c 

(85) 

where RD is an element of SU(2)D and Ac is the same 
right coset as given in Eq. (60); this choice of right 
cosets is a most convenient one and it is not hard to 
see that {Ac} and SU(2)D cover all elements of 
SL(2, C) uniquely. The elements A/U(I) can then be 
written as [RD/U(I)]Ac' and it is possible to proceed 
with the expansion of F(i

1
i

2
D)(A/U(I)): 

Here, use has been made of the factthat U(l) commutes 
with Ac(PD) and the measure dRD/U(I) is invariant 
under a rotation RD; the elements RD, R'n/U(l), Ac" 

and u are defined by the following equations: 

A RD RD - R'n 
U(l) Ao = U(l) AcAo = U(l) RnAc' = u U(1) A c" 
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so that 

RD/U(l) = uRb/U(I)Rjy. 

But Ac(PD)RnAi(PD) = R so that ji!Si
1
i2D) (Ac) is transformed into 

+s 
eiPD'Acao L DWJ(R)/;'(Si)i

2
D)(Ac')' 

i'=-S 

which agrees with Eq. (64) and, hence, shows thath(s'li2Dl(Ac) is an element of an irreducible function space 
of P. 

Thus the transformations which decompose h 1i2(Ac1 , Ac.) into irreducible functions /;(Si1i2Dl(Ac) have been 
found. Symbolize these transformations by S so that 

S ;/;.i2(Ac1 ' A C2) - /;(S;li2D)(Ac) = S/;li2(Ac1 , A C2 )' 

To get the Clebsch-Gordan coefficients, we consider the inner product 

(j~(Ac)' /;(Sili2Dl(Ac» =;1s f dAc!~*cAc)/;(Sili2D)(Ac), 
(j;(Ac), S/;'i/ACl' A C2» =i]S J dAcj~*cAc)S/;.i2(Acl' A C2), 

using forj.~(A ), the function Dp[M,~pSll1(Ae) and for '" " (Ac ,Ae) the functions D~MlStI1J (Ae )D~2S2J (Ac). 
C D J jl 2 1 2 1'1'1:1)1 1 1 P2t2:P20'2 2 

Making the substitutions of Eq. (78), whereby (Act' AC2) is replaced by A/U(l) and AD' gives 

Finally, 

D~~~~~!(Ac.)D~~~~;~(Ac.) = D~~~~!~(A/U(I»D~!;~;![AD(A/U(1»] 
= D~~~~~~(A/U(1»D~f;~fi~li,p2112(A/U(1» 
= F(ili2D)(A/U(I». 

/;(Sili2D)(Ac) = CS4! IlJ d(RD/U(l»Df~i:.i(AlPD)[RD/U(1)]A~l(PD» 

(89) 

(90) 
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where delta-function-normalization factors have been 
absorbed in the factor N. 

There are five integrations and six ~ functions; the 
remaining t5 function will give energy conservation 
or, what is equivalent, the value of the mass M. As 
with the group P2 this is equivalent to fixing the 
double-coset label, for 

M2 = P~ = IH(PD ) I 

= M~ + M~ + 2M1M 2«D2 + D-1)/2), 

as can be seen from Eq. (80). Now the t5 functions can 
be written as 

t53(A - A/U(1)Pl)t53(ft2 - AnA/U(1)P2)' 

so that 

A = A/U(l)pl and P2 = AnA/U(1)P2' 

Consider the quantity 

PI . P2 = A -l/U(l)A . A -1/U(1)A1}P2 = A . Af}P2' 

But 

• A-I. IH(A + A.v1p2)1 - M~ - M~ 
Pl' DP2 = 2 

D2 + D-2 
= MIM2---=-~-

2 
so that 

and 

To actually carry out the integrations explicitly is not 
difficult, since the integration is essentially 

and it is not difficult to obtain the measure d(A/U(I». 
It is, however, more useful to carefully specify the 

rotations involved in the Wigner functions, for these, 
rotations are the quantities of most interest in the 
Clebsch-Gordan coefficients. To that end, consider 
Fig. I in which three frames are considered, one the 
arbitrary frame in which particles I and 2 have 
momenta PI and P2 and two fixed frames, the rest 
frame of particle I and the center-of-mass frame (or, 
what is equivalent, the rest frame of the biparticle). 

Notice that the Lorentz transformations A-;l(Pl)' 
which carries PI from its rest frame and A-;l(P) which 
carries P from its rest frame (the center-of-mass frame) 
are both fixed as soon as PI and P2 are chosen in 

frame 

Po ( ~
Rest frame of 

P particle 1 

FIG 1. Coordinate frames relevant to the Clebsch-Gordon problem. 

some arbitrary coordinate system. Now 

D~~':~(Pl' A/U(I» 

deals with the rotation 

(PI' A/U(l» = Ae[A/U(l)pd[A/U(l)]A-;l(pl) 

= [A/U(l)]A-;l(Pl) 

since A = AjU(I)PI. But AipI) is fixed by the vector 
PI and A/U(I) is fixed by PI = A/U(I)Pl and Al)lp2 = 
A/U(I)P2' with D fixed by iCD2 + D-2) = PI . P2/ 
M I M 2 • This defines the rotations, but to see which 
rotation this is in the figure, let p' = Ae(PJP. Now 
P D = A/ U(I)P is aligned along the "z" axis in the rest 
frame of particle I, so that (PI' A/U(I» is the rotation 
which carries the vector p' into the z axis. A similar 
sort of construction is easily carried out for 

Finally, there is the rotation in 

It will be shown that this rotation carries pem into p as 
shown in Fig. 1. To see this, define p = A;l(P D)Pl' 
lhen p is aligned along the z axis in the center-of-mass 
frame since PD has no x or y components. Also, 
PI = A/U(I)PI = RD/U(I)AePl' where here Ae is the 
unique right-coset element carrying P to PD so that 

p = AcCPD)Pl = Ae(PD) RD AePl 
U(1) 

= AcCPD) RD AeA-;I(p)Pem' (93) 
U(1) 

where P em = Ae(P)Pl; but Ae(P D)RD/ U(I )AA;l(P) is 
the rotation contained in the D[ •. s+J~ function and this 

1 ta,a 
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is the rotation which carries Pem to p. The Clebsch­
Gordan coefficients are thus 

([MS]pa; ili21 [M1S1]Plal; [M2S2]P2( 2) 

= N[(2S
4
: 1)r b3(p - PI - P2) 

X O(M2 - (PI + P2)2) 

X Dt~']i:,iPem --+ p)Df~~(Pl' [A/U(l)]) 

x D~~~](P2,AD[A/U(1)]). (94) 

The labels il and i2, as seen from Eq. (81), are 
degeneracy labels which serve to distinguish equiv­
alent representations labeled by [MS]. 

IV. OUTLINE OF CLEBSCH-GORDAN COEFFI­
CIENTS OF THE LORENTZ GROUP 8L(2, C) 

Thus far, the direct-integral decomposition of 
tensor products has been carried out explicitly for two 
groups P2 and P. In the case of SL(2, C), the tensor­
product decomposition has been carried out in a series 
of papers by Naimark.10 

Consider, for the moment, the tensor-product 
decomposition for the principal series of representa­
tions of SL(2, C).9 For the principal series of repre­
sentations, the inducing subgroup of SL(2, C) is 
{(~ Sa)}' which has one-dimensional representations; 
the right cosets can be chosen to be (! V. Thus, 
induced representations are defined on functions /(z) , 
with norm 

- 11/112 = J dzlf(z)12 < 00. (95) 

The tensor-product space consists of functions 
F(zl' Z2) with norm 

11£11 2 = J dZ1 dz2 1F(zlz2)12 < 00. (96) 

According to Naimark, the operator S, which carries 
F(ZI' Z2) into /[m,(1](z), where [m, a] are the irreducible 
representation labels of SL(2, C), can be written as a 
kernel transformation 

f[m.(1](Z) = J dZ1 dz2a(zl, Z2' z, [m, a])F(zl' Z2), (97) 

where 

a(zl' Z2' z, [m, aD 

= IZ2 - zll!(m+m1+m2)-i!«(1+(11+(12)-\Z2 _ ZI)!(-m+m1+m2) 

X Iz - zll!(-m-m1+m2)+i!«(1-(11+(12)-I(z - zl)hm-m1+m2) 

X IZ2 - zl!(-m+m1-m2)+i!«(1+(11-(12)-\Z2 _ z)~(m+ml-m2). 

(98) 

To get the Clebsch-Gordan coefficients it is neces­
sary to obtain the functions D~"!.i&l JM (z) and check 
that they have the correct transformation properties. 
It seems, although this has not been shown, that the 
values of J'M' will be fixed by demanding that 
D~",'.i&~ JM(Z) have the correct transformation proper­
ties, exactly as in Sec. II, where D~~](A) has the 
correct transformation properties under U(Ao, ao) 
only if p' equals p. 

The Clebsch-Gordan coefficients are 

= N J dz dZ1 dZ2Dj".'~~JM(Z)Dj~~~~'JIMl(ZI) 

X Dj~~;;~'J2M2(z2)a(zl' Z2' z, [maD, (99) 

where, by the above remarks, all of the primed vari­
ables are fixed. The functions D~P.i&J JM(Z) have been 
obtained by several authors,4 but, since they are 
rather complicated, will not be given here. 

CONCLUSION 

It has been shown that, for induced representation, 
functions over cosets are useful in evaluating Clebsch­
Gordan coefficients if the tensor-product decom­
position of two irreducible representations into a 
direct integral of irreducible representations is known. 
The method is sufficiently general to handle even those 
reducti.ons which are not multiplicity free. 

In actually computing the Clebsch-Gordan coeffi­
cients a key role is played by the functions 

D~:~(ge) = ([x]xol U(ge) 1 [X]x); 

here Xo is meant to denote a "standard state." The 
functions D£~i(ge) playa dual role in that they are, on 
the one hand, a concrete realization of 1 [X]x), while on 
the other hand all the manipulations as regards in­
duced representation theory are done on the standard 
states Xo. It is because of this dual role that the 
D£~;(ge) functions serve as the bridge between the 
abstract spaces of induced representation theory and 
the concrete basis functions 1 [X]x). 
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Solution of the Faddeev Equation for Local Potentials by 
Approximate Product-Integration* 
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A practical method of solving the Faddeev equation for short-range local potentials is proposed. The 
method consists of (a) transforming the Faddeev equation into a form in which the inhomogeneous 
term satisfies a Holder condition and then (b) solving the resultant two-variable integral equations by 
approximate product-integration. 

In recent years, the formal theory of the quantum­
mechanical three-body problem has been greatly 
advanced through the work of Faddeev.1 The Schro­
dinger equation for nonrelativistic three-particle 
systems can be reformulated into a set of integral 
equations of the Fredholm type, now known as the 
Faddeev equation. The application of the Faddeev 
equation to nonrelativistic three-body problems has 
been of considerable interest because the Faddeev 
equation treats on an equal basis all possible non­
relativistic processes such as bound states, elastic 
scattering, and break-up. 

The Faddeev equation can be reduced to a set of 
coupled integral equations in two continuous variables 
with 3 x (L + 1) x min (2J + 1, 2L + 1) compo­
nents, where L is the maximum orbital angular mo­
mentum in the two-body subsystems and J is the total 
angular momentum.2 •3 If the two-body interaction or 
t matrix is separable, then the Faddeev equation re­
duces to a set of coupled integral equations in one 
continuous variable. Considerable work has been 
done on the three-body problem with separable 
interactions,4 because the numerical problems are 
manageable for solving one-variable integral equations. 
This separable approximation is expected to remain as 
a practical tool for investigating the three-body 
problem. 

While simplicity is an attractive reason for using 
separable potentials, these potentials do not necessarily 
give accurate representations of a physical interaction. 
The local potential description of interactions is 
known to be applicable to atomic problems (Coulomb 
interaction) and to the two-nucleon system (at least for 
the one-pion exchange contribution to the potential). 

* Work supported by the U.S. Atomic Energy Commission. 
1 L. D. Faddeev, Mathematical Aspects o/the Three-Body Problem 

in the Quantum Scattering Theory (Daniel Davey and Co., Inc., 
Hartford, Conn., 1965). 

• A. Ahrnezadeh and J. A. Tjon, Phys. Rev. 139, B1085 (1965). 
3 T. A. Osborn and H. P. Noyes, Phys. Rev. Letters 17,215 (1966). 
• I. Duck, in Advances in Nuclear PhysiCS, M. Baranger and E. 

Vogt, Eds. (Plenum Press, Inc., New York, 1968), Vol. 1, pp. 343-
409, and references cited therein. 

It is therefore desirable to develop a practical method 
of solving the three-body Faddeev equations with 
local interactions. 

For simplicity, we consider the case of a J = 0 
state of three identical spinless bosons interacting 
pairwise through an s-state local potential. Then the 
two-variable integral equation to be solved can be 
written as2•5 (we use the same definitions of kinematic 
variables as in Refs. 2 and 5) 

tp.(p, q) 

= C{Js(p, q; Po, qo) 

+ ('Xl dq~ f A(Q·Q')dPiK.(P, q; P2, q2)tp.(P2, q2), (1) 
Jo JB(Q.Q.) 

where the kernel is given by 

Ks(p, q; P2, q2) 

2 2 2 2 1 
= (-3)! t(p , PI; S - q) 2 + 2 S ' 

rrq h q2-

and the integration limits A and B are given by 

A(q, q2) = !(2q + q2)2 

and 

The variable p is proportional to the magnitude of 
relative momentum of the pair and q is proportional to 
the magnitude of the momentum of the third particle 
in the three-body center-of-mass coordinate. The 
constants Po and qo are the initial momenta. tps(P, q) is 
three-body T matrix with the pair interacting with 
relative angular momentum I = 0 in the final state. 
The function t(p2,pi; S - q2) is the two-body t 
matrix for the interaction between the pair of particles 
and PI is defined by p~ = pi + qi - q2. It is normalized 
so that on the energy shell it is t(P2, p2; p2) = 
(e iO sin (5)/p, where (5 is the s-wave phase shift. The 
total energy S of the three-particle system is given in 

5 D. Y. Wong and G. Zambotti, Phys. Rev. 154, 1050 (1967); J. S. 
Ball and D. Y. Wong, Phys. Rev. 169, 1362 (1968). 
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the center-of-mass system. A small positive imaginary 
part iE in S is suppressed here and in the following. 

For the three-particle bound-state problem, we need 
not specify the inhomogeneous term C{J.(P,q;Po,qo); 
furthermore, the initial states IPoqo) need not be 
specified, because the kernel of Eq. (1) is independent 
of Po and qo. However, most of physical experiments 
involve scattering of a particle by a bound pair. In this 
case, the initial states must be specified by the initial 
momenta Po and qo, and the inhomogeneous term 
takes the form of 

C{J.(p,q;po, qo) = -(4/7Tq)t(p2, p~; S ~ q2)6(q2 - q~). 
(2) 

The two-body t matrix contains poles corresponding 
S - q2 = So, where So's are the two-particle bound­
state (negative) energies. Therefore, it is convenient to 
write t as 

t(p2, p~; S - q2) = tel, p~; S _ q2)jD(S _ q2), 

where D(S - q2) is the determinant 11 + VGI of a 
matrix equation which is obtained from the two-body 
Lippmann-Schwinger equation, t = V + VGt, after 
discretizing the momentum variables.s In the neigh­
borhood of So = S - q2, the function D(S - q2) 
behaves as [(S - q2) - So]. 

As it stands now, the inhomogeneous term C{Js given 
by Eq. (2) does not satisfy a Holder condition6 due to 
the presence of singularities. For reasons which will 
become clearlater, we transform Eq. (1) into a form in 
which the inhomogeneous term satisfies a HOlder 
condition: 

fl.(p, q; Po, qo) = cp.(p, q; Po, qo) 

+ fOOdq~ f
ACM2

)dP:K.(P,q;P2,q2)f1.(P2,q2;PO,qO), Jo Jmq,q2) 

(3) 
where 

fl.(P, q;po, qo) 

= qD(S - q2)[1p.(P, q) - C{J.(P, q;po, qo)] 
and 

CP.(p, q; Po, qo) 41A (Q,qO) 
= - - dp~K.(p, q; P2, qo)l(p~, p~; S - q~), 

7T B(Q,Qo) 

with 
2 t( 2 2. S 2) 1 K (p q' P q ) = _ p, PI, - q 

." 22 (l 2 2 2 • 3) 7T q2D(S - q2) P2 + q2 - S 

Equation (3) or (1) cannot be reduced directly into a 
matrix equation, because the integration limits for 

6 N. I. Muskhelishvili, Singular Integral Equations (P. Noordholf 
Ltd., Groningen, The Netherlands, 1953), p. 12. 

P2 integration are not constants and are dependent on 
the q and q2 variables. 

We define a singular operator K by the following 
relation: 

Kfls(p, q) == fl.(p, q) _ ['" dq~ f
ACQ

,Q2)dP: 
Jo Jmq,Q') 

X K.(p, q; P2' q2)f1.(P2, q2) 

= Cp.(P, q), (4) 

where we suppress the constants Po and qo in fl. and 
CP.. If we assume that fl.(P, q) satisfies a HOlder 
condition H(ft, 'II), that is, for any given pairs of values 
(p", q") and (P', q'), there exists a relation 

Ifl(p", q") - fl.(p', q')1 
S M IP" - p'lll + N Iq" _ q'IV, 

with 0 < ft S 1 and 0 < 'II S I, where M and N are 
constants, then the singular operator K transforms 
fl.(P, q) into a new function cp(P, q), which also satisfies 
the Holder condition. The above statement is valid if 
the singularities appearing in 1(. are of the Cauchy 
type. 7 Conversely, if CP.(P, q) satisfies the Holder con­
dition, then ip.(P, q) also satisfies the Holder condition 
under the transformation K. The argument presented 
here can also serve as a proof of the existence of 
solution fl.(P, q), where fls(P, q) is a function of two 
variables satisfying the Holder condition. The same 
proof can be obtained by looking at the convergence 
of the Neumann series for fl.(P, q), as is usually done 
for the solution of one-variable integral equation. 

If fl.(p, q) satisfies the condition H(ft, 'II), then 
fl.(p, q) also satisfies the condition H(ft) for the vari­
able p uniformly with respect to q and the condition 
H(y) for q uniformly with respect to }J.6 Here H(ft) is 
the condition that 

Ifl.(p", q") - fl.(p', q")1 S M IP" - p'lll, 

with 0 < ft < I; similarly, for H(y) it is 

Iflip", q") - fl.(p", q')1 S N Iq" - q'IV, 

with 0 < 'II S 1. Therefore, we can expand fl.(P, q) in 
terms of a set of known linearly independent functions 
Fmn(P, q) which satisfy the condition H(ft, 'II): 

fl.(p, q) = I amn(S)F mn(P, q), (5) 
mn 

where amn(S) are unknown complex coefficients. The 
p and q dependences of fl. are included entirely in the 
function F mn(P, q). The above expansion is not re­
stricted to a particular value of S, i.e., S can be either 
S> 0 or S < O. The functions Fmn(P, q) need not be 
separable in p and q variables. 

7 See p. 50 of Ref. 6. 
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We select N1) points in the p variable and N '1 points 
in the q variable, and write the integral part of Eq. (3) 
as 

J 
00 i..1('1i' '12) 

I == dq~ dp:K.(Pi' qj; P2, q2)1f(P2' q2) 
o B('1i.q.) 

~:2 Aklpi,qj)1f.(P2k,q2!)· (6) 
kl 

With this discretization of the continuous variables p 
and q, Eq. (3) becomes a matrix equation, 

(1 - A)'I' = ell, (7) 

where A is a N x N matrix with N = N 1) x N '1 and the 
matrix elements of A are given by Akl(Pi' qj), which 
we determine below. Here, a pair of indices (i,j) or 
(k, /) is regarded as a single index running from 1 to N. 
Substituting (5) into (6) and requiring terms with the 
same coefficient amn to be equal, we obtain a set of 
simultaneous linear equations for Akl(Pi, qj): 

dp; dp:K.(Pi, qj; P2, q2)Fmn(P2, q2) J
oo 1..1(1)J·q2) 

o B(1)i. q.) 

= I Aklpi, q j)F mn(P2k' q21)' (8) 
kl 

Equation (8) represents a matrix equation of the 
form FA = M, where the matrix elements of Mare 
given by moment integrals on the left-hand side of 
Eq. (8). The moment integrals are of the Cauchy type 
integral and hence they are bounded. Interestingly, the 
coefficients amn(S) need not be calculated at all. 
Significantly, N 1) points selected in the P variable are 
now over the entire range (0, (0) and need not lie 
within the integration limits (B, A). 

The numerical method described above is a general­
ization of the method known as "approximate 
product-integration" for the one-variable to the two­
variable case.B The approximate product-integration 
method for the one-variable case is found to be 
convenient for the bound-state problem, and is used in 
calculation of three-particle bound-state energies 
described below. 

The bound-state energies are values of S at which the 
determinant 11 - AI vanishes. Therefore we look for 
zeros of the determinant as a function of S. We write 
the integral part I of Eq. (3) as 

1

..1('11''12Z) 

x dp:K.(Pi, qj; P2, q21)1f.(P2, q21), 
B('1;.'121) 

where WI are the weights for Gaussian quadrature. 
This expansion is possible because for S < So the 

8 A. Young, Proc. Roy. Soc. (London) A224, 552, 561 (1954). 

kernel Ks has no singularities. Otherwise, we must use 
the two-variable method described previously. For 
the P2 integration we cannot use a standard quadrature 
method, because the integration limits are not con­
stants. However, since 1f.(P2' q2) satisfies the condition 
H(ft) for the variable P2 uniformly with respect to q2, 
we can expand it as 

N v 

1f.(P2, q21) = :2 bm(Q21)!m(P2), 
m 

and write the integral part I as 
N. N p 

1=:2 Wz(Pi' Qj):2 WiPi' Qj; Q21)1f.(P2k' Q21)' 
I k 

where the Wk are to be determined by 

dpiK.(Pi' qj; P2, Q21)!m(P2) i
..1(fJ;.fJ21 ) 

B(fJj.fJ2Z) N" 

= :2 Wk(Pi' Qj; Q21)fm(P2k)' 
k 

which is again a matrix equation. The matrix elements 
of A in Eq. (7) are now given by WI(Pi ,qj) Wk(Pi, qj; q21)' 

The three-particle bound-state energies are calcu­
lated as a function of the interaction strength A for a 
local Yukawa potential VCr) = Ae-rjr (we set Ii = 
M = 1, where M is the rest mass of the particle). 
Gaussian quadrature method is used to approximate 
the integral part of the two-body Lippmann-Schwin­
ger equation, and the two-body t matrix is computed 
numerically by inverting the resultant matrix equation. 
The linearly independent functions fm(P) are chosen 
to be 

. 1 ( p2 )m 
fm(P) = p2 + IX p2 + IX ' 

m = 0, 1,2,···, N1) - 1, 

where IX is a parameter taken to be 2. To test the 
accuracy of the solution, Nfl is varied from 2 to 10, 
and N1) from 2 to 5. With N q = 10, the bound-state 
energies calculated with N 1) = 4 and 5 agree within 
0.1 %. Table I shows the convergence of the method 

TABLE I. Successive approximations for the binding energies of 
the J = 0 state of three spinless ibosons computed from the 
s-state local Yukawa potential with different ~alues of th~ inte~­
action strength A. The number of points Nq In the q varIable IS 

set equal to 10. 

A N p = 3 
binding energy 

N p = 4 N p = 5 

-1.6 -0.1089 -0.1090 -0.1090 
-1.8 -0.2876 -0.2881 -0.2881 
-2.0 -0.5466 -0.5472 -0.5472 
-2.2 -0.8880 -0.8868 -0.8869 
-2.4 -1.3152 -1.3081 -1.3079 
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used here for the bound-state energies at different 
values of A. The bound-state energy of 0.2881 at 
A = -1.8 can be compared with two other inde­
pendent results of 0.295 by Wong and Ball and 0.293 
by Osborn.9 

The approximate product-integration method for 
the two-variable case described previously is also 
applicable to the bound-state problem, as well as to 
scattering problems with S > 0 or 0 > S > So. The 
success of the method is critically dependent on a 
clever choice of linearly independent functions 

• T. A. Osborn, "Faddeev's Equations for Local Potentials," 
SLAC Report No. 79, Stanford University, Stanford, California, 
1967. 
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F mn(P, q). Some advantages of the 111ethod, either for 
the one-variable case or for the two-variable case, are 
that all rapidly varying parts, including the Cauchy­
type singularities in the kernel, can be included in the 
moment integrals and that discrete points chosen in 
the continuous variable P2 need not lie within the 
integration limits. Finally, we make an important 
remark that, to reduce the Faddeev equation to a 
matrix equation, we must transform it into a form in 
which the inhomogeneous term satisfies the Holder 
condition. 
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The specifically relativistic cut-contributions to the ring equations of a relativistic plasma as discussed 
in a previous paper are considered in more detail. The question of principle-whether or not these con­
tributions can give rise to specifically relativistic instabilities-is investigated with the aid of a simple 
nonequilibrium velocity distribution which leads to unstable cut-contributions, but not necessarily to 
unstable Landau-pole contributions. 

I. INTRODUCTION 

In a previous paperl we derived the kinetic equations 
in the ring approximation for a relativistic plasma. A 
remarkable feature of these equations is the coupling 
which exists between the kinetic equation for the 
particles and the kinetic equation for the energy 
density of the normal modes of the electromagnetic 
field through which the particles interact. Another 
distinguishing feature of these equations is the 
appearance of cut-contributions arising from cuts in 
the complex plane on which the frequency-dependent 
collision operator is defined. As shown in I, the origin 
of these contributions can be traced back to the 
velocity cut-off introduced by the relativistic particle 
dynamics. These specifically relativistic contributions 
to the kinetic equations have been discussed qualita­
tively in Sec. 5 of I. It is the purpose of this paper to 
consider them in mor~ detail. However, because of the 
complexity of these terms, we restrict ourselves to the 
question of principle, whether or not these cut-

1 M. Baus Physica (to be published), referred to as I. 

contributions can give rise to a specifically relativistic 
instability. For this purpose we consider the following 
particle-kinetic equation, taking dielectric screening 
into account: 

OtPO(Pi; t) 

= - rOOdrJdPin-2 L L ai • .1'~!~k/t) Jo , k;,kl 
iii il i X (.1' -k;,-k/t - r) • aj + .1' -kl,-k;(t - r) • ai ) 

X PO(Pi' Pi; t). (1) 

Equation (1) was derived in Ref. 2 [see Eq. (II.35)], 
where the relevant notations have been defined. It 
was shown in II that (1) is a particular contribution to 
the general relativistic ring equations of I. We recall 
that PO(Pi; t) is the momentum distribution of particle 
j, n the (large) volume, an the gradient with respect 
to Pn' whereas .1'~lidt) is a Fourier transform with 
respect to the posli:i'ons of particle i and j of the 
average force due to i and acting on j. We observe 
now that it is sufficient to investigate .1'(t) itself 

• M. Baus, Physica (to be published), referred to as II. 
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used here for the bound-state energies at different 
values of A. The bound-state energy of 0.2881 at 
A = -1.8 can be compared with two other inde­
pendent results of 0.295 by Wong and Ball and 0.293 
by Osborn.9 

The approximate product-integration method for 
the two-variable case described previously is also 
applicable to the bound-state problem, as well as to 
scattering problems with S > 0 or 0 > S > So. The 
success of the method is critically dependent on a 
clever choice of linearly independent functions 

• T. A. Osborn, "Faddeev's Equations for Local Potentials," 
SLAC Report No. 79, Stanford University, Stanford, California, 
1967. 
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F mn(P, q). Some advantages of the 111ethod, either for 
the one-variable case or for the two-variable case, are 
that all rapidly varying parts, including the Cauchy­
type singularities in the kernel, can be included in the 
moment integrals and that discrete points chosen in 
the continuous variable P2 need not lie within the 
integration limits. Finally, we make an important 
remark that, to reduce the Faddeev equation to a 
matrix equation, we must transform it into a form in 
which the inhomogeneous term satisfies the Holder 
condition. 
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particles and the kinetic equation for the energy 
density of the normal modes of the electromagnetic 
field through which the particles interact. Another 
distinguishing feature of these equations is the 
appearance of cut-contributions arising from cuts in 
the complex plane on which the frequency-dependent 
collision operator is defined. As shown in I, the origin 
of these contributions can be traced back to the 
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to the kinetic equations have been discussed qualita­
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1 M. Baus Physica (to be published), referred to as I. 
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X PO(Pi' Pi; t). (1) 

Equation (1) was derived in Ref. 2 [see Eq. (II.35)], 
where the relevant notations have been defined. It 
was shown in II that (1) is a particular contribution to 
the general relativistic ring equations of I. We recall 
that PO(Pi; t) is the momentum distribution of particle 
j, n the (large) volume, an the gradient with respect 
to Pn' whereas .1'~lidt) is a Fourier transform with 
respect to the posli:i'ons of particle i and j of the 
average force due to i and acting on j. We observe 
now that it is sufficient to investigate .1'(t) itself 

• M. Baus, Physica (to be published), referred to as II. 
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rather than (1), because it follows from (1) that any 
instability in jO(t) will induce an instability in the 
kinetic equation (1). We recall that the time behavior 
of the averaged force jO(t) is given by (see II.27, 32) 

[ dw e-ilro-k.y)t 

Jc w - k 0 v' 

x {(k 0 v - W)Dk(W) 0 v' - v 0 Dk(W) 0 v' k}, (2a) 

Dkl(W) = W2Ek(W) - (c IkI)2T, (2b) 

where C is the Laplace transform inversion contour, 
v, v' are particle velocities, Ek( w) a dielectric tensor, 
and T is the unit tensor in transverse k space (see I). 
We can still simplify the investigation by considering 
a spatially isotropic dielectric tensor, in which case 
we can separate the longitudinal and transverse modes 
(see 1.29): E = ELL + ET T (T = 1 - L, L = kk/k2). 

For simplicity we consider only the longitudinal 
contribution. In this case the time behavior of (2) 
and thus of jO(t) is governed by 

--k dw . 
1 i e-i(ro-k.y)t k 0 v' 

k2 
C w(w - k 0 v') EL(k, w) 

(3) 

Here we are interested only in the time behavior of 
(3) resulting from the cut-contribution discussed in 
I. Using the contour (I.65c), in which case the 
complex w plane is cut from c Ikl to c Ikl - ioo and 
from -c Ikl to -c Ikl - ioo (c = velocity of light), 
we can write the cut-contributions to (3) as 

I(t) = ~ [00 ely e-i(EV-k·y)t-yt 

E=±l Jo (ev - k 0 v' - iY)(E'JI - iy) 

X CL(k, E'JI ~ 0 - iy) - EL(k, E'JI ~ 0 - iY») , 

(4) 

where jOcut(t) "-' I(t) and'll = C Ikl. In order now to 
study the time behavior of I(t), we observe that at 
w = ±'J1 =F 0 - iy, EL(k, w) is defined by analytic 
continuation. This analytic continuation is easily 
obtained (as is explained, e.g., in Ref. 3) when 
EL(k, w) is written as a Cauchy integral. For this 
purpose it is necessary to perform the change of 
variables from p to the velocities v. As a result of these 
operations one obtains the following expression for 
EL(k, w): 

EL(k,w)=1+~47Te~dn{ dVn 1 h(k,vn;t) 
n k Jvn < C W - k 0 v n 

+ O(-Im w)l1(c Ikl - IRe wl)g(k, w), (5) 

where 1m w ;If 0 and where O(x) is the Heaviside step 

• R. Balescu, Statistical Mechanics of Char'!ed Particles (Inter­
science Pub\. Co., New York, 1963). 

function [O(x) = 1 for x > 0, O(x) = 0 for x ~ 0]. 
The function h is defined as (rno being the rest mass) 

whereas g is given by 

(k) 2 · ~ 47Tl~ dn g ,w = - 7T1 
n k 3 

X in</Vnt5(k OVn - u)h(k, vn ; t)iU=Wlk' (7) 

The time behavior of (4) is thus given by 

I(t) = ~ [00 dy e-ilEV-k·y)t-yt 

E=±1 Jo (E'JI - k 0 v' - iY)(E'JI - iy) 

X Eg(k, E'JI - iy) , (8) 
EL(k, E'JI + 0 - iY)EL(k, E'JI - 0 - iy) 

which we rewrite finally as 

I(t) = ~ roo dy/.(k; v, v'; y; t)e-ytg(k, E'JI - iy; t) 
E=±l Jo 

(9) 
with 

j.(k; v, v'; y; t) 

=--------------------
(E'JI - k 0 v' - iY)(E'JI - iy) 

1 . (10) 
EL(k, E'JI + 0 - iy)EL(k, E'JI - 0 - iy) 

X 

We observe now that the time behavior of (9) is 
governed, apart from the oscillating factor of (10), by 
the y behavior of e-ytg(E'JI - iy). When the velocity 
distribution is of the exponential type, its analytic 
continuation contained in g will exhibit damped and 
growing oscillations in y, so that the y integral in 
(9) is not necessary well behaved. As a result one can 
not, even for time-independent velocity distributions, 
commute the asymptotic time limit t ~ t R » W;l 

and the y integration and conclude that (9) is a 
transient (here t Rand W;l are, respectively, the 
relaxation and collision time). The behavior of (9), 
however, can be investigated asymptotically with the 
aid of the method of steepest descent,4 but, as will 
soon become clear, no general statement can be made 
about (9). This situation is in contrast with the 

• Ph. Dennery and A. Krzywicki, Mathematics for Physicists 
(Harper and Row, Inc., New York, 1967). 
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beautiful Landau-stability analysis (see, e.g., Ref. 3). 
We will now investigate (9) with the aid of a particular 
velocity distribution. 

2. ASYMPTOTIC EVALUATION OF THE CUT­
CONTRIBUTION FOR A PARTICULAR 

VELOCITY DISTRIBUTION 

As far as the question of principle-whether or not 
(9) can become unstable-is concerned, it will be 
sufficient to evaluate (9) asymptotically (t - IR ) with 
the method of steepest descent for a particular, but 
not too unrealistic, velocity distribution. Below, it will 
be seen that the instability condition as investigated 
along these lines requires that the analytic continua­
tion of the velocity distribution contain at least three 
independent coefficients in y space. This excludes 
Gaussian distributions and leads definitively to cubic 
nonequilibrium distributions. Moreover, in order to 
have simple computations, we will use spherical 
coordinates in velocity space in agreement with the 
symmetry of the integration domain (v < c), thereby 
avoiding the velocity-dependent integration limits 
encountered with other coordinate systems. However, 
in order to keep the Cauchy integral structure in (5), 
we delay the angle integrations. Let us take now a 
three-parameter spherically symmetric velocity distri­
bution, e.g., a Gaussian with a cubic correction: 

Po(v; t) ,......, exp (~V2 + ~(v - <5)3). (11) 

For simplicity we rewrite (11) as 

Po(v; t) ,......, exp (av + bv2 + dv3). (12) 

The cutoff of (12) for v ~ c will be accounted for by 
taking a finite integration domain (v < c). Moreover, 
notice that, because of the finite integration domain 
(v < c), the normalization of (12) does not restrict 
the sign of the parameters a, b, d. Using now k . v = 
kvp. (p. = cos 0), we can rewrite (7) for (12) as 

(k w) = -27Ti ~47Te~ dnfl d 27Tm~n 
g , k k2 P.n 1 2jk2 2 n -1 - W P.n 

X kP.n(a + 2b..!:!.... + 3d ~22) po(..!:!....). 
kp.n k P.n kp.n 

(13) 

Ifwe commute the p. and y integration, we can rewrite 
(9) as 

We recollect all exponential terms and write 

b( 7'1) = 7'15000 

d~k({3)eTh(P), 

(14) 

(15) 

where we have introduced the new variables T = t2
; 

(3 = yt-I . From (9), (12), and (13) we have 

h({3) = (-1 - ibI){3 - b2{32 + iba{33, 

bi = (ajkp.t) + (2bf:lIjk2p.2t) + (3v2djk3p.3t), 

b2 = (bjk2p.2) + (3evdjk3p.3), 
(16) 

bs = dtjk3p.3. 

For large 7' (t» W;I) the main contribution to (15) 
will come from the saddle point 

~ h({3) = 0, ~ = {3± == {3,± + i{3;{" 
d{3 

{3
' [(b; - 3bIb3)2 + 9b~]1 . 0 = ± . S1O-
± 3b

3 
2' 

R" = _ J2 =t= [(b; - 3b1b3)2 + 9b~]1. cos~ (17) 
I-'± 3ba 3b

3 
2 ' 

with 
tan 0 = 3b3j(b; - 3bIb3). (18) 

The paths of steepest descent are given by 

1m [h({3) - h({3±)] = 0 (19) 

and consist oftwo perpendicular straight lines through 
{3± (degenerate hyperbola). The original contour of 
(15) can be deformed into the path of steepest descent 
if the real part of the saddle point is positive: 

{3,± > O. (20) 

On the other hand, as (12) does not vanish automati­
cally when v ~ c, we can keep the original definition 
of the velocity distribution as long as we require the 
imaginary part of the saddle point to be negative: 

(3:l: < o. (21) 

When (20) and (21) are fulfilled, (15) will behave like 
7'l eThCP±) and become unstable (growing oscillations) 
when 

(22) 

We now investigate the three conditions (20)-(22) as a 
function of the three parameters bI , b2, b3 or a, b, d 
[see Eq. (16)]. From (16) we have, for (22), 

Re h({3±) == ( - (3,± + bI~;{,) + b2({3~2 - (3~) 

+ b3~:l:({3~2 - 3{3~) ~ O. (23) 

It is seen that Re h({J+) > 0 is trivially satisfied when 

b1 < 0, (24) 

b2 > 0, 

h3 > 0, 

1 {3"2 
1<-/--±.<3 

b2 .::. {3'2 ' 
1 + 

(25) 

(26) 

(27) 
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whereas (24)-(26) imply (20) and (21) on account of 
.(18) for f3+. Clearly (24)-(27) is only a particular 
solution which guarantees that each term of (23) is 
positive. For any given t» W;l we can now look for 
the regions of a, b, d, k, and fl satisfying, for example, 
(24)-(27) and in these regions5 l(t) [(14)-(15)] will 
grow at least as t. [The exponential could eventually 
tend to a constant, but cannot decay because of 
(23).] This shows that, in principle, the cut-contri­
bution (14) can exhibit instabilities. However, it 
should be noticed that this does not necessarily 
imply an instability for the kinetic equation (1), 
because the k, fl regions where the conditions [e.g., 
(24)-(27)] are satisfied can be of no importance with 
respect to the k, fl, and v integrations which we still 
have to perform. 

3. LANDAU STABILITY AND CUT­
CONTRIBUTION 

Let us now look under what conditions the cut­
instability will be specifically relativistic, i.e., will not 
be accompanied by unstable Landau-pole contri­
butions. Using (12) in (5) for 1m w == wIt > 0, we can 
write 

( ' k ) ." w - .y - IW 
X ( , n 2 2 (a + 2bVn + 3dv!)po(vn). 

W - k· Yn ) + wIt 

(28) 

Using the fact that for a zero of (28) 1m EL = 0, 

5 As an example one can check that (27) can be satisfied for any 
positive ba when b2 -.. 0 and with -1 < bl < -1 or by - V3/3 < 
bl < 0 when b. -.. + 00 for any positive b2 • 

following the usual procedure6 we write 

Re EL(k, w' + iw") 

= 1 + '" 47Te~ dnf. dv m~n 
~ k 2 n 2/ 2 n v.<c 1 - Vn C 

-k·vk·Y 
x (' k )2 +n ,,2 (a + 2bVn + 3dv!)po(vn)· 

w - 'Yn W 

(29) 

Therefore the instability condition Re EL = 0, w" > 0 
cannot be satisfied when 

a + 2bvn + 3dv~ < 0 for 0 < Vn < c, (30) 

i.e., when the roots of 

3dv~ + 2bvn + a = 0 (31) 

are complex or lie outside the domain (0, c). 
The regions of a, b, d satisfying (30) together with, 

e.g., (24)-(27) will thus lead to a specifically relativistic 
cut-instability for which no traditional pole instability 
exists. 

4. CONCLUSIONS 

The cut-contributions to the kinetic equations for a 
relativistic plasma introduced in I have been investi­
gated in more detail. It has been shown that, in 
principle, these contributions can become significant 
for not too unrealistic nonequilibrium situations and 
yield a specifically relativistic instability which is not 
necessarily accompanied by a traditional Landau­
pole instability. However, a more detailed study of 
this type of instability is still required. 
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Variational principles are used to find approximate solutions of integral equations arising in the 
Kirkwood-Riseman theory of the properties of flexible macromolecules. Upper and lower bounds are 
obtained for the translational diffusion constant. 

I. INTRODUCTION 

Integral equations of the form 

rp(x) = f(x) + A fllx - tl-a rp(t) dt, (1) 

where 0 < IX < 1 and A is negative, arise in the 
Kirkwood-Riseman theoryl of intrinsic viscosities and 
diffusion constants of flexible macromolecules. Numer­
ical solutions of this kind of equation have been 
obtained by Ullman2 •3 and by Schlitt.4 In this paper 
complementary variational principles for integral 
equations5 are used to find approximate solutions for 
equations of the form (1). When/ex) = 1, these prin­
ciples lead to upper and lower bounds for the trans­
lational diffusion constant. 

II. COMPLEMENTARY BOUNDS 

Consider the Fredholm integral equation 

rp(x) = f(x) + ,1Krp(x), 
where 

Krp(x) = f J\,(x, t)rp(t) dt, 

(2) 

(3) 

in which the kernel J\,(x, t) is symmetric and positive 
definite. If A is negative, it follows from the theory of 
Sec. 3 of Ref. 5 that the complementary bounds 

G(<I» ~ l( rp) ~ J('Y) (A < 0) (4) 

hold, where 

l(rp) = ff(X)rp(x) dx, (5) 

G(<I» =f {2f<l> - <1>2 + <l>,1K<I>} dx, (6) 

J('Y) = f {(f + ,1K'Y)2 - 'Y,1K'Y} dx. (7) 

1 J. G. Kirkwood and J. Riseman, J. Chern. Phys. 16, 565 (1948). 
2 R. Ullman, J. Chern. Phys. 40, 2193 (1964). 
• N. Ullman and R. Ullman, J. Math. Phys. 7, 1743 (1966). 
, D. W. Schlitt, J. Math. Phys. 9, 436 (1968). 
6 P. D. Robinson and A. M. Arthurs, J. Math. Phys. 9, 1364 

(1968). 

Here rp is the exact solution of the integral equation 
(2), and <I> and 'Yare any trial functions. The nearer 
<I> and'Y are to rp, the closer the bounds G and J are to 
I and to each other. 

Since 

J\,(x, t) = Ix - tl-a
, -1 ~ x, t ~ 1, (8) 

is symmetric and positive definite (this latter property 
following from the analysis of Auer and Gardner6), 

these results can be applied to the integral equation (1). 

III. CALCULATIONS 

With the kernel (8), calculations have been per­
formed for two cases: (i)f(x) = 1, and (ii)f(x) = x2. 
In each case the trial functions used were 

<I> = A l x
2 + BI , 'Y = A2X2 + B2 , (9) 

the parameters AI, BI , A2 , B2 being found from the 
stationary conditions 

oG = 0 oG = 0 ~ = 0 oj = 0 (10) 
oAI 'OBI 'oA 2 'oB 2 ' 

which optimize G and J. Since the same functional 
form is employed for both <I> and 'Y, the closeness of 
the optimum parameter values measures the accuracy 
of approximate solutions of this nature, as does the 
closeness of G and J also. In Tables I and II we give 
the results for a range of A values and for IX = 0.2,0.5, 
and 0.8. 

Whenf(x) = 1, we see from Eq. (5) that 

l(rp) = L>(X) dx, (11) 

and this by the Kirkwood-Riseman theoryl is inversely 
proportional to the translational diffusion constant 
D; that is, 

f:l rp(x) dx = cJ D, (12) 

where c = 2MokTJM~, in which kT is the Boltzmann 
energy, ~ is a friction constant characteristic of the 

• P. L. Auer and C. S. Gardner, J. Chern. Phys. 23, 1545 (1955). 
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TABLE I. Variational parameters and bounds; f = 1. 

-A A, B, Lower bound G A. B. Upper bound J (J - G)/J 

(a) IX = 0.28 

2 0.06322 0.15079 0.34372 0.06070 0.15160 0.34378 0.00017 
4 0.05227 0.07675 0.18834 0.04981 0.07754 0.18843 0.00046 
8 0.03685 0.03722 0.99OO4( -1) 0.03485 0.03786 0.99132( -1) 0.00129 

16 0.02281 0.01781 0.50834( -1) 0.02145 0.01825 0.51002(-1) 0.00329 
32 0.01289 0.00859 0.25772(-1) 0.01207 0.00885 0.25966( -1) 0.00747 
64 0.00689 0.00419 0.12977( -1) 0.00643 0.00434 0.13189(-1) 0.01610 

128 0.00356 0.00207 0.65118( -2) 0.00332 0.00215 0.67342( -2) 0.03303 
256 0.00181 0.00103 0.32618( -2) 0.00169 0.00107 0.34894( -2) 0.06523 
512 0.00091 0.00051 0.16324( -2) 0.00085 0.00053 0.18628( -2) 0.12370 

1024 0.00046 0.00026 0.81656( -3) 0.00043 0.00027 0.10484(-2) 0.22112 

(b) IX = 0.5 

2 0.05529 0.09956 0.23598 0.05227 0.10047 0.23660 0.00262 
4 0.03441 0.05131 0.12557 0.03241 0.05192 0.12636 0.00627 
8 0.01943 0.02596 0.64880( -1) 0.01826 0.02632 0.65794( -1) 0.01389 

16 0.01036 0.01304 0.32994(-1) 0.00972 0.01324 0.33978( -1) 0.02896 
32 0.00535 0.00653 0.16639( -1) 0.00502 0.00664 0.17663(-1) 0.05798 
64 0.00272 0.00327 0.83556( -2) 0.00255 0.00332 0.94004( -2) 0.11114 

128 0.00137 0.00164 0.41868( -2) 0.00129 0.00166 0.52424( -2) 0.20136 
256 0.00069 0.00082 0.20956( -2) 0.00065 0.00083 0.31566( -2) 0.33612 
512 0.00035 0.00041 0.10484( -2) 0.00032 0.00042 0.21120( - 2) 0.50379 

1024 0.00017 0.00020 0.52436( -3) 0.00016 0.00021 0.15893( -2) 0.96701 

(c) IX = 0.8 

2 0.01171 0.04591 0.99618( -1) O.ot148 0.04598 0.99698( -1) 0.00080 
4 0.00623 0.02347 0.51088( -1) 0.00611 0.02350 0.51178(-1) 0.00176 
8 0.00321 0.01187 0.25876( -1) 0.00315 0.01189 0.25972( -1) 0.00367 

16 0.00163 0.00597 0.13023( -1) 0.00160 0.00598 0.13122(-1) 0.00757 
32 0.00082 0.00299 0.65328( -2) 0.00081 0.00300 0.66338( -2) 0.01523 
64 0.00041 0.00150 0.32718( -2) 0.00041 0.00150 0.33736( -2) 0.03018 

128 0.00021 0.00075 0.16372( -2) 0.00020 0.00075 0.17394( - 2) 0.05877 
256 0.00010 0.00037 0.81894( -3) 0.00010 0.00038 0.92138( -3) 0.11118 
512 0.00005 0.00019 0.40956( -3) 0.00005 0.00019 0.51208( -3) 0.20020 

1024 0.00003 0.00009 0.20480( -3) 0.00003 0.00009 0.30738( -3) 0.33372 

8 Here N(-m) means N X 10-"'. 

TABLE II. Variational parameters and bounds; f = x2
• 

-A A, B, Lower bound G A2 B. Upper bound J (J - G)/J 

(a) IX = 0.2 

0.1 0.98363 -0.05753 0.35510 0.98246 -0.05728 0.35512 0.00006 
0.5 0.91128 -0.14787 0.26594 0.90668 -0.14659 0.26618 0.00090 
1.0 0.82827 -0.17270 0.21618 0.82101 -0.17053 0.21676 0.00268 
2.0 0.69756 -0.16961 0.16595 0.68763 -0.16654 0.16721 0.00752 
4.0 0.52877 -0.14022 0.11803 0.51767 -0.13672 0.12047 0.02025 
8.0 0.35590 -0.09886 0.76454(-1) 0.34603 -0.09572 0.80492( -1) 0.05017 

(b) IX = 0.5 

0.1 0.90868 -0.05610 0.32608 0.90548 -0.05530 0.32618 0.00031 
0.5 0.65125 -0.09346 0.19819 0.64379 -0.09141 0.19934 0.00574 
1.0 0.47755 -0.08213 0.13627 0.46983 -0.07995 0.13850 0.01608 
2.0 0.31069 -0.05932 0.84730( -1) 0.30432 -0.05749 0.88284( -1) 0.04026 
4.0 0.18270 -0.03691 0.48472( -1) 0.17838 -0.03566 0.53206( -1) 0.08897 
8.0 0.10014 -0.02084 0.26164(-1) 0.09757 -0.02009 0.31736( -1) 0.17557 

(c) IX = 0.8 
0.1 0.62552 -0.03356 0.22784 0.62443 -0.03343 0.22808 0.00105 
0.5 0.24862. -0.02215 0.84682( -1) 0.24781 -0.02202 0.85544( -1) 0.01008 
1.0 0.14169 -0.01376 0.47504( -1) 0.14118 -0.01368 0.48588( -1) 0.02231 
2.0 0.07616 -0.00774 0.25302( -1) 0.07587 -0.00770 0.26532( -1) 0.04636 
4.0 0.03956 -0.00412 0.13079( -1) 0.03940 -0.00409 0.14393( -1) 0.09130 
8.0 0.02017 -0.00213 0.66520( -2) 0.02009 -0.00211 0.80116( - 2) 0.16970 
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fluid, M is the molecular weight of the polymer unit, 
and Mo is the molecular weight of the monomer unit. 
Since G and 1 provide complementary bounds for 
J(ep), it follows that clG and cll obtained from Table 
I provide upper and lower bounds for D, the trans­
lational diffusion constant. Thus 

cll S D S c/G (f = 1). (13) 

When/ex) = X2, the functional J(ep) in (5) has no 
direct significance, but other writers3•4 have also 
considered this case. 

IV. DISCUSSION 

Previous numerical solutions of Eq. (1) have been 
concerned with the case IX = 0.5, which corresponds to 
a Gaussian model for the statistics of the polymer 
chain. It is to be expected that statistics other than 
Gaussian will lead to values of IX lying somewhere 
between zero and unity. Using the variational method 
of this paper, we have obtained results which enable us 
to compare the solutions for Gaussian and non­
Gaussian models. 

Judging by the closeness of the bounds G and l, and 
by the closeness of the parameters AI, A2 and BI , B2, 
we see from Tables I and II that the solutions are 
quite accurate for the smaller A values shown. With 
these values in case (i) corresponding to lex) = I, 
we are able to place close upper and lower limits on 
values for the diffusion constant D. For fixed values of 
A. in the range -2 to -256, we see from Table I and 
Eq. (13) that the diffusion constant D increases as IX 

increases. For the larger A. values, some variation of 
accuracy occurs as IX changes, the least accuracy being 
recorded for IX = 0.5. 

TABLE III. Comparison between results of Ullman and this 
paper for f(x) = X2, IX = 0.5, A = -0.5. 

x 

0.019511 
0.116084 
0.227786 
0.413779 
0.502804 
0.636054 
0.778306 
0.912234 
0.999554 

4> (Ref. 3) 

-0.081022 
-0.073681 
-0.052520 

0.015277 
0.062386 
0.15394 
0.28370 
0.45436 
0.65425 

-0.093212 
-0.08468 
-0.05967 

0.01804 
0.07118 
0.17001 
0.30104 
0.44849 
0.55721 

-0.09116 
-0.08273 
-0.05801 

0.01882 
0.07135 
0.16904 
0.29857 
0.44433 
0.55181 

In case (ii), corresponding to/ex) = X2, some com­
parison with previous work is possible. Table III 
contains the numerical solution of Ullman and 
Ullman3 for IX = 0.5, A = -0.5, and our variational 
solutions <l> and 'Y, which for this case are given by 

<l> = (0.65125)x2 - 0.09346, (14) 

'Y = (0.64379)x2 - 0.09141. (15) 

While these variational solutions are accurate to 
0.57 % in terms 9f the bounds G and l, we see from 
Table III that the agreement with the numerical 
solution is only moderately good. This, however, 
must be attributed to the extreme simplicity of the 
trial functions used here. More elaborate trial func­
tions, for example <l> = Ax4 + Bx2 + C, will un­
doubtedly lead to more accurate variational solutions 
and closer bounds. Even in a situation like this when 
the bounds are not of direct physical interest, the 
advantage of an approximate analytical solution valid 
for all x is worth stressing. 
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A new point of view is presented for which the Schwarzschild singularity becomes a real point singu­
larity on which the sources of Schwarzschild's exterior solution are localized. 

INTRODUCTION 

The exterior Schwarzschild metric may be written 
in polar harmonic coordinates as l 

ds2 = _ r - cx c2 dt2 + r + cx dr2 + (r + CX)2 dw2, 
r+cx r-cx 

dw2 = d()2 + sin2 
() dcp2, 

cx = GMJc2
• 

(1) 

By polar harmonic coordinates is meant that t, 
Xl = r sin () cos cp, x2 = r sin () sin cp, and xa = r cos () 
are harmonic functions. These coordinates {t, Xi} are 
admissible only for r > cx. 

Most people feel that the singularity of (I) as 
r -- cx-the Schwarzschild singularity-is not an 
intrinsic one, since the only curvature invariant K, 
of which every other invariant is a regular function, 
is K = mj(r + cx)a and does not display any special 
behavior at r = cx. One may then ask whether or not 
the metric (1) can be "extended" regularly. Actually, 
several extensions have been proposed in the literature, 
the most commonly quoted being those of Finkel­
stein2 and Kruskal.3 Both extensions lead to space-time 
models which are not globally static and are conse­
quently inadequate for representing the exterior 
solution of a source in static equilibrium. 

In this paper we aim to show that, besides the 
extension point of view, there is another one for which 
the Schwarzschild singularity becomes instead a real 
point singularity on which are localized the sources of 
the exterior static solution. For anyone who accepts it, 
this point of view eliminates any speculation about the 
physics of objects supposed to have collapsed beyond 
the Schwarzschild singularity. 

1. THE SPACE MANIFOLD Va 

(a) The space metric which corresponds to (1) 
could be, of course, 

d§2 = r + cx dr2 + (r + CX)2 dw2, 
r-cx 

(2) 

1 V. Fock, The Theory of Space-Time and Gravitation (Pergamon 
Press, Inc., New York, 1964). 

B D. Finkelstein, Phys. Rev. 110, 965 (1958). 
• M. Kruskal, Phys. Rev. 119, 1743 (1960). 

but it could also be 

ds2 = dr2 + (r2 - cx2) dw2. (3) 

(ds2 = ~2 d§2, ~2 are, up to a sign, the square of 
the generator of the group of timelike motions.) 
Corresponding to the coordinates which we are using, 
~2 = (r - cx)/(r + cx). Several local properties of (3) 
as compared to the corresponding ones of (2) have 
been discussed by Fock,l Ehlers and Kund,' and Bel 
and Escard.5 

We choose (3) as the metric of the space. This choice 
is essential in the following construction of the space 
manifold Va. 

(b) Let Va* be the open submanifold of Rs defined 
by X E Vs* if r > cx. ds2 defines a distance d* onto 
Va* by 

d*(xl , X2) = inf r ds, Xl' X2 E Pt, (4) J 1(11:1,11:.> 

l(xl , x2) being the set of all piecewise-differentiable 
paths joining Xl and X 2 • 

The metric space Va*(d*) is not complete. But one 
can prove very easily the following result: 

The completion Vid) of Va*(d*) contains only one 
additional point. Let Xo be this point. Then d(xo, x) = 
r - cx I (x E Va*). 

The steps of the proof are the following. Every 
Cauchy sequence Xn of V3*(d*) is either of type (1) or 
of type (2). Xn is of type (1) if there exists k such that 
for n > k, r n > a > cx. Every Cauchy sequence of 
this type converges to a point x E Va* . Xn is of type 
(2) iffor every E > 0 there exist n such that r n - cx < E. 

No Cauchy sequence of this type converges. 
If Xm and x~ are any two points of Va*' one has that 

(5) 

From this inequality it follows that, if Xm and x~ are 
two Cauchy sequences of type (2), 

lim d*(xm' x~) = O. 
n=m-+oo 

• J. Ehlers and W. Kund, Contribution to Gravitation, L. Witten, 
Ed. (John Wiley & Sons, Inc., New York, 1962). 

5 L. Bel and J. C. Escard, Rend. Atti. Accad. Nazi. Lincei. (VIII) 
41, 476 (1966). 
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This means that any two such sequences are equivalent. In fact, in the same cobasis one has 

This proves the first part of our result. El = -C2('J.S-2, E2 = E3 = O. (11) 
From (5) with Xm = x and from 

d*(Xl' x~) ~ r - r n - 7T(r~2 - ('J.2}l-, (6) 

valid for x~ of type (2) and n large enough, it follows 

lim d*(Xl' x~) = r - ('J.. 

This proves the second part. 
(c) V3(d) is by construction a complete metric space 

to which we may add a differentiable structure 
compatible with that of V:. We need only define a 
local chart (U, <p), U being, for example, an open ball 
d(xo, x) < b of center Xo and <p a homeomorphism of 
U into a Euclidean ball of center 0 {yl = y2 = y3 = O}. 
We define <p by 

<p: Xo - 0, x - y == {yl = u sin e cos <p, 

y2 = u sin e sin <p, y3 = U cos e}, 

u = (3('J.)t(r - ('J.)i. (7) 

Let it{jJ) be the determinant of ds2 corresponding to this 
local system of coordinates. Then,S 

it{y} = (r + ('J.){2('J.. 

The space manifold V3 can now be built from the 
union of two local charts (U, <p) and the original one 
as defined by the coordinates {Xi}. One can prove, 
then, the existence of a global coordinate system {Zi} 
compatible with the asymptotic Euclidean behavior 
of ds2 and such that it{Zi} = 1 everywhere. 

2. METRIC AND FIELD SINGULARITIES 

We shall use in the neighborhood of the origin 
(point xo) the coordinates {u, fJ, <p}. The space metric 
is 

ds2 = 3(4('J.)-lU du2 + S2(U) dw2, 

S2 = (3 ('J.)-lUi [u~ + (12('J.3)!]. (8) 

Consider the orthonormal cobasis: {jl = (3u{4('J.)!, 
{j2 = S de, {j3 = S sin fJ d<p. 

The strict components of the Rieman tensor which 
are not identically zero in this cobasis are 

3. THE SOURCE OF THE EXTERIOR SOLUTION 

(a) Let us consider a spherically symmetrical 
space-time which is globally static with metric (1) for 
r> R > ('J. and 

lds2 = -1~2ak) dt2 + ld§2, ld§2 = 19iJak
) dsi dsi , 

{I = r, {2 = e, {a = <p, (12) 

for 0 :s; r :s; ('J.. We assume that lds2 is of class Ca and 
a solution of Einstein's interior field equations: 

We assume also that the global metric is CI, piece­
wise Ca (across the hypersurface r = R). 

It is well known9 that one of the field equations (14) 
may be written as 

13. I U = 47TGft, 1 U = c21og~, ft = 1~-2(Tg - TD, 

(14) 

where 13. is the Laplacian operator corresponding to 
lds2 = 1~2 lds2. From (14) one can prove that 

M = r ft(lg)! dr de d<p, 19 = det (lgii)' (15) Jvs 

(b) We now consider the exterior solution only. 
For any open set which does not contain Xo we have, 
of course, 3.u = 0 (U = c2 ln ~). We wish to define 
3.u as a distribution. The function U is locally 
integrable using as volume element the volume 
element of ds2 : 

(g)! = ~ [u t + (12('J.3)!] sin e. 
2('J.~3! 

It then defines a distribution 

(9) 3.u is now defined as a distribution by 

If u - 0, these components tend to infinity. Conse­
quently the point Xo is singular with respect to the 
Riemannian structure of V3 • It is also a singular point 
of the gravitational field7 •8 E = -c2 grad In ~, where 

~ = utj[ui + (12('J.3)1]!. (10) 

·1imu~og{.) = 1. If instead we had defined rP by u = r - IX, as 
seems most natural, we would have had limu~o g{.} = O. 

7 Justifications of this terminology can be found in Refs. 1, 4, 5, 
and 8. 

8 C. Cattaneo, Nuovo Cimento 10, 318 (1958). 
• See, for instance, Ref. 1. 

(~U,f) = lim r U3.(g)! du de d<p, (17) 
£-+0 JV.-B<£) 

where B(E) is the open ball of center Xo and radius E. 

To calculate (18) we may use the generalization of 
Green's formula to Riemannian spaces and write 

<3.u,f) = -lim ( [u oj - j dUJ40C (g)! de d<p, 
£-+0 J82(£) oU du u 

S2(E) = oB(E). (18) 
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Using the fact that 

lim E log E = 0, 
<->0 

the calculation can be finished as in the Newtonian 
case and we get 

JOURNAL OF MATHEMATICAL PHYSICS 

or 
(19) 

We may say then that the source of the exterior 
solution is MIJlI)o and write symbolically, but con­
sistent with (14) and (15), 

M =f MIJII) (g)! du dO dc/>. (20) 
v. 0 
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We examine the system of coupled differential equations to which the constraints on the Cauchy data 
reduce if expressed in terms of the "shift" vector Nk and "lapse" No. If (Slgo; and a (SlgH/ at are given 
and Dirichlet boundary conditions are imposed, the solution Nk is found to be unique if 2 x (energy 
density) - (three-curvature) > 0, but need not be unique when this inequality is not satisfied. No general 
existence theorem is known, but we list some conditions which make solutions impossible. 

I. INTRODUCTION 

In the general theory of relativity the causal develop­
ment of the metric field is completely determined, at 
least for some finite time, once the initial data are 
given on a spacelike hypersurface. The correct data 
are of the Cauchy type and, if the spacelike hyper­
surface is designated by XO = 0, this means we are to 
specify (4)g (4)g' = a (4)g joxO and the energy-/lV' JlV - J1,V , 

momentum tensor Tllv at Xo = 0. However, it is seen 
that, of the ten Einstein equations, the four 
equations 

(1) 

do not contain second time derivatives at all and 
therefore must be regarded as four constraints on the 
initial data. 

In order to find a consistent set of initial data, one 
can try to proceed in this fashion: prescribe arbitrarily 
some of the gllv and gllv, then find those remaining by 
solving Eqs. (1) for them. Foures-Bruhatl has re­
viewed several ways of formulating this problem of 
initial conditions. We will be concerned with the 

* Present address: Massachusetts Institute of Technology, Cam­
bridge, Massachusetts. 

t Present address: Rensselaer Polytechnic Institute, Troy, New 
York. 

1 Y. Foures-Bruhat, in Gravitation: An Introduction to Current 
Research, L. Witten, Ed. (John Wiley & Sons Inc., New York, 
1962), p. 130. 

approach discussed by Wheeler.2-4 In this formula­
tion one defines the "shift" vector Nk and the "lapse" 
No by 

ds2 = gik dxi dxk + 2Ni dXi dxo 

+ C3)gikNiNk - Ng)(dxO)2. (2) 

Here (3)gik is the metric induced on the hypersurface 
XO = ° (we will hereafter abbreviate gik :: (3)gik)' It 
can be shown that, within the hypersurface, Nk trans­
forms like a 3-vector and No like a scalar. These shift 
and lapse functions have a very simple geometrical 
interpretation: they determine how hypersurfaces near 
XO = ° are to be constructed. 

We now take gik and gik as prescribed and attempt 
to consider Eqs. (1) as four equations for the unknowns 
Nk and No. These equations can be written as 

where 

[(Ymn - gmny!)/No]lm = Sn, 

No = [y*j(2E - R)]!, 

Yrs = teNrls + N s1r - grs), 

y* = (y!)2 _ YrsYrs. 

(3) 

(4) 

(5) 

(6) 

2 R. F. Baierlein, D. H. Sharp, and J. A. Wheeler, Phys. Rev. 
126, 1864 (1962). 

3 J. A. Wheeler, in Relativity, Groups and Topology, C. DeWitt 
and B. DeWitt, Eds. (Gordon and Breach, Science Publishers, New 
York, 1964), p. 317. 

• J. A. Wheeler, in Gravitation and Relativity, H. Y. Chiu and W. 
F. Hoffman, Eds. (W. A. Benjamin, Inc., New York. 1964), p. 303. 
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R is the curvature scalar formed out of the 3-metric 
gik and e and Sn are, respectively, the energy density 
and the density of energy flow (the precise definitions 
are given in Sec. IV). From Eqs. (3) and (4) we obtain 
the following condensed initial-value equations which 
only involve the vector Nk : 

{[(2e - R)/Y*]!(Ymn - gmny!)}lm = Sn. (7) 

These last equations can be obtained from the action 
integral 

J = f {- [y*(2e - R)]l + SkNk}gl d3x (8) 

by seeking the extremum with respect to variations 
of Nk • 

The problem of finding consistent Cauchy data 
reduces to that of solving Eqs. (7) for the shift Nk , 

where e, Sn' gmn' and imn are given functions. The 
solution must satisfy the restriction 

y*/(2e - R) > 0 (9) 

everywhere. It then becomes necessary to ask, Do the 
Eqs. (7) have one and only one solution whenever 
some appropriate boundary conditions are given? 
Sections II and III discuss this question. Section IV 
contains a few remarks about the source terms. 

II. UNIQUENESS 

The uniqueness problem for Eqs. (7) is of particular 
interest because of its relation to the Mach principle 
as formulated by Wheeler.4 It is also relevant to the 
question of the absence of a gravitational analog to 
electric charge.5 As domain for the solution of Eqs. 
(7) we take a region C of finite proper volume con­
tained in the hypersurface XO = O. We will suppose 
that C is the union of a finite number of oriented 
curvilinear tetrahedra, i.e., C is a 3-chain. This will 
make it possible to apply Gauss's theorem. We do not 
place any further restrictions on the topology of C; 
in particular, "wormholes" are not excluded. 

We will consider boundary conditions of the 
Dirichlet type: the function Nk is to be prescribed on 
the boundary d(C) of C. We then find that the solution 
is unique, provided that everywhere 

2e - R > O. (10) 

However, it may happen that the boundary d( C) 
vanishes: for example, if the hypersurface XO = 0 is a 
3-sphere and C is all Qfthis 3-sphere. We will call such 
a space "closed." In this case no boundary conditions 
are imposed on Nk , but nevertheless the solution of 

• J. A. Wheeler, in Relativistic Fluid Mechanics and Magneto­
hydrodynamics, R. Wasserman and C. P. Wells, Eds. (Academic 
Press Inc., New York, 1963), p. I. 

Eq. (7) remains unique up to Killing vectors. Since such 
Killing vectors added to Nk are physically irrelevant, 
the shift is essentially unique. If Eq. (10) is not satisfied, 
we can show by means of an example that Dirichlet 
boundary conditions are insufficient to guarantee 
uniqueness. 

The uniqueness theorem can be stated as follows: 

Theorem: Suppose 2e - R > O. Whenever the equa­
tions 

{[(2e - R)/Y*]!(Ymn - gmny!)}lm = Sn' (11) 
with 

Yrs = HNris + NsJr - irs), (12) 

Y* = (y;)2 _ Yrsyrs > 0, (13) 

have two solutions Nk = Vk(x) and Nk = Wk(x), taking 
the same boundary values Ns on deC), then the two 
solutions can differ at most by a Killing vector. If 
d( C) ~ 0, the solutions must be identical throughout C. 

The proof proceeds in two steps: first we establish 

IXmn(x) = ).(x)fJmn(x), (14) 

where ).(x) > 0 is a differentiable scalar function and 

IXmn = !(Vmln + Vnlm - imn), (15) 

fJmn = !(Wm1n + Wn1m - imn)· (16) 

Then we show that ).(x) = 1. 
Define 

Mk = uVk + (1 - U)Wk' (17) 

r mn(u) = UlXmn + (1 - u)fJmn 

= HMmin + Mnlm - imn), (18) 

r*(u) = (r:)2 - rrsrrs, (19) 

where u is a real parameter, 0 ~ u ~ 1. r*(u), 
regarded as function of u (for fixed x), is a quadratic 
polynomial in u. It can be shown that r*(u) has no 
roots in the interval 0 ~ u ~ 1.6 Since r*(O) = fJ* 
and r*(l) = IX* are positive, the function rr*(u)]! is 
real and all its derivatives with respect to u exist and 

. are' real in the interval 0 ~ u ~ 1. 
Next define 

J(u) = fo{ -[(2e - RW*(u)]! + SkMk}gl d3x. (20) 

We will show that the derivatives of J(u) with respect 
to u have the following properties: 

(i) J'(O) = J'(1) = 0; 
(ii) J"(u) ~ 0 in the interval 0 ~ u ~ 1; 

(iii) J"(u) > 0 in the interval 0 ~ u ~ 1 unless Eq. 
(14) is true. 

• The proof is given in Appendix A. 
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These contradictory properties of the function J'(u) 
establish that Eq. (14) must hold. 

The demonstration of (i) is trivial since Eq. (11) is 
the Euler-Lagrange equation for the integral land, 
therefore, leu) at u = ° and u = 1 is stationary for 
arbitrary variations of the solutions Wk and Vk , 

respectively. Items (ii) and (iii) are obtained by 
straightforward calculation of J" (u). 7 

To show that A(X) = 1 we begin by observing that 
this is certainly true on d( C) because of the Dirichlet 
boundary condition. Suppose now that there exists 
some region C' such that A ::;t. 1 in C' and A = 1 on 
d(C'). It follows from Eq. (14) that, wherever A ::;t. 1, 

Wk1m + Wm1k - gmk 

= (Wk1m + Wm1k - Vk1m - Vm1k)/(1 - A), (21) 

so that Wk - Vk must be a solution of the "homo­
geneous" initial-value equation [i.e., Eq. (11) with 
gmn = 0]. Designate by C - C' the region where 
A(X) = 1; then, in C - C', Wk - Vk must be a Killing 
vector. This makes the existence of any region C' 
impossible because the homogeneous equation cannot 
have any solution Lk which reduces to a Killing vector 
~k on d( C') and also satisfies the restriction (9). Since 
Killing vectors have zero divergence and since ~k 

vanishes on deC), 

° = r ~ls d3x = r ~sns d2x - r ~sns d2x 
Jc-c' Jd(C) Jd(C') 

= _ r ~sns d2x 
Jd(C') 

= - r Lsns d2x = - r L!s d3x. (22) 
Jd(C') Jc' 

Therefore, Lis must vanish somewhere in C' and Eq. 
(9) is not satisfied. 

We conclude finally that A(X) = 1 everywhere so 
that Wk and Vk differ at most by a Killing vector. If 
d( C) ::;t. 0, this Killing vector would have to vanish on 
the boundary and must therefore be zero everywhere. 

In absence of the condition 2€ - R > 0, it is 
possible to construct counterexamples to uniqueness. 
Take the closed space consisting of the cube Ixll ~ a, 
Ix21 ~ a, Ix31 ~ a with periodic boundary conditions 
imposed on all functions in this space (3-torus). 
Suppose gmn = 15;:', but gmn ::;t. 0. Suppose further that 
we have found some solution Nk of Eq. (3) such that 
Y mn is constant and Y22 + Y33 = 0. These conditions 
are compatible. It is easy to check that Nk + tSU(XI) is 
also a solution of Eq. (3) whenever f(x l ) is a twice 
differentiable, periodic function of Xl. Our example is 
unphysical because € must be negative, but similar 

7 See Appendix B. 

constructions are possible in spaces of positive 3-
curvature with positive €. This lack of uniqueness is 
not surprising because examination of the character­
istic determinant of the system of equations (3) reveals 
that the determinant has no definite sign if 2€ - R < 
0. The equations are then not elliptic and Dirichlet 
boundary conditions are not natural. Unfortunately 
this seems to be the only type of boundary condition 
which is physically meaningful. 

III. EXISTENCES 

No general existence theorem for Eqs. (7) is 
known. Solutions do not exist under all possible 
assignments of the functions gii' gii' €, and Si' Here 
are three sets of conditions on these functions, each of 
which guarantees that no solution exists. 

(i) If the geometry is closed and admits a Killing 
vector ~ i and 

(23) 

no solution to any of the associated problems of 
initial conditions (gii and € arbitrary) can be found. 
If a solution did exist, we would have Si = 7TiJ for 
some tensor 7Tii . Thus 

f Si~igi d3x = f 7Tg~igi d3x 

- - 7T "(ili)g X -, 2 - f iiI:: i d3 
- ° ( 4) 

which would contradict Eq. (23). 
(ii) If the geometry is closed and gij = Lili + Lili 

for some vector Lk , and if 2€ - R > 0, no solution to 
any associated initial-value problem (Si arbitrary) 
can exist. This is proved as follows: Consider a solu­
tion Yrs; it must satisfy 

(y;)2 = 2€ - R + yrsYrs > 0. 

This is impossible, because 

and 
Y: = t(Ns - fl)ls 

f (N S 
- fl)lsgi d3x = 0. 

(iii) For a closed geometry, if gTSgrs = gig = ° and 
2€ - R > 0, no solution to any associated initial­
value problem (Si arbitrary) exists. The proof of this 
runs analogously to that of (ii), once it is noted that 

Y
s = .l(Nls + NS) s 2 s Is • 

IV. COMMENTS ON THE SOURCE TERMSB 

A serious question arises when one considers 
conditions like 2€ - R > 0, which have appeared 

8 E. P. Belasco, Senior thesis, Princeton University, 1967. 
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again and again. Although € and Si have, in the 
"lapse and shift" formulation of the problem of 
initial conditions, been assumed to be given functions, 
this representation is not perfect. 

Given an Einstein 4-geometry, let us generate a 
problem of initial conditions. Consider the surface S 
given by XO = O. We seek a three-dimensional metric, 
its derivative with respect to time, and energy terms. 
For coordinates on S we choose (in a representative 
patch) the coordinates Xi. The metric induced in S 
is thus gij' Examination of the Einstein equations 
reveals that € = -kTg and Si = -kT?, where T~ is 
the stress-energy tensor T~ expressed in a coordinate 
system that agrees with Xi on S but is Gaussian normal 
to S. 

The unreasonableness of this situation is apparent. 
The metric gij was chosen as part of the freely specifi­
able data because of its measurability. Why should the 
measurement process produce data in two different 
coordinate systems? To be consistent, perhaps the 
terms Sk and € should be written as follows: 

-0 i i j / 2 ( 
€ = -To = (Too - 2ToiN + T;jN N) No, 25) 

(26) 

The above forms, although true in all cases, are not 
always natural. Additional coupled equations may 
have to be introduced and other changes made in 
order to describe specific matter sources. Some 
particular cases of this are discussed in Ref. 1. 

V. CONCLUDING REMARKS 

We have seen that Eq. (7) may have no solutions, 
and even if it does the solution need not be unique. 
Hence, arbitrary specification of gij and gij may be 
inconsistent and even if it is consistent it need not be 
sufficient to determine the time development of the 
geometry uniquely. The quite plausible separation of 
the Cauchy data into two parts, one of which (gij' gij) 
is freely specifiable and another (Nk' No) which is 
completely determined by the constraint equations, is 
therefore not always workable. The separation is only 
possible for a restricted class of functions gij' gij' €, 

and Sk for which Eq. (7) has one and only one solution 
Nk • The sufficient condition for uniqueness and the 
several necessary conditions for existence of Secs. II 
and III suggest that the requirements for membership 
in this privileged class are likely to be rather complex 
and exclusive. 
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APPENDIX A 

The function f*(u) defined by Eq. (19) can be 
written as a quadratic polynomial in u: 

f*(u) = u2 [ex* + f3* - 2(exf3)*] 

+ 2u[(exf3)* - f3*] + f3*, (AI) 

where (exf3)* = ex~f3~ - exrs f3rs. One can show that 
roots of f*(u) occur in the interval 0 < u < 1 if and 
only if 

(exf3)* < 0, 

[(exf3)*]2 - ex*f3* 2 o. 
(A2) 

(A3) 

[The case of equality in Eq. (A3) corresponds to 
double roots.] Suppose these conditions are satisfied 
and f*(u) has roots. If we replace f3mn by - f3mn, 
condition (A2) will not be satisfied any more since 
this operation changes the sign of (exf3)*. Write the 
function defined by Eq. (18) as f mn(u; exr .. f3rs) so as 
to display the dependence on exrs and f3rs. The pre­
ceding argument shows that if f*(u; exrs ' f3rs) has 
roots in the interval 0 < u < 1, then f*(u; exrs ' -f3 .. ) 
does not. 

Consider ex;:'(x) and designate by Al(x), A2(x), A3(X) 
its eigenvalues in the local coordinate frame in which 
gks = ~t· We can introduce a three-dimensional 
space of eigenvalues in which the above eigenvalues 
are represented by an "eigenpoint" with Cartesian 
coordinates (Ai' A2, A3)' The condition ex* > 0 
demands that the eigenpoints lie inside a double cone 
whose apex is at the origin, axis in the direction 
(1, 1, I), and which has the three coordinate axes lying 
on its surface.4 The two halves of the double cone are 
distinguished by the value of ex~(x): it is positive in one 
cone and negative in the other. Now we observe that 
ex~(x) [and also f3~(x)] cannot change sign anywhere in 
C since that would violate ex * > 0 (or f3* > 0). 
Further, by Eqs. (15) and (16) and the boundary 
conditions, 

L(ex~ - f3~) d3x = L(Vlk - Wlk) d3x 

= r (Vk - Wk)nk d2x = O. 
Jaw) 

Therefore, ex~ = f3~ somewhere within C and then ex~ 

and f3~ must have the same sign everywhere. 
Next examine the behavior of f*(u; exrs ' f3rJ in the 

eigenvalue space (keeping X fixed). f mn(O; exrS' f3rs) 
has the eigenpoint B = (Bl' B2 , B3) and f mn(1; exrs ' 
(3ro) the point A = (Ai' A 2 , Aa). As u varies from 0 to 
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1, the eigenpoint of r mn(U; OCr$> Pr.) traces out a path 
from B to A. Roots of r * (u; OCr., Pr.) correspond to 
intersections of this path with the cone. The replace­
ment of Pmn by -Pmn changes B to -B and, since A 
and B lie in the same cone, A and - B will lie in 
opposite cones. But then the path from A to - B 
must necessarily intersect the cone, i.e., there must 
exist roots of r*(u; OCr., -Pr.). However, we know 
that if the latter polynomial has roots in the interval 
° < U < 1, then r * (u; OCr., Prs) does not. 

This establishes the absence of roots of r*(u) 
needed for the proof of the uniqueness theorem. 

APPENDIX B 

Appendix A shows that r*(u; OCrs ' (Jr.) has no roots 
in the interval ° < u < 1, but that f * (u; OCr., - (Jr.) 
does. The existence of roots of f*(u; OCr., - Pr.) implies 
that 

By Eq. (20), 

(OCP)* > 0, 

[(ocfJ)*]2 - oc*fJ* ~ 0. 

J"(u) = - (2€ - RF -. r*~ g~ d3x. J 1 [d2 1J 1 . 
a du 2 

(B1) 

(B2) 

(B3) 

JOURNAL OF MATHEMATICAL PHYSICS 

If we use the expression (AI) for r*, we obtain 

!f.. r*i = _r*-i{[(ocP)*]2 - oc*fJ*}. (B4) 
du 2 

From (B4), (B2), and (B3) we see that J"(u) ~ 0. 
We can further show that J"(u) = ° if and only if 

ocmn = ).fJmn· 

It is obvious that (B5) is sufficient to make 

[(ocfJ)*]2 - oc*fJ*, 

(B5) 

and hence also J"(u), vanish. To show that (B5) is 
necessary, we write 

OCmn = (oc~/fJ~)f3mn + qmn' (B6) 

The tensor qmn defined by this equation is traceless. 
Substituting the expression for OC mn given by (B6) 
and making use of q! = 0, we find 

[(OCP)*]2 - oc*fJ* == (oc!{J~ - ocrsfJrS)2 

- [( OC!)2 - ocr.ocrS][(p~)2 - fJmnfJ mn ] 
= (fJrsqrs)2 + fJ*qr.qrs. (B7) 

If this last quantity is to vanish, we must have qrs = 0. 
Hence J"(u) > 0, unless Eq. (B5) holds. 
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particle condensate and pair correlations. A set of three coupled nonlinear integrodifferential equations 
is derived for the condensate wavefunction and the two Bogoliubov quasiparticle wavefunctions. Half­
integral him circulation can exist only when the single-particle condensate is completely depleted. General 
considerations of off-diagonal long-range order and circulation quantization also lead to this conclusion. 

1. INTRODUCTION 

One of the most remarkable developments in the 
microscopic theory of superfluidity was the prediction 
by Onsagerl and Feynman2 that vortices should be 
quantized in He II. The argument was based on the 
single-valuedness3 of the condensate wavefunction, 
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3 For a discussion of the single-valuedness condition see, e.g., 
E. Merzbacher, Am. J. Phys. 30, 237 (1962). 

and the quanta of circulation was shown to be him. 
This prediction was first verified experimentally by 
Vinen,4 using a vibrating wire. In a beautiful experi­
ment on the motion of ions trapped in vortex rings, 
Rayfield and Reif5 established conclusively that 
vortices are quantized with a circulation of him. 

The presence of vortices with multiple quanta of 
circulation have also been observed. Whitmore and 
Zimmermann,6 using the Vinen method, found 

• w. F. Vinen, Proc. Roy. Soc. (London) A260, 218 (1961). 
5 G. W. Rayfield and F. Reif, Phys. Rev. 136, AII94 (1964); Phys. 

Rev. Letters 11, 305 (1963). 
6 S. C. Whitmore and W. Zimmermann, Jr., Phys. Rev. Letters 

15,389 (1965); Phys. Rev. 166,181 (1968). 
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vortices with one, two, and three quanta of circulation. 
However, in the last hours of some of their runs, they 
found rather stable circulation values at h/2m and 
,.....,3h/2m, but do not attach any significance to them.? 
Steyert, Taylor, and KitchensS observed the trajectory 
offrozen HD particles in He II, and found, in addition 
to integral multiples of him, significant peaks at 
h/2m and 3h/2m. Di Castro9 has suggested that a 
possible explanation for these peaks is that a "pair 
condensate" coexists with the single-particle con­
densate. The integral multiples of him cannot be 
explained as being due to even multiples of h/2m 
because much more energy is required to produce 
one vortex line with multiple quanta of circulation 
than several lines with single quanta having the same 
total circulation. 2 If vortices with circulation h/2m 
exist, they are rare compared to those with circulation 
him, so the single-particle condensate must predomi­
nate. Further experiments should be performed to 
establish conclusively the existence or nonexistence 
of vortices with half-integral quanta of circulation. 

The idea of a "pair condensate" is not new. A 
number of theories have taken correlations between 
particles of equal and opposite momentum into 
account. In the special case that the pairing corre­
lations augment the single-particle condensate in the 
zero-momentum state, it can be said that a "pair 
condensate" is present. However, depending on the 
interaction, the effect of the pairing correlations may 
reduce the effective condensate. In inhomogeneous 
systems, the single-particle condensate is no longer 
only in the zero-momentum state, and correlations 
must be taken into account between pairs of particles 
in time-reversed states. 

After ValatinlO developed a theory of supercon­
ductivity independently of Bogoliubov, 11 he and 
Butlerl2 reapplied the canonical transformation method 
to boson systems taking pair correlations into 
account. Their treatment of the zero-momentum state 
as consisting of pairs is not the same, however, 
as the original boson theory of Bogoliubov.13 Since 
pairs of bosons with equal and opposite momentum 
satisfy approximate commutation relations in the 

7 W. Zimmermann, Jr., private communication, 1967. 
8 W. A. Steyert, R. D. Taylor, and T. A. Kitchens, Phys. Rev. 

Letters 15, 546 (I965). 
9 C. Di Castro, Phys. Letters 24A, 191 (1967). The term "pair 

condensate" is used to describe the effects of pair correlations, even 
though the pair correlations need not necessarily augment the single­
particle condensate. 

10 J. G. Valatin, Nuovo Cimento 7, 843 (1958). 
11 N. N. Bogoliubov, Zh. Eksp. Teor. Fiz. 34, 58 (1958) [Sov. 

Phys.-JETP 7, 41 (1958)]; Nuovo Cimento 7, 794 (1958). 
12 J. G. Valatin and D. Butler, Nuovo Cimento to, 37 (1958). 

This paper has recently been criticized for excluding a true single­
particle condensate. See Ref. 15. 

13 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947). 

same way that Cooper pairs in the theory of super­
conductivity do, it is perhaps to be expected that they 
would also condense if the interaction between the 
particles in the pair is sufficiently attractive. 

Although the pair-correlation theory has been 
developed by a number of authors,14 it has not been 
shown to lead to agreement with the observed energy 
spectrum of He II. Due to mathematical difficulties, 
the complicated integral equations have not yet been 
solved for a realistic potential. A calculation by the 
author15 using a delta-function potential displaced 
from the origin was shown to lead to agreement with 
the experimental spectrum, but the depletion was 
over 100%. However, the pair-correlation theory goes 
beyond Bogoliubov's original theory13 in a systematic 
way and thus merits further attention. 

In this paper, a theory of inhomogeneous bosolJ 
systems is developed which takes into account both 
the single-particle condensate and pair correlations. 
In this sense it is in the same spirit as an extended 
theory ofValatin,16 but attention is not focused on the 
ground state. It is also similar to a recent theory of 
Cummings and Johnston,l? but is more tractable and 
does not assume plane-wave expansions. The first to 
suggest such a theory combining both single-particle 
condensate and pair correlations was Gross.I8 Pitaev­
skjl9 generalized the original canonical transformation 
of Bogoliubovl3 to the spatially inhomogeneous case. 
However, in his equations and those of subsequent 
authors20 the contribution of pair correlations was 
overlooked, since the interaction Hamiltonian for the 
Bogoliubov quasiparticles was not put in normal 
order. When the normal ordering is performed, no 
contributions to the unperturbed ground-state energy 
are neglected. The normal ordering of the operators 
gives a pair potential for the quasiparticles which, 
in addition to a contribution from the single-particle 
condensate, has a term describing the pairing of 
particles in time-reversed states. This term is called 

,. M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959); 
G. Wentzel, Phys. Rev. 120, 1579 (1960); M. Luban, Phys. Rev. 
128,965 (1962); D. N. Zubarev and Iu. Tserkovnikov, Dokl. Akad. 
Nauk SSSR 120, 991 (1958) [Sov. Phys.-Dokl. 3,603 (1958)1; V. 
V. Tolmachev, Dok!. Akad. Nauk SSSR 134, 1324 (1960) [Sov. 
Phys.-Dokl. 5, 984 (1960)]. 

15 D. H. Kobe, Ann. Phys. (N.Y.) 47,15 (1968); Nuovo Cimento 
59B, 187 (1969). 

16 J. G. Valatin, in Lectures in Theoretical Physics, W. E. Brittin 
and W. R. Chappell, Eds. (University of Colorado Press, Boulder, 
Colo., 1964), Vol. VI, pp. 245-372. On p. 362, when the equations 
become somewhat similar to ours, he arbitrarily sets r/>(x) = 0 for 
simplicity, which is not justified. 

17 F. W. Cummings and J. R. Johnston, Phys. Rev. 151, 105 
(1966). 

18 E. P. Gross, Ann. Phys. (N.Y.) 9, 292 (1960). 
19 L. P. Pitaevski, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys.­

JETP 13, 451 (1961)]. 
.0 See, e.g., D. Pines and P. Nozieres, Theory of Quantum Liquids 

(W. A. Benjamin, Inc., New York, to be published), Vol. II, Chap. 6. 
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the pair-condensate wavefunction, although it need 
not necessarily augment the condensate. If both a pair 
condensate and single-particle condensate coexist, the 
pair condensate is locked in phase with the single­
particle condensate, which gives circulation quantized 
only in units of him. However, if the single-particle 
condensate is completely depleted leaving only the 
pair condensate, circulation in units of h/2m is possible. 
The theory here reduces to previous theories20 if the 
pair condensate is neglected and a delta-function 
potential is used. 

In the next section, a space- and time-dependent 
canonical transformation is made to separate the 
effect of the single-particle condensate. Then another 
space- and time-dependent canonical transformation 
is made to Bogoliubov quasiparticles or bogolons. 
The Hamiltonian is put in normal order in terms of 
the bogolon operators. In Sec. 3 the equations of 
motion for the coefficients in the transformation are 
obtained. The single-particle condensate wavefunction 
is coupled to the bogolon wavefunctions, and vice 
versa. The concept of off-diagonal long-range order 
(ODLRO) is discussed in Sec. 4. Intrinsic ODLRO 
in the two-particle density matrix when ODLRO is 
present in the one-particle density matrix is defined 
and shown to be present in this theory. On the basis 
of general arguments in Sec. 5, it is shown that the 
pair condensate is locked in phase with the single­
particle condensate. The only way to have half­
integral him circulation is for the single-particle 
condensate to be completely depleted. In Sec. 6, 
these general considerations are shown to be valid on 
the basis of the wave equations for a vortex line in the 
single-particle condensate in the presence of the pair 
condensate. The wave equations are shown in Sec. 
7 to imply the possibility of half-integral hJm circulation 
when the single-particle condensate is completely 
depleted. 

2. THE BOGOLON HAMILTONIAN 

.The Hamiltonian for a system of bosons interacting 
wlth a two-body potential V iS21 

H = f dXV/ (x)T(x}ll'(x) 

+ ! f f dx dy'l/(x) '1/ (y)V(x, y)tp(y)-rp(x). (2.1) 

The variable x represent~ the spatial coordinates x 
and the time t and similarly for y. The operator Tis 
the sum of the kinetic energy and the external potential 

21 For a discussion of second quantization see, e.g., D. H. Kobe, 
Am. J. Phys. 34,1150 (1960). 

Vext' if it is present, minus the chemical potential: 

/j2 
T(x) = - - y2 + Vext(x) - fl. (2.2) 

2m 

The field operators in the Heisenberg picture are 

(2.3) 

The time-independent field creation operator tpt (x) 
and annihilation operator tp(x) satisfy the usual boson 
commutation relations 

[tp(x), tpt (y)] = b(x - y), 

[tp(x), tp(y)] = 0, (2.4) 

[tpt (x), tpt (y)] = 0, 

which is equivalent to saying that the wavefunction 
for bosons must be symmetric. 

The density of particles at a point in a boson 
system can be high, since the wavefunction does not 
vanish if two particles occupy the same point, as is the 
case for fermions. The expectation value of the density 
operator in the true ground state, 

(2.5) 

can therefore be large at some points. It is now 
possible to make a canonical transformation to a type 
of quasiparticle which has, on the average, a very low 
density at each point. The field operator for the new 
quasiparticles is defined as 

x(x) = tp(x) - 4>(x), (2.6) 

and was first introduced by Pitaevskj19 generalizing 
the idea of Bogoliubov13 to the spatially inhomo­
geneous case. The function 4>(x), called the condensate 
wavefunction, describes the condensation of single 
particles. It is determined in the next section from the 
equation of motion. Since the field operators xt(x) 
and x(x) satisfy the commutation relations of Eq. 
(2.4), the quasiparticles are bosons and the trans­
formation is canonical. The quasiparticle operator in 
Eq. (2.6) describes the deviation of the operator from 
the function 4>(x) [usually taken to be its average 
value (IjI(X»22] and can hence be called a devion 
operator. 

The density in Eq. (2.5) can then be expressed in 
terms of the devion operators as 

p(x) = 14>(x)1 2 + 2 Re (xt (x»4>(x) 

+ (Xt(x)X(x». (2.7) 

•• P. Nozieres, in Quantum FlUids, D. F. Brewer, Ed. (North­
Holland Pub!. C?, Amsterdam, 1966), p. 9. The expectation value 
can be defined. either between s~ates of fixed particle number N 
and N - I, or In a ground state In which the number of particles is 
no longer a good quantum number because a source term has been 
added to the Hamiltonian. 
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The function IcP(x)1 2 can be chosen to be a good 
approximation to p(x), so the other terms will be 
small. 

The devions themselves can be expressed in terms 
of Bogoliubov quasi particles , or bogolons, by intro­
ducing the canonical transformationl9 ,23 

x(x) = 2 [Un(X)Yn + v~(x)Y~)' (2.8) 
n 

The bogolons are bosons and so the creation and 
annihilation operators satisfy the usual commutation 
relations: 

where j + k = 3 or 4. In Eqs. (2.12) and (2.13) the 
first subscript in Hik denotes the number of creation 
operators and the second denotes the number of 
annihilation operators. The term can thus be written as 

Hik = 2 hiil, 2, ... ,j + k) 
1,2,"',i+k t t 

X YI'" YiYi+1'" Yi+k' (2.14) 

for j, k = 0, 1, 2, 3, 4 and the sum is over all states. 
Since the Hamiltonian is hermitian, 

(2.15) 

[Yn, y~) = bnm , 

[Ym, Yn) = 0, 

for all allowed j and k. The coefficients in Eq. (2.14) 
(2.9) thus have the property 

[y~, y~) = 0. 

Since the devions are also bosons and satisfy the 
commutation relations in Eq. (2.4), the completeness 
relations 

2 [Un(X)U~(Y) - V~(X)Vn(Y») = b(x - y) (2.10) 
n 

and 

(2.11) 
n 

must be satisfied. 
The bogolon Hamiltonian can be obtained by 

first using the transformation to devions on the 
Hamiltonian in Eq. (2.l), and then using the trans­
formation to bogolons in Eq. (2.8). The creation and 
annihilation operators for the bogolons must be put 
in normal o~der, so that as much of the interaction as 
possible will be thrown into the ground-state energy 
and the bogolon kinetic energy.24 In this way the 
expectation value of the bogolon interaction terms 
with respect to the bogolon vacuum state can be made 
zero. The bogolon interaction terms do not contribute 
as much in a subsequent perturbation expansion for 
the ground-state energy or the bogolon self-energy. 
In this paper the full Hamiltonian is used, whereas 
previous treatments20 have neglected the devion 
interaction terms before making the transformation 
to bogolons. 

The Hamiltonian in terms of the bogolon operators 
can be written as 

H = Hoo + HOI + HlO + Hll + H 2o 
+ H02 + Hint. (2.12) 

The bogolon interaction term Hint involves at least 
three or four bogolon operators 

Hint = 2 Hik' (2.13) 
i.k 

.3 W. F. Vinen, in Quantum Fluids, D, F. Brewer, Ed. (North­
Holland PubJ. Co., Amsterdam, 1966), p. 95. However, he ex­
pands IJ! in terms of bogolons, instead of X, and neglects the terms 
coming from the normal ordering of the interaction terms. 

24 This procedure is absolutely essential in the theory of super­
conductivity. See Refs. 10 and 11. 

hik(1, 2,'" ,j + k) = h:i(j + k,"', 2,1), (2.16) 

so that not all of them need be given explicitly. 
The unperturbed bogolon ground-state energy Hoo 

is obtained if the expectation value of Eq. (2.12) is 
taken with respect to the bogolon vacuum. It is given 
in the Appendix along with a discussion of the varia­
tional principle and the compensation of the lowest­
order dangerous diagrams.25 In the Hamiltonian of 
Eq. (2.12) there are now two types of "dangerous 
diagrams." The usual ones in superconductivity theory 
describe the creation or annihilation of two bogolons 
from the vacuum, and are given by H2o and Ho2 • 
However, it is now possible to have "dangerous 
diagrams" that lead from the vacuum to a single 
bogolon state. The usual method of "compensating 
the dangerous diagrams" leads to the time-inde­
pendent equations. 

The coefficient in the dangerous term HOI is given by 

hoin) = f dx[W*(x)un(x) + W(x)vn(x)], (2.17) 

where the function W is defined as 

W(X) = T(x)cP(x) + f dyV(x, Y)cP*(Y)cP(Y)cP(x) 

+ f dyV(x, Y)[(X\Y)X(x»cP(x) 

+ <Xt(y)X(x»cP(Y) + (X(Y)X(x»cP*(y»). (2.18) 

The devion density matrix in the bogolon vacuum 
state can be obtained from Eq. (2.8) and is 

<Xt(x)X(Y» = 2 vn(x)v~(y). (2.19) 
n 

The devion pair amplitude, which plays the role of an 
order parameter for the "pair condensate," is 

(x(x)x(y» = 2 uix)v:(y). (2.20) 
n 

25 For a discussion of the principle of compensation of dangerous 
diagrams see D. H. Kobe, Phys. Rev. 140, A825 (1965); Ann. Phys. 
(N.Y.) 40,395 (1966); J. Math. Phys. 8, 1200 (1967); J. Math. Phys. 
9, 1779, 1795 (1968). 
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It is analogous to the anomalous propagator in the 
Green's function theory of superconductivity26 and 
superfluidity.27 The terms involving the devion density 
and pair amplitude in Eq. (2.18) would not occur if 
the devion interaction terms had not been included 
when the bogolon transformation was made. 

The bogolon kinetic energy term Hu in Eq. (2.12) 
has the coefficient 

hn(n, m) 

= II dx dy{u!(x)V(x,y)um(y) + vm(x)V(x, y)v!(y) 

+ !~(x, y)[v!(x)um(y) + um(x)v!(y)] 

+ t~*(x, y)[u!(x)vm(y) + vm(x)u~(y)]}, (2.21) 

which is not in diagonal form. The coefficient of the 
"dangerous" term H02 in Eq. (2.12) is given by 

h02(n, m) 

= ~Jf dx dy{vn(x)V(x, y)um(y) + vm(x)V(x, y)un(y) 

+ ~(x, y)un(x)um(y) + ~*(x, y)vn(x)vm(y)}. 
(2.22) 

In both Eqs. (2.21) and (2.22) the operator V and the 
function ~ appear. The operator V is essentially the 
Hartree-Fock Hamiltonian in the sense that it is 
the sum of the kinetic energy and the self-consistent 
potential due to all the other particles with exchange 

Vex, y) = b(x - y){ T(x) 

+ f dzV(x, z)[4>*(z)4>(z) + <xt(Z)x(Z))]} 

+ vex, Y)[4>*(Y).p(x) + <xt (y)x(x»]. (2.23) 

The function ~ is the pair potential 

~(x, y) = Vex, y)[4>*(x)4>*(y) + <xt(x)xt(y»] (2.24) 

and is related to the probability of a pair of particles 
condensing into either the single-particle condensate 
or the "pair condensate." It is the analog of the pair 
potential in the theory of superconductivity.28 

In the next section the Hamiltonian in Eq. (2.12) is 
used to obtain the equation of motion for the functions 
in the canonical transformations. 

3. EQUATIONS OF MOTION 

The Heisenberg equation of motion for the field 
operator 1p(x) is determined by differentiating Eq. 

'6 L. P. Gorkoy, Zh. Eksp. Teor. Fiz. 34, 735 (1958) [SOy. Phys.­
JETP 7, 289 (1958)]. 

., S. T. BeliaeY, Zh. Eksp. Teor. Fiz. 34, 417 (1958) [SOy. Phys.­
JETP 7,289 (I958)}. 

'8 See, e.g., P. G. de Gennes, Superconductivity of Metals and 
Alloys (W. A. Benjamin, Inc., New York, 1966), pp. 137-145. 

(2.3) with respect to time, which gives 

bp(x) = [1p(x), HJ. (3.1) 

The Hamiltonian of Eq. (2.12) is substituted directly 
into Eq. (3.1) in order to obtain the equations of 
motion for the functions in the canonical trans­
formations of Eqs. (2.6) and (2.8). The bogolon 
interaction terms involving three or more operators are 
neglected. The canonical transformations to devions 
and bogolons in Eqs. (2.6) and (2.8) can be combined 
to give 

1p(x) = 4>(x) + ! [un(x)Yn + v!(x)y~]. (3.2) 
n 

Then Eq. (3.2) can be substituted into Eq. (3.1) and 
the coefficients of the same operator on the left and the 
right sides can be equated. 

The coefficients of the unit operator give the 
equation for the condensate wavefunction: 

i¢(x) = ! [hlO(n)un(x) - h01(n)v!(x)]. (3.3) 
n 

The coefficients of the bogolon annihilation operator 
Yn give the equation for the amplitude un(x): 

iunCx) = L [hn(m, n)um(x) - 2ho2(m, n)v;:;(x)]. (3.4) 
m 

Likewise, the coefficients of the bogolon creation 
operator y~ give the equation 

ivn(x) = ! [hn(m, n)vm(x) - 2ho2(m, n)u~(x)J. (3.5) 
m 

If the coefficients hOI' hll , and h20 in Eqs. (2.17), 
(2.21), and (2.22) are substituted into the equations 
of motion in Eqs. (3.3)-(3.5), and use is made of the 
completeness relations in Eqs. (2.10) and (2.11), the 
equations for 4>, Un' and vn are obtained. The equation 
for the condensate wavefunction 4> is 

i¢(x) = T(x)4>(x) + I dyV(x, y)4>*(y)4>(y)4>(x) 

+ I dyV(x, y)[(x
t 
(y)x(y»4>(x) 

+ (xtcy)x(x»4>(y) + <X(x)X(y»4>*(y)J. (3.6) 

It is a generalization of the usual Gross29-Pitaevskj19 
equation for the condensate wavefunction, since it 
involves coupling to the bogolon functions Un and Vn 

through the devion density matrix <l(x)x(y» and 
devion pair amplitude (X(x)X(y» defined in Eqs. 
(2.19) and (2.20), respectively. The equations of 
motion for the bogolon Un and Vn are 

iun(x) = f dyU(x, y)un(y) + f dy~*(x, y)vn(y) (3.7) 

•• E. P. Gross, Ann. Phys. (N.Y.) 4, 57 (1958). 
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and 

- ivn(x) = J dyU*(x, y)vn(y) + J dyfl(x, y)un(y)· 
(3.8) 

The Hartree-Fock Hamiltonian U is defined in Eq. 
(2.23) and the pair potential is defined in Eq. (2.24). 
If the devion density matrix and pair amplitude were 
neglected in Eqs. (2.23) and (2.24) and a delta function 
potential were used, Eqs. (3.7) and (3.8) would reduce 
to previously given equations for Un and vn .20 How­
ever, these terms are not obviously small, and should 
thus be included. 

The equations derived for the condensate wave­
function and the bogolon wavefunctions Un and Vn are 
analyzed in more detail in Secs. 6 and 7. The next 
two sections examine some general concepts in order 
to obtain a better understanding of the pair condensate. 

4. OFF-DIAGONAL LONG-RANGE ORDER 

The concept of off-diagonal long-range order 
(ODLRO) in the reduced density matrices has been 
developed by y ang30 on the basis of ideas introduced 
by Penrose3l and Penrose and Onsager. 32 This concept 
provides the most general criterion for the existence 
of superfluidity or superconductivity, since it avoids 
all mention of Hamiltonians, interactions, or state 
vectors. The existence of superfluidity in boson 
systems is due to ODLRO in the one-particle density 
matrix Pl' whereas superconductivity is due to 
ODLRO in the two-particle density matrix P2' 

The explanation given by Di Castr09 for the occur­
rence of half-integral him circulation is that there 
could be an intrinsic ODLRO in the two-particle 
density matrix, as well as ODLRO in the one-particle 
density matrix. He suggested that this intrinsic 
ODLRO was due to a "pair condensate" of a type 
similar to that in superconductivity, and that it 
automatically implied the existence of half-integral 
him circulation. It is shown in this section that there is 
indeed intrinsic ODLRO in the two-particle density 
matrix, but subsequent sections show that half-integral 
him circulation is not automatically implied. 

y ang30 has defined ODLRO for Pl and for P2 in the 
absence of ODLRO in Pl' However, it is possible to 
extend the concept to include ODLRO in P2 in the 
presence of ODLRO in Pl' 'fhe following four cases 
can be distinguished: 

(a) No ODLRO in Pl and no ODLRO in P2; 
(b) No ODLRO in PI and ODLRO in P2; 
(c) ODLRO in PI and no ODLRO in P2; 
(d) ODLRO in Pl and ODLRO in P2' 

80 C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). 
81 O. Penrose, Phil. Mag. 42, 1373 (1951). 
s, O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956). 

Yang considered the first two cases and lumped the 
last two together under ODLRO in Pl' However, it is 
useful to distinguish between the ODLRO in P2 as a 
result of ODLRO in PI and the intrinsic ODLRO in P2' 
In the following we will say that P2 has ODLRO only 
when it has intrinsic ODLRO. 

The one-particle density matrix PI is defined as 

Pl(X, y) = <V't(x)V'(y», (4.1) 

where the expectation value is taken in the true 
ground state. If PI does not have ODLRO, then 

PI(X, y) - 0, as Ix - YI- 00; 

but if PI has ODLRO, then 

PI(X, y) -H- 0, as Ix - yl - 00, 

(4.2) 

(4.3) 

which is equivalent to saying that PI has an eigenvalue 
of order N. 

The two-particle density matrix is defined as 

P2(W, x, y, z) = <V't(w)V't(x)V'(y)V'(z». (4.4) 

In order to separate the effects of PIon P2, an intrinsic 
two-particle density matrix is defined as 

flp2(X, y) = P2(X, x, y, y) - PI(X, y)2. (4.5) 

The absence of intrinsic ODLRO (or just ODLRO) 
in P2 is defined to be the absence of ODLRO in the 
intrinsic two-particle density matrix 

flp2(X, y) - 0, as Ix - YI- 00, (4.6) 

regardless if PI had ODLRO or not. In the case where 
PI does not have ODLRO, Eq. (4.6) reduces to 

P2(X, x, y, y) - 0, as Ix - YI- 00, (4.7) 

which is just Yang's definition of the absence of 
ODLRO in P2' In the case where PI has ODLRO, 
Eq. (4.6) reduces to 

P2(X, x, y, y) -lim PIC", y)2, as Ix - YI- 00, 

(4.8) 

which is the nonintrinsic part of the ODLRO in P2' 
The presence of intrinsic ODLRO in P2 is defined to 

be the same as ODLRO in the intrinsic two-particle 
density matrix 

~P2(X, Y) -H- 0, as Ix - YI- 00. (4.9) 

If PI does not have ODLRO, then this definition re­
duces to 

P2(X, x, y, y) -H- 0, as Ix - YI- 00, (4.10) 

which is just Yang's definition of ODLRO in P2' In 
the case where Pl has ODLRO, Eq. (4.9) can be 
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TABLE I. Presence or absence of off-diagonal long-range order 
(ODLRO) in the one&- and twob-particle density matrices. 

~ No ODLRO ODLRO 

No ODLRO P2 ..... 0 Pi ..... 0 
/1P2 ..... 0 /1P2 ++0 

ODLRO Pi ++0 Pi ++0 
/1P2 ..... 0 /1P2++ 0 

& Pi = <'I't(x)'I'(Y». 
b P2 = <'I't(x)'I't(x)'!'(Y)'I'(y»,Ll.P2 = P2 - P1

2,alllimits being as Ix - yl ~ 00. 

rewritten as 

P2(X, x, y, y) ++ lim PI(X, y)2, as Ix - YI---->- 00, 

(4.11) 

which shows that there is some contribution to the 
ODLRO in P2 other than that due to Pl' The four 
cases discussed here are summarized in Table 1. 

In order to illustrate these ideas, we can apply them 
to the density matrices calculated from the canonical 
transformation introduced in Sec. 2. If the devion 
operator is neglected in Eq. (2.6), the field operator 
becomes just the condensate wavefunction cpo Then the 
one- and two-particle density matrices defined in Eqs. 
(4.1) and (4.4) are 

Pl(X, y) = cp*(x)cp(y) (4.12) 

and 

This approximation is equivalent to the Hartree 
approximation33 for the ground-state wavefunction. 
In this approximation, PI has ODLRO according to 
Eq. (4.3). The two-particle density matrix has ODLRO 
according to Yang's definition in Eq. (4.10), but 
since the intrinsic two-particle density matrix from 
Eq. (4.5) is 

6.P2 = 0, (4.14) 

P2 does not have any intrinsic ODLRO according to 
Eq. (4.6). 

The situation is different if the full canonical trans­
formation of Eq. (3.2) is used. The one-particle 
density matrix defined in Eq. (4.1) then becomes 

where the devion density matrix is defined in Eq. 
(2.19). Equation (4.15) shows that PI has ODLRO 
according to Eq. (4.3). The intrinsic two-particle 

33 E. P. Gross, J. Math. Phys. 4, 195 (1963). 

density matrix in Eq. (4.5) becomes 

6.P2(X, y) = cp*(x)cp*(x)(X(Y)X(Y» 

+ (Xt (x)Xt (x)cp(y)cp(y) 

+ 2cp*(x)cp(Y)(Xt (x)X(Y) 

+ (Xt (x)xt (x)(X(Y)X(y) 

+ (Xt (X)X(y»2, (4.16) 

which has ODLRO according to Eq. (4.9) if the devion 
pair amplitude defined in Eq. (2.20) is not zero. In the 
case where the condensate wavefunction cp is zero, 
there is no ODLRO in PI' but there is still ODLRO in 
the two-particle density matrix due to the pair ampli­
tude. In this case, which is analogous to superconduc­
tivity, there might still be a form of superfluidity due 
to the presence of the pair condensate described by 
the pair amplitude. In the next section the idea of 
circulation quantization is considered including both 
the single-particle and "pair condensate." 

5. CIRCULATION QUANTIZATION 

The quantization of circulation in He II was first 
suggested by Onsagerl in a footnote, and later de­
veloped independently by Feynman.2 The condition 
used was the single-valuedness3 of the condensate 
wavefunction cp and the quantum of circulation is 
h/m. If there is also intrinsic ODLRO in the two­
particle density matrix, there would be a p'air con­
densate of the type important in superconductivity 
coexisting with the single-particle condensate. The 
pair condensate could also undergo motion and the 
circulation in it would be expected to be quantized. 

The order parameter for the single-particle con­
densate is cp, which should be Single-valued. The order 
parameter for the pair condensate is taken as 

(x(x)x(x» = <I>(x), 

the devion pair amplitude, which should also be 
single-valued. The total effective condensate is taken 
to be the two-particle amplitude 

'Y(x) = (1p(x)1p(x) = cp(x)cp(x) + <I>(x), (5.1) 

which is related to the pair potential in Eq. (2.24). 
The function 'Y describes both the single-particle and 
the pair contribution to the condensate. It can be 
treated ad hoc as a wavefunction for a pair of particles 
and a velocity of the total condensate is defined as the 
current divided by the density or 

Il 1m 'Y*(x)V'Y(x) 
v = 2m 'Y*(x)'Y(x)· (5.2) 

The factor 2m appears because the two-particle 
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amplitude is considered. The single-particle conden­
sate can be written as 

,p(x) = l,p(x)l eiS(rol (5.3) 

and the pair condensate as 

ct>(x) = 1ct>(x)1 eiQ(ro), (5.4) 

where Sand Q are real functions. If Eqs. (5.3) and 
(5.4) are substituted into Eq. (5.1), the result is 

'Y(x) = ei2S(ro)[I,p(x)1 2 + 1ct>(x)1 eiQ(rol-2
S(Q1)J. (5.5) 

When Eq. (5.5) is substituted into Eq. (5.2), the result 
is, in general, complicated and the velocity is not just 
the gradient of a function. 

In the special cases where the pair condensate is 
zero 

I ct> (x) I = 0 (5.6) 

or the phases are related by 

Q(x) = 2S(x), (5.7) 
Eq. (5.2) becomes 

v = (lij2m)2VS. (5.8) 

The circulation K can be calculated, assuming that the 
wavefunction is single-valued: 

K = f v • dl = nh!m, (5.9) 

where n is an integer. This equation is just the usual 
circulation-quantization condition. Thus, in order to 
obtain circulation quantization, the "pair condensate" 
must be zero or it must be locked in phase with the 
single-particle condensate. Therefore, when a single­
particle condensate exists, it is not possible to have 
half-integral him circulation. 

However, in the special case where the single­
particle condensate vanishes, leaving only the pair 
condensate, the velocity becomes 

v = (lij2m)VQ. (5.10) 

Then Eq. (5.9) gives circulation quantized in units of 
h/2m. This situation is analogous to superconductivity, 
since only the pair condensate contributes. Since the 
single-particle condensate wavefunction ,p is usually 
considered to be the order parameter for the superfluid 
phase, its vanishing would mean that the system was 
normal. However, a new phase with a nonvanishing 
order parameter (XX) could conceivably exist if the 
interparticle potential were sufficiently attractive. In 
fact, some model calculations do show such a phase.34 

34 A. Coniglio, F. Mancini, and M. Maturi, "On the Coexistence 
of Single- and Two-Particle Condensation in an Interacting Boson 
Gas," preprint, Istituto di Fisica Teorica dell' Universita, Napoli, 
Italy, 1968. 

The experimental situation regarding the half­
integral hIm circulations is not clear. The apparent 
half-integral him circulations observed by the Vinen 
methodS could easily be explained by assuming a 
fractional vortex line attached to the wire. If the 
complete data of Whitmore and Zimmermann35 is 
examined, there is little evidence for half-integral 
hIm. In the last hour of their runs they found stable 
circulations, some of which appear to be at half­
integral him and which Di Castr09 has considered 
significant. However, these stable circulations occurred 
when the surface of the helium bath was within one 
centimeter of the' wire, and could be shifted to a dif­
ferent value, still not an integral multiple of hIm, by 
heating the wire. At integral values of him this could 
not be don~, so the significance of these peaks is 
questionable. The experiment of Steyert et al. S 

definitely shows peaks at h/2m and 3hj2m, which the 
authors themselves considered significant. The experi­
ment has been repeated to obtain better statistics, and 
the half-integral hjm peaks continue to persist. 36 The 
reason that the macroscopic particles observed should 
move with the superfluid velocity is not clear, however. 
There is the possibility of detecting vortices in a pair 
condensate by using the method of Rayfield and Reif,;; 
but this method requires that the single-particle 
condensate be completely depleted. 

6. VORTEX LINE IN THE SINGLE-PARTICLE 
CONDENSATE 

The previous general arguments can be verified by a 
consideration of forms of solutions admitted by Eqs. 
(3.6)--(3.8). The case considered in this section is that 
of a combined single-particle and pair condensate in 
which there is a single vortex line.a7 It is shown that the 
pair condensate becomes locked into the single­
particle condensate and rotates with it. This behavior 
is perhaps to be expected, since it would otherwise be 
difficult to have virtual transitions from the single­
particle condensate to the pair condensate, and vice 
versa. This behavior follows from the fact that Eqs. 

. (3.6)-(3.8) are coupled. 
If there is a single vortex line present along the axis 

of a cylinder, the single-particle condensate wave­
function has the time-independent form19•38 

rfo(x) = rfo(r, e, z) = Ni f(r)e i6
, (6.1) 

35 S. C. Whitmore, Ph.D. thesis, University of Minnesota, 1966. 
36 W. A. Steyert, private communication, 1967. He and R. D. 

Taylor repeated the experiment in Footnote 8 with frozen particles of 
Ne, N, air, and D2 , using a laser for improved resolution in time and 
space and a heat current to produce the vortices. The new results 
also show half-integral him circulations (unpublished). 

3? A. L. Fetter, Phys. Rev. 138A, 709 (1965). His derivation is 
based on Green's functions. 

38 A. L. Fetter, Phys. Rev. 140A, 452 (1965). 
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in cylindrical coordinates. The number of particles is 
Nand f is a real function. 

In order for Eqs. (3.6)-(3.8) to be separable in the 
cylindrical coordinates, the bogolon wavefunctions 
must be of the form 

delta-function potential can be obtained by substi­
tuting Eqs. (6.2) and (6.3) into them, which gives 

-eU = u" + ;-lU' + [_;-2(1 + 1)2 - K2 + IX 

- 2J2 - 2h]u - [f2 + g]v (6.10) 

(6.2) and 

and 
(6.3) 

The wavenumber in the z direction is k, and I is an 
angular-momentum quantum number. If Eqs. (6.2) 
and (6.3) are used in Eq. (2.19) for the devion density 
matrix, the result is 

EV = v" + ;-lV' + [_;-2(1- 1)2 - K2 + IX 

- 2f2 - 2h1v - [f2 + g]u. (6.11) 

The dimensionless energy parameter E is 

e = EINV, (6.12) 

(xt(x)x(x» = Nh(r) = L Ivnk!(r)12
, 

nkl 
(6.4) where E is defined in Eqs. (6.2) and (6.3), and the 

dimensionless wave vector in the z direction is 
which shows that the density in the pair condensate is 
a radial function only. The devion pair amplitude 
which describes the pair condensate can be obtained 
by substituting Eqs. (6.2) and (6.3) into Eq. (2.20), 
which gives 

(X(x)x(x» = N g(r)ei2B = L Unk!(r)v~kl(r)ei2e. (6.5) 
nkl 

Thus the pair condensate has the same angular 
behavior as the contribution of the single-particle 
condensate to the pair potential in Eq. (2.24), so the 
pair potential can be factored into a radial part and an 
an gular part. 

If Eqs. (6.1), (6.4), and (6.5) are substituted into 
Eq. (3.6) for the condensate wavefunction, the 
angular dependence cancels out and the equation for 
the radial part is 

f" + ~-Y' - [~-2 - IX + f2 + 2h + g]j = 0, (6.6) 

when the delta function potential 

Vex, y) = VJ(x - y) (6.7) 

is used. Equation (6.6) is written in terms of the 
dimensionless distance ~ = rIa, where a is the de 
Broglie wavelength defined as 

a = (2mNV)-t, (6.8) 

and the reduced chemical potential is 

IX = p,fNV. (6.9) 

Equation (6.6) reduces to the usual Gross-Pitaevski 
equation in cylindrical coordinates when the terms 
g and hare neglected.a9 

The equations for the bogolon wavefunctions in 
Eqs. (3.7) and (3.8) under the same assumption of 

.9 E. P. Gross, Nuovo Cimento 20, 454 (1961). 

K = ka. (6.13) 

The three equations for f, u, and v form a set of 
coupled nonlinear differential equations which is very 
difficult to solve exactly. These equations have been 
investigated in the approximation that the nonlinear 
terms g and h are neglected by Pitaevski19 and Fetter.37 

Both bound-state and scattering-state solutions exist, 
the lowest lying bound states occurring for I = ± 1. 
The scattering of quasiparticles has also been in­
vestigated by Fetter,38 who determined the phase 
shifts and cross sections in the long wavelength limit. 
The nonlinear terms are not obviously negligible, 
especially if the depletion is large, and their effect 
should be investigated. 

7. COMPLETELY DEPLETED SINGLE~PARTICLE 
CONDENSATE 

In order to investigate the possible existence of 
vortex lines quantized in units of hf2m, the case of 
complete depletion of the single-particle condensate 
is now considered. It is only in this case that the pair 
condensate is not coupled to the single-particle 
condensate and rotates with it. The condition that the 
pair-condensate wavefunction be single-valued then 
leads to the half-integral him circulation quantization 
condition. 

Equation (3.6) has the trivial solution 4> = 0 
corresponding to complete depletion of the single­
particle condensate. Equations (3.7) and (3.8) for 
the bogolon wavefunction admit the solutions 

u(x) = u(r)eikzei(l+!)ge-iEt (7.1) 

and 

(7.2) 
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The equations are then separable and the radial parts 
are 

-/iU = u" + ~-IU' 
+ [_~-2(l + 1)2 - K2 + rt. - 2h]u - gv (7.3) 

and 

EV = v" + ~-IV' 
+ [- ~-2(l - 1)2 - K2 + rt. - 2h]v - guo (7.4) 

If these two coupled nonlinear equations have non­
trivial solutions, a new phase analogous to super­
conductivity would exist. In the absence of a vortex, 
1 ± 1 is replaced by I, and the equations reduce to 
those for a homogeneous boson system with com­
pletely depleted zero-momentum state.15 For the 
delta function potential of Eq. (6.7) the only solutions 
are the trivial ones. For other potentials, however, 
nontrivial solutions may exist.34 Thus it is worthwhile 
to investigate Eqs. (3.7) and (3.8) for a more realistic 
potential. 

8. CONCLUSION 

The theory developed in this paper is an extension 
to inhomogeneous systems of the theories developed 
for homogeneous systems which take pair correlations 
into account. IS The previous theories for inhomo­
geneous systems20.37 have just been generalizations of 
Bogoliubov's original theory.13 The equations obtained 
here should have applicability in systems with non­
negligible depletion and should serve as a more 
realistic model of superfluid helium than the Bogoliu­
bov approximation. The effect of the nonlinear terms 
in the equations is under investigation. The main 
conclusion of the paper is that half-integral quanta of 
circulation cannot exist unless there is complete 
depletion of the single-particle condensate, leaving 
only a "pair condensate." 40 
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APPENDIX: THE BOGOLON GROUND-STATE 
ENERGY 

The unperturbed ground-state energy Hoo in Eq. 
(2.12) is given by 

Hoo = I dxc/>*(x)T(x)c/>(x) 

+ ! II dx dyc/>*(x)c/>*(y)V(x, y)c/>(y)c/>(x) 

+ I dX( x\x) [T(X) 

+ I dyc/>*(y)V(x, y)c/>(y)]x(X» 

+ II dx dyc/>*(y)c/>(x) vex, y)(x
t (x)x(y» 

+ t II dx dyV(x, y)[ c/>(x)c/>(y)(xt (x)xt (y» 

+ c/>*(x)c/>*(y)(x(Y)X(X» 

+ (xt (x)x(y»(xt (y)x(x» 

+ (xt (x)x(x»(xt (y)x(y» 

+ (i(x)xt (y»(x(y)x(x»], (AI) 

where the devion density matrix and two-devion 
amplitude are given in Eqs. (2.19) and (2.20). 

In the case of time-independent canonical trans­
formations, the ground-state energy can be minimi7ed 
with respect to the functions in it. Minimizing ,loo 
with respect to c/>*(x) gives the equation 

~Hoo = W(x) = 0 
~c/>*(x) , 

(A2) 

where W is defined in Eq. (2.18). Equation (A2) is a 
generalized time-independent Gross-Pitaevski equa­
tion, which has coupling to the bogolon functions. 
This procedure is also equivalent to setting the 
"dangerous diagram" in Eq. (2.17) equal to zero. 

Since there are constraints on the bogolon wave­
functions given by Eqs. (2.10) and (2.11), it is necessary 
to use Lagrangian multipliers and vary 

A = Hoo + A + B, (A3) 
where 

A = II dx dyA(x, y){~ [un(x)u!(y) 

- v!(x)viy)] - ~(x - y)} (A4) 

and 

B =11 dx dY{ B(x, y) ~ [Un(X)V!(Y) 

- V~(X)Un(Y)] + c.c')' (A5) 
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The functional derivative of A with respect to v!(x) interchanged; the result is 
should be zero: 

o=~ 
t5v!(x) 

= I dyU*(x, Y)Vn(Y) + i I dy6.(x, y)un(y) 

-I dyA(x,y)vn(Y) + I dy[B(y, x) - B(x,y)]un(y)· 

(A6) 

The functional derivative of A with respect to u! (x) 
should also be zero for minimum energy, that is, 

o=~ 
t5u!(x) 

= i I dyA *(x, Y)Vm(Y) + I dyA(y, x).um(y) 

+ J dy[B*(x, y) - B*(y, x)]vm(y)· (A7) 

If Eq. (A6) is multiplied by um(x) and integrated, Eq. 
(A7) is multiplied by vncx) and integrated, and the two 
equations are added, the Lagrangian multiplier A can 
be eliminated to yield 

o = II dx dyu m(X) U*(x, Y)Vn(Y) 

+ iII dx dyu m(x)6.(x, y)unCy) 

+ iff dx dyvnCx)6. *(x, Y)Vm(Y) 

+ iII dx dy{[unCx)B(x, y)um(y) 

+ vn(x)B*(x, Y)Vm(Y)} - [n H> m]}. (A8) 

In order to eliminate the Lagrangian multiplier B, 
it is necessary to add Eq. (A8) to itself with the indices 

o = iII dx dy{ um(x)U*(x, y)vnCy) 

+ un(x)U*(x, Y)Vm(Y) + um(x)6.(x, y)un(y) 

+ vnCx)6.*(x, Y)Vm(Y)}. (A5 

Equation (A9) is the same as Eq. (2.22) for h02 whe 
use is made of Eq. (2.23) for U. Therefore, tb 
variation principle leads to the same result as "corr 
pensating the dangerous diagrams" in lowest orde 
in the time-independent case. 

Equation (A9) can be satisfied if 

Enun(x) = I dyU(x, y)un(y) + I dy6.*{x, y)vn(y) 

(Al,e 
and 

-Envn{x) = I dyU*(x, y)vn(y) + I dy6.(x, y)unCy)· 

(All 
The orthogonality condition 

I dx[um(x)vn(x) - un(x)vm(x)] = 0 (A12 

must also be imposed if Eq. (A9) is to be satisfied. Th 
En in Eqs. (AlO) and (All) is the bogolon energy 
sil1~e Eq. (2.21) becomes 

hu(n, m) = Ent5nm, (A 13 

if the additional orthonormality condition 

I dx[u!(x)um(x) - vm(x)v!(x)] = t5nm (A14 

is satisfied. 
Thus, by minimizing the ground-state energy il 

Eq. (AI), all of the dangerous diagrams in Eq. (2.12 
have been eliminated and the Hamiltonian is il 
diagonal form if Hint is neglected. Equations (AlO 
and (All) are the same as Eqs. (3.7) and (3.8) whel 
stead v-state solutions are used. 
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By using the principle of relativity, together with the customary assumptions concerning the nature of 
the space-time manifold in special relativity, namely, space-time homogeneity and isotropy of space, a 
simple but rigorous proof is given of the reciprocity relation for the relative motion of two inertial frames 
of reference, which is usually assumed as a postulate in the standard derivations of the Lorentz trans­
formations without the principle of invariance of light velocity. A critical discussion is set forth of the 
question of eliminating the transformations with invariant imaginary velocity, which one unavoidably 
obtains together with the Lorentz transformations and the Galilean ones in adopting a procedure of this 
kind. 

I. INTRODUCTION 

Since the appearance of the classical Einstein 
paper,I in which the foundations of the theory of 
relativity were first laid down, several other derivations 
of the Lorentz transformations have been published 
in the attempt to throw full light on the underlying 
principles and to clarify both the physical content 
and the mathematical implications of the latter.2 In 
particular, it has been shown as far back as 1911 by 
Frank and Rothe2a that the assumption of the exist­
ence of an invariant velocity is not necessary in order 
to arrive at the correct transformation equations. 
This is rather a remarkable result, since it shows that 
the principle of relativity (which establishes the 
equivalence of all inertial frames of reference in regard 
to the description of physical phenomena) together 
with the customary assumptions concerning the 

1 A. Einstein, Ann. Phys. 17, 891 (1905). 
• The existing literature is very wide and rather unrelated and it 

would be almost impossible to give a fairly complete summary of it. 
We draw attention to the following references: (a) P. Frank and H. 
Rothe, Ann. Phys. 34, 825 (191 I); (b) L. A. Pars, Phil. Mag. 42,249 
(1921); (c) A. S. Eddington, The Mathematical Theory of Relativity 
(Cambridge University Press, London, 1923), Sec. 4; (d) Y. Mimura 
and T. Iwatsuki, J. Sci. Hiroshima Univ. AI, III (1931); (e) V. V. 
Narliker, Proc. Cambridge Phil. Soc. 28, 460 (1932); (f) G. J. 
Whitrow, Quart. J. Math. 4, 161 (1933); (g) L. R. Gomes, Lincei 
Rend. 21, 433 (1935); (h) F. Severi, Proc. Phys.-Math. Soc. Japan 18, 
257 (1936); (i) E. EscIangon, Compt. Rend. 202, 708 (1936); (j) E. 
Le Roy, ibid. 202, 794 (1936); (k) Y. Lalan, ibid. 203, 1491 (1936); 
Bull. Soc. Math. France 65, 83 (1937); (I) G. J. Whitrow and E. A. 
Milne, Z. Astrophys.15, 270 (1938); (m) G. Temple, Quart. J. Math. 
9, 283 (1938); (n) H. E. Ives, Proc. Am. Phil. Soc. 95, 125 (1951); 
(0) K. D. Stiegler, Compt. Rend. 234, 1250 (1952); (p) A. W. Ingle­
ton, Nature 171, 618 (1953); (q) J. Aharoni, The Special Theory of 
Relatitity (Oxford University Press, London, 1965), Chap. 1; (r) V. 
Fock, The Theory of Space, Time and Gravitation (Pergamon Press 
Ltd., London, 1959), Chap. 1 and Appendix A; (s) H. M. Schwartz, 
Am. J. Phys. 30, 697 (1962); Introduction to Special Relativity 
(McGraw-Hill Book Co., New York, 1968), Chap. 3; (t) E. C. 
Zeeman, J. Math. Phys. 5, 490 (1964); (u) R. Weinstock,Am.J.Phys. 
32, 261 (1964); 33, 640 (1965); 35, 892 (1967); (v) V. Mitvalsky, 
ibid. 34, 825 (1966); (w) E. Drake, ibid. 34, 899 (1966); (x) J. L. 
Strecker, ibid. 35,13 (1967); (y) L. J. Eisenberg, ibid. 35, 649 (/967); 
(z) H. A1mstrom, J. Phys. A (Proc. Phys. Soc.) 1,331 (/968); (aa) 
Ya. P. Terletskii, Paradoxes in the Theory of Relativity (Plenum 
Press, Inc., New York,1968), Chap. 2. 

nature of the space-time manifold in special re!ativity, 
namely, its homogeneity and the isotropy of physical 
space, point towards the existence of a universal 
constant which has the meaning of an invariant 
velocity, so that there is no need to introduce this 
constant into the theory at the beginning. 

Without imposing from the outset the principle of 
constancy of light velocity, many of the existing 
standard derivations of the Lorentz transformations 
make more or less explicit use of the so called reciproc­
ity principle which, as is well known, states simply 
that the velocity of an inertial frame of reference S 
with respect to another inertial frame of reference S' 
is the opposite of the velocity of S' with respect to S.3 

The use of this principle is not strictly necessary 
to the scope, but it has the advantage of greatly 
simplifying the derivation of the transformation 
equations, which would otherwise require rather 
lengthy calculations and the resort to nonelementary 
results of the theory of Lie transformation groups.4 
It appears, however, that in the existing literature no 
sufficiently convincing arguments have been put 
forward to justify the use of the reciprocity principle. 
Indeed, it is generally assumed as a justification that 
the reciprocity relation is a consequence of the 
principle of relativity, whereas the latter merely 
implies the invariance of the relation between direct 
and reciprocal velocity. 

It is the aim of the present paper to give a simple 
but rigorous deduction of the reciprocity relation, 
starting from the three basic postulates of the special 
theory of relativity, namely, the principle of equiv­
alence of inertial frames, the homogeneity of space­
time, and the isotropy of space.5 

3 See, for example, Refs. 2(h-j, q, s, u-w, z). 
• See, for example, Refs. 2(a, k). 
• A critical analysis of the literature quoted in Footnote 2 and a 

general discussion concerning the axiomatic derivation of the 
extended inhomogeneous Lorentz group is the subject of a forth­
coming paper. 

1518 
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Once the reciprocity relation has been established, 
the transformation equations can easily be deduced, 
as is well known, by making use of their group 
property, which follows from the principle of rela­
tivity.6 Nevertheless, it is not superfluous to present 
this deduction again here, since this gives us an 
opportunity to discuss critically the arguments which 
have been put forward in favor of excluding the 
Lorentz transformations with imaginary invariant 
velocity, which one unavoidably obtains together 
with the Galilei and the ordinary Lorentz transforma­
tions by following a procedure of this kind. 

We confine ourselves throughout this paper to the 
consideration of a two-dimensional space-time and to 
transformations which conserve the space-time origin. 
This implies no loss of generality, since any transforma­
tion can always be reduced to a homogeneous velocity 
transformation along an axis by means of a suitable 
space-time translation, together with suitable rota­
tions of the space-axes of the two observers. 

II. THE RECIPROCITY RELATION 

As indicated in the introduction, we start from the 
following assumptions: 

(i) the principle of relativity, which states the 
equivalence of all inertial systems as regards the 
formulation of the laws of nature; 

(ii) the homogeneity of space-time; 
(iii) the isotropy of space. 

We denote by x the position at which an event takes 
place and by t the time at which it happens, as 
viewed by an inertial observer S, and by x', t' the 
corresponding space-time coordinates of the same 
event, as viewed by another inertial observer S'. 

The homogeneity assumption comes into our 
considerations in that it implies that the transforma­
tion equations which furnish x' and t' as functions of 
x and tare linear.7 

In order to prove this assertion, let us employ the 
notation $ for the two-vector (x, t) and write the 

6 See, for example, Refs. 2(q, s, aa). 
7 The question of the linearity of the transformation formulas has 

long been debated in the literature [see, for example, Refs. I, and 
2(d-g, k, m, r, s, y, aa)]. If one does not impose from the outset the 
existence of an invariant velocity, then the principle of inertia, which 
implies that a motion which appears uniform to an inertial observer 
(x = all + a2) must appear uniform to any other inertial observer 
(x' = a~I' + a;), is not sufficient to ensure that the transformations 
are linear. To obtain this result, an additional assumption is needed; 
namely, that an event of finite space-time coordinates is transformed 
into an event of finite space-time coordinates. Further, one has to 
require that the transformation functions be differentiable up to the 
third order (compare Ref. 2r). It was Einstein (Ref. I) who first 
justified the linearity property by an appeal to space-time homo­
geneity. The argument, however, is rather obscure. Here we give a 
simple proof of linearity which utilizes a formulation of the homo­
geneity principle first given by Lalan in Ref. 2k and which is 
particularly appealing. 

transformation which connects S to S' as 

$' = f($)· (1) 

Since we have decided to restrict our considerations 
to transformations which conserve the space-time 
origin, we should require f(O) = O. Here, however, 
this condition is dropped for the sake of generality. 

The homogeneity of space-time requires that a 
space-time translation T not affect the relation 
between the two observers and thus leaves Eq. (1) 
invariant. Denoting by Ta and Ta, the representations 
of T relative to Sand S', respectively, we express this 
property by the relation 

(2) 

or 

I f(~ + <X) = fm + <X', (3) 

where <X = (<Xx, <xt ), <X' = (<Xx" <Xt'), and <X' depends on 
fand <X but not on $. 

Taking $ = 0 in (3), we get 

I(<x) = 1(0) + <X'. (4) 

Substituting (4) into (3), we obtain 

1($ + <X) = 1($) + f(<x) - 1(0). (5) 

Subtracting 1(0) from both sides and setting g( $) = 
1($) - 1(0), we have 

g($ + <X) = g($) + g(<x), (6) 

for arbitrary $ and <X. From this equation, provided 
we only assume that g is continuous at the origin, we 
get that 

g(k~) = kg($), (7) 

where k is a real number. The' proof is quite standard 
and is given in Appendix A. 

Relations (6) and (7) state that g is linear and 
homogeneous. 

We thus write the relation between the pair (x, t) 
and the pair (x', t') in the form 

x' = a(v)x + b(v)t, 

t' = c(v)x + d(v)t, (8) 

where v denotes the velocity of the frame S' with 
respect to the frame S. This velocity, which we call the 
direct velOCity for the pair (S, S'), is given by 

v = -b(v)/a(v). (9) 

For the sake of simplicity, we confine ourselves in 
the rest of this section to the consideration of the case 
when the space axes ofthe two observers have the same 
orientation and their times flow in the same direction, 
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which implies the relations8 

ox'jox = a(v) > 0, 

ot'jot = d(v) > 0, (lOa) 

oxjox' = d(v)j[a(v)(d(v) + vc(v))] > 0, 

ot'jot = I/(d(v) + vc(v» > O. (lOb) 

Then, supposing that both observers use the same 
unit of time and the same unit of length, 9 the coeffi­
cients of (8) are uniquely determined functions of v 
which, by the principle of relativity, do not depend 
on S. 

Denoting by w the reciprocal velocity, namely, the 
velocity of S with respect to S', we have 

w = b(v)/d(v) = lP(v) , (11) 

and our purpose then is to show that the principles of 
relativity and of isotropy of space, together with some 
continuity assumptions to be specified later, are 
sufficient by themselves to arrive at the conclusion 
that 

lP(v) = -v. (12) 

The principle of relativity implies that the set r 
of the allowed velocities of S' relative to S does not 
depend on S and that the reciprocal velocity is the 
same function of the direct velocity for all pairs of 
inertial systems. Hence, together with (11), we can 
write 

v = lP(w) (13) 

or 
1P(IP(v» = v. (14) 

Since w E r, it is clear from (13) that the range of the 
function IP is equal to its domain r. Then IP is a one­
to-one mapping of r onto r. Indeed, if lP(a) = lP(b) , 
we get from (14) that a = 1P(IP(a» = 1P(IP(b» = b. 

Contrary to a widely held opinion,3 Eq. (14) is 
the only condition imposed by the principle of rela­
tivity on the function IP. This condition is already 
strongly restrictive on the possible forms of IP, but it 
by no means alone implies relation (12). For example, 
the equation 

w = lP(v) = -v/[I - (v/c)], (15) 

which is pertinent to one of the cynematics which are 
compatible with the principle of relativity, 2k satisfies 
relation (14) without having the form (12). 

8 Note that conditions (lOb) are a priori independent of (lOa). 
• It is easy to devise conceptual experiments by which the standards 

of length and time of the two observers can be made the same. 
For example. we can make sure that Sand S' use the same time 
standard. if both observers assume as unit of time the mean life of a 
given unstable particle measured at rest in the laboratory of each of 
the two observers. 

It is precisely with the hope of eliminating solutions 
of this kind that we resort to the principle of isotropy 
of space. The main result of applying this principle 
is the proof that IP is an odd function of v and we see 
that this property, together with (14) and a physically 
reasonable assumption concerning the domain of IP 
and its continuity properties, is sufficient to obtain the 
result that the reciprocal velocity is given by (12). 

In our case, space is one-dimensional and its 
isotropy means that no one orientation along the 
x axis should be considered in preference to the other. 
This assertion is now made precise by stating the 
isotropy principle in two equivalent forms. The first 
has a more formal character and concerns the effect 
that the inversion of the space axes has on the set of 
transformations (8). The second one, which might be 
physically more appealing, is based on simple con­
ceptual experiments of a type frequently employed in 
discussions of the theory of relativity. 

We state the isotropy principle in the first form by 
asserting that if two frames Sand S' are connected by 
a transformation (8), then the two frames Sand S' 
obtained from the preceding ones by inverting the 
direction of the x axis are connected by a transforma­
tion of the same type. Therefore, 

x' = a(v)x + b(v)f, 

f' = c(v)x + d(v)f, (16) 

where v is the velocity of S' relative to S. On the other 
hand, x' = -x', f' = t', x = -x, f = t, so that 

x' = a(v)x - b(v)f, 

f' = -c(v)x + d(v)f, (17) 

from which we conclude that v = b(v)/a(v) = -v. 
Hence, r is symmetric and, by comparison with (17), 

Then, by (11), 

a( -v) = a(v), 

b( -v) = -b(v), 

c( -v) = -c(v), 

d( -v) = d(v). 

IP( -v) = -1P(v), 

i.e., IP is an odd function of v. 

(18) 

(19) 

Consider now the following conceptual experi­
ments: 

I. Let T be a rod at rest in S', the end points of 
which occupy the positions x~ and x~ . S measures the 
length of Tby marking the positions Xl and X 2 that the 
end points of the rod occupy at a given time t. From 
the first of the equations in (8) and, again, in (lOa) we 
see that the ratio between the length [' of the rod at 
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rest (as measured by S') and the length I of the rod in 
motion (as measured by S) is given by 

l'/l=a(v). (20) 

2. Next, let <l> be a phenomenon which takes place 
at the point x and lasts from time tl to time t2 as 
observed by S (e.g., we may think of the life of an 
unstable particle produced at rest at x at time 11 and 
decaying at time (2). By the second of the equations in 
(lOa), the same phenomenon, as observed by Sf, 
starts at x~ at time t~ and ends at x~ at time t~, where 
(x~ , t~) and (x~, t~) are the transformed coordinates of 
(x, tI ) and (x, t2), respectively (in our example, the 
particle is produced in flight at x~ at time t~ and then 
moves to point x;, where it decays at time I~). From 
the second of the equations in (8) we see that the ratio 
between the durations Df and D of <l> (lifetimes of the 
particle) as measured by S' and S, respectively, is 
given by 

D'jD = d(v). (21) 

3. Finally, let <il be another phenomenon which 
takes place at the point x' and lasts from time I~ to 
time t~ as observed by Sf, and let (Xl' tI ) and (x2 , t2) 

be the transformed coordinates of (x', t~) and (x', t~), 

respectively. The duration of <D as measured by S 
can be determined by means of the following equa­
tions: 

a(v)xl + b(v)tl = a(v)x2 + b(V)t2' 

t; = C(V)xl + d(v)tI' (22) 

t~ = C(V)X2 + d(v)t2 , 

We make two further assumptions before we 
derive the reciprocity relation. These are: 

(a) The domain r of the function cp is an interval 
on the real line ; 

(b) cp is continuous on r. 
In other words, it is assumed that if VI and V2 are 

two allowed velocities, any velocity V which is com­
prised between VI and Vz is again allowed, and that the 
reciprocal velocity is a continuous function of the 
direct velocity. The physical plausibility of these two 
conditions is obvious. 

Since cp is a continuous one-to-one mapping of r 
onto itself and r is connected, then, from a well-known 
theorem of analysis, we can state that cp is either a 
strictly increasing or a strictly decreasing function 
ofv.u 

Suppose first that cp is strictly increasing. Let 
v E r; then w = cp(v) E r. Assume that v < w; then 
cp(v) < cp(w) and, by (14), w < v, which is absurd. 
We can conclude in the same way v > w, so that 

cp(v) = v. (25) 

If cp is supposed to be strictly decreasing, set 
1p = - cpo Then 1p is strictly increasing and, by (19) 
and (14), satisfies 1p(1p(v» = v. Applying to 1p the same 
argument as before, we obtain 1p(v) = v, i.e., Eq. (12). 

The choice of Eq. (25) leads to the transformation 
formulas 

x' = a(v)x - va(v)t, 

t' = e(v)x - a(v)t, (26) 
and, by (9) and by the second of the equations in (lOb), 

- while the choice of Eq. (12) leads to 
the ratio of the durations lY and 15 of <D as measured 
by the two observers is readily seen to be x' = a(v)x - va(v)t, 

15' / 15 = d(v) + ve(v). (23) t' = e(v)x + a(v)!. (27) 
We state the second version of the principle of iso­

tropy of space by assuming that if v is an allowed 
velocity, -v is allowed as well (hence the symmetry 
of r), and by requiring that the ratios (20), (21), and 
(23) are independent of the direction of the motion of 
S' relative to S, provided that the magnitude of the 
velocity remains the same, and thus are left unaltered 
when V is changed to _V.l0 This condition implies 

a( -v) = a(v), 

de-v) = d(v), (24) 

d( -v) - ve( -v) = d(v) + ve(v). 

Taking into account (9), we see that relations (24) are 
equivalent to relations (18), and then (19) follows. 

10 The same requirement, as regards only the ratio (20), was 
originally imposed by Frank and Rothe in their derivation of the 
Lorentz transformations (cf. Ref. 2a). 

Formulas (26) are incompatible with (10). Hence, 
for two observers whose space axes have the same 
orientation and whose times flow in the same direction, 
(12) must necessarily hold and the transformation 
formulas are given by (27). 

Our task of proving the reciprocity relation has thus 
been completed. 

III. EXPLICIT FORM OF THE TRANSFORMA· 
TION EQUATIONS 

Formulas (27) contain the two as yet undetermined 
functions a(v) and e(v). However, it is seen at once 
that e(v) can be expressed in terms of v and a(v). 

11 See, for example, J. Dieudonne, Foundations of Modern Analysis 
(Academic Press Inc., New York, 1960), Theorem 4.2.2. For the 
reader'sconvenience the proof is given with some detail in Appen­
dix B. 
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Indeed, consider the inverse transformations 

x = Ll-l(v)a(v)x' + Ll-l(v)va(v)t', 

t = -Ll-l(V)C(V)x' + Ll-l(v)a(v)(', (28) 

where 
Ll(v) = a(v){a(v) + vc(v)}. (29) 

By the reciprocity relation, (28) can also be written in 
the form 

x = a( -v)x' + va( -v)(', 

(= c(-v)x' + a(-v)t', (30) 

whereby, using (18), 

a(v) = l/(a(v) + ve(v», 

so that 
e(v) = (l/v){a-1(v) - a(v)}. 

Then the transformations (27) read 

x' = a(v)x - va(v)t, 

[' = Ojv){a-1(v) - a(v)}x + a(v)t. (31) 

To interpret (26) we proce.::d as above, by using (25) 

instead of (12), and obtain 

x' = a(v)t - va(v)t, 

t' = - [(l/v){a-1(v) - a(v)}x + a(v)tJ. (32) 

Hence, (26) is obtained from (27) by an inversion of 
the time of S', and this explains why (26) corresponds 
to the choice T(V) = v. 

The transformation formulas, which connect S to 
an observer obtained from S' by inverting the orienta­
tion of the space-axis, are 

x' = - [a(v)x - va(v)t), 

t' = (1/v){a-1(v) - a(v)}x + a(v)t, (33) 

whereas if S' is subjected to both a space and a time 
inversion, then 

x' = - [a(v)x - va(v)tJ, 

t' = - W/v){a-1(v) - a(v)}x + a(v)t]. (34) 

It is the essence of the principle of relativity that the 
set of all transformations (31)-(34), as v varies in r, 
forms a group C. From this property one can derive 
the explicit form of a(v). In fact, let us compose two 
transformations of type (31), such that 

( 
a(v) -va(v») ( a(v') -v'a(v'») 

O/v)(a-1(v) - a(v» a(v) (I/v')(a-1(v') - a(v'» a(v') 

_ ( a(v)a(v') - (vjv')a(v)(a-1(v') - a(v'» 

(a(v')jv)(a-1(v) - a(v» + (a(v)/v')(a-1(v') - a(v'» 

= A(v, v'). 

-(v + v')a(v)a(v') ) 

a(v)a(v') - (v'/v)a(v')(a-1(v) - a(v» 

(35) 

The resulting transformation must be of one of the 
four types (31)-(34) for some relative velocity v". 
However, since the determinant of transformations 
(31) and (34) is +1, whereas the determinant of 
transformations (32) and (33) is -1, then types (32) 
and (33) must be ruled out. 

Since the diagonal elements of the matrices of both 
transformations (31) and (34) are equal, we must 
have 

a(v)a(v') - (vjv')a(v)(a-1(v') - a(v'» 

= a(v)a(v') - (v'jv)a(v')(a-1(v) - a(v», 

i.e., 

Ojv2){1 - a-2(v)} = (1/v'2){1 - a-2(v')}, (36) 

whence 
(ljv2){l - a-2(v)} = K, (37) 

where K is a universal constant having the dimensions 
of an inverse-square velocity. Then, since a(v) is 
positive, 

a(v) = 1/(1 - KV2)k. (38) 

The composite velocity v" is the negative ratio be­
tween the second and the first element of the matrix 

A(v, v'); 

v" = (v + v')/[1 (vjv'){a-2(v') - I}] 

= (v + v')/(1 + Kvv'). (39) 

Three cases are to be considered: 
(A) K > O. Set e = (K)-! and formulas (31) become 

x' = [1 - (v2je2)]-~x - {vel - (v2/e2)]-~}t, 

t' = -{(v/e2)[1 - (v2Ie2)]-~}x + [1 - (V2jc2)l-lt, 
(40) 

and v varies in the domain r = (-c, e). Equations 
(40) are the ordinary proper orthochronous Lorentz 
transformations. 

(B) K = O. Formulas (31) become 

x' = x - vt, 

t' = t, (41) 

and v varies in the domain r = (- 00, + (0). These 
are the Galilean transformations. 

(C) K < O. Set c = (-K)-~ and formulas (31) 
become 

x' = [1 + (v2je2)]-!x - {v[1 + (v2je2)]-!}t, 
t' = {(vjc2)[1 + (V2jc2)]-!}x + [1 + (V2/C2)]-h, 

(42) 
and v varies in the domain r = (- 00, + (0). 
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Set Xl = X, XO = ct, and tgoc = vic (-IT/2 < oc < 
IT/2), and (42) becomes 

X'l = (cos OC)XI - (sin oc)XO, 

x'o = (sin OC)Xl + (cos oc)xo. (43) 

Hence, in contrast to the Lorentz transformations (40), 
which, as is well known, are hyperbolic rotations in 
the plane (x, t), transformations (42) are ordinary 
circular rotations. Since oc is confined to the interval 
(-IT/2, IT/2), it is clear that they do not form a group". 
Ifwe let oc vary from -IT/2 to 3IT/2, so as to obtain the 
full group, we can easily see that we are led to intro­
duce also the transformations 

x' = -([1 + (V2/C2)]-ix - {v[l + (V2/C2)]-i}t), 

t' = -({(v/c2)[1 + (V2/C2)]-i}x + [1 + (V2/C2)]-it) , 

(44) 

which are obtained from (42) by inverting both the 
space and the time axis of S'. 

The rotation group (43) translates into mathematical 
form a complete isotropy of space-time, so that the 
two directions in time are completely equivalent as 
well as the two directions in space. On the other hand, 
if one believes that there is an intrinsic arrow in the 
direction of flow of time, so that time reversal is 
regarded as a purely mathematical operation which 
cannot be physically realized, one obtains a strong 
argument to rule out the transformations (42). Close 
to this argument is the one set forth by Lalan,2k who 
postulates that if two events take place at the same 
point in space with respect to a given observer, their 
time order must be the same for all observers. Alterna­
tively, we could postulate that the relation which 
states that the space axes have the same orientations 
and that the times flow in the same' direction is 
transitive, which amounts to assuming that the set of 
proper orthochronous transformations (31) is by itself 
a group. 

Two other curious features of transformations (43) 
can be read out in the formula of composition of 
velocities (39) which, in the present case, has the form 

v" = (v + v')/[I - (vv' /e2)]. (45) 

First, by composing two finite velocities v and v' such 
that vv' = c2 , one obtains an infinite velocity v". 
Second, by composing two positive velocities v and 
v' such that vv' > c2 , one obtains a negative velocity 
v". Some authors2s,w use these properties as an 
argument to exclude transformations (42). In our 
opinion, however, an argument of this kind is not so 
convincing as the preceding ones in such a general 
context, because there are not sufficient reasons of 
principle to exclude the appearance of phenomena such 

as those described above. Besides, it is to be noted 
that peculiarities of this type also appear in the 
Lorentz case, for which (39) reads 

v" = (v + v')/[1 + (vv' /c2)]. (46) 

Indeed, if, following some recent ideas,12 one con­
jectures the existence of faster-than-light particles 
(tachyons) and interprets (46) as the transformation 
formula for the tachyon velocity (v' = particle 
velocity as measured by S'; v" = particle velocity as 
measured by S), it is easily seen that, fixing v very small 
and negative, we can transform a very large, greater 
than c, and positive v' into a very large, greater than 
c, and negative v". Further, there always exists a 
reference frame relative to which a tachyon propagates 
instantaneously. These features are just as curious as 
those which have been discussed above in connection 
with formula (45). Notwithstanding, this has not 
prevented some authors from considering the possi­
bility that faster-than-light particles really exist, on the 
grounds that the usual objections to such particles are 
ultimately found to be unconvincing when subjected 
to critical analysis. 

Once we agree to reject formulas (42), we are left 
with the problem of the choice between the Lorentz 
transformations (40) and the Galilean transformations 
(41). As is well known, the Lorentz transformations 
admit one and only one invariant velocity which is 
equal to c. In the limit when this velocity is taken to 
be infinite, one obtains the Galilean transformations. 
Hence the above problem of choice can be solved 
only by experience and involves the search for an 
invariant velocity in nature. The experimental 
evidence for the existence of signals which travel with 
a finite invariant velocity (such as the electromagnetic 
waves in vacuo) leads us to rule out the Galilean 
transformations in favor of the Lorentz ones. In 
these, of course, the numerical value to be assigned 
to e is the experimentally measured value of this 
invariant velocity, namely, the value of the velocity 
of propagation of electromagnetic disturbances in 
empty space. 

Formally, the rotation transformations (42) corre­
spond instead to the appearance of an invariant 
imaginary velocity c. This is expressed by the property 
that they are the linear transformations which 
conserve the positive-definite quadratic form x2 + 
e2t2, while the Lorentz transformations are those 
which conserve the indefinite form x2 - c2t2 • In a 

12 O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan, 
Am. J. Phys. 30, 718 (1962); S. Tanaka, Progr. Theoret. Phys. 
(Kyoto) 24,. 171 (1960); G. Feinberg, Phys. Rev. 159, 1089 (1967), 
and unpublished; R. Newton, Phys. Rev. 162, 1274 (1967); M. E. 
Arons and E. C. G. Sudarshan, ibid. 173,1622 (1968). 
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four-dimensional space-time the corresponding con­
served forms are x 2 + y2 + Z2 + c2t2 and x2 + y2 + 
Z2 - c2t 2 and the appropriate groups are the orthog­
onal group in four dimensions 0(4) and the Lorentz 
group 0(3, 1). The characteristic of 0(4), that a 
transformation containing both space reflection and 
time inversion can be joined continuously to the 
identity, corresponds to the topological property that, 
while 0(3, 1) has four connected components, 0(4) 
has only two. 

IV. CONCLUSION 

By making use of the principle of relativity and of 
the isotropy of space, we have deduced in a simple 
but rigorous way the reciprocity relation for the 
relative motion of two inertial reference frames, which 
is usually assumed as a postulate in the standard 
derivations of the Lorentz transformations without 
the principle of invariance of light velocity. For 
completeness we have then given the usual deduction 
of the transformation equations by using their group 
property. We have put forward some alternative 
arguments to rule out the transformations with 
invariant imaginary velocity. From a logical viewpoint 
these arguments might seem more appealing than 
those previously given by other authors. 

APPENDIX A 

Let g be a mapping of Rn into itself such that 

g(~ + ') = ga) + gW· (AI) 

Ifn is a positive integer, we get by induction, from (AI), 
that 

g(n~) = ng( ~). (A2) 

As g(O) = 0, g( -~) = - g( n, so that (A2) holds 
equally well for n any integer. 

Next, for any rational r = min, set m~ = Wi7. Then 

mga) = g(m~) = g(nrJ) = ng(rJ) 

and thus 
g(r~) = rg( ~). (A3) 

Assume now that g is continuous at the origin. This 
property, together with (AI), implies that g is con­
tinuous everywhere. Then, let k be any real number 
and {kn } be a sequence of rationals which converges 
to k. So 

and, by continuity, 

But 

so that 
g(k~) = kga). (A4) 

(AI) and (A4) state that g is an endomorphism of 
the vector space Rn. 

APPENDIX B 

We recall the following two results of general 
topology [cf. Ref. (11), Theorems 3.19.7 and 3.19.1]. 

Proposition 1: The continuous image of a connected 
topological space is connected. 

Proposition 2: A necessary and sufficient condition 
for a subset A of the real line to be connected is that 
A is an interval. 

In the following, if sand t are any two real numbers, 
[s, t] will denote the closed interval {x:s ~ x ~ f}, if 
s ~ t, and the closed interval {x: t ~ x ~ s}, if t ~ s. 

In order to prove that the mapping rp is strictly 
monotone, consider two fixed points p and q of r 
such that p < q. Since rp is one to one, we can exclude 
rp(p) = rp(q) and suppose, for instance, that rp(p) < 
rp(q). Let r be any other point of r, r ¥: p, r ¥: q. 
We prove 

r < p => rp(r) < rp(p), (Bla) 

p < r => rp(p) < rp(r) , (BIb) 
and 

r < q => rp(r) < rp(q) , (B2a) 

q < r => rp(q) < rp(r). (B2b) 

Indeed, let, for example,p < r. We have rp(r) ¥: rp(p), 
as implied by rp being one to one, and suppose it to be 
rp(r) < rp(p). Since rp is continuous, by propositions 
1 and 2, rp([r, q]) is an interval, so that rp([r, q]) ~ 
[rp(r), rp(q)], whereby rp(p) E rp([r,q]) because rp(r) < 
rp(p) < rp(q). Then there is a p' E [r, q] such that 
rp(p') = rp(p), and this is incompatible with rp being 
one to one because p' ¥: p, as implied by p < r, 
p < q. (BIb) is thus proved. 

(Bla), (B2a), and (B2b) are proved in a similar way. 
Let now y and y' be any two points of r with y < y'. 

Choose s such that y < s < y'. Three cases are 
possible: s = p, s < p, and p < s. In the first case, 
apply (Bla) and (BIb) to get rp()') < rp(y'). In the 
second case, (Bla) implies r:p(s) < r:pCp) and we can 
again apply (Bla) and (BIb) with s in place of p to 
obtain rp(y) < rp(y'). In the last case, (Bib) gives 
rp(P) < rp(s) , and use of (B2a) and (B2b) with s in 
place of q gives again rp(y) < rp(y'). Hence y < y' => 
rp(y) < rp(y'), and rp is strictly increasing. One can 
show in the same way that the alternative r:p(q) < r:pCp) 
implies that rp is strictly decreasing. 
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The equal-time limits of some current commutators are studied in perturbation theory. Although 
the orthodox equal-time limit does not exist as a distribution, a Schwinger term may be defined as a 
pseudolimi.t-a continuous Ii~ear functional on ~ proper subspace of ~(R·). The results are compared with 
those obtamed from alternatIve approaches. Sunple examples are gIVen to explain why these methods 
give incorrect results for the cases we consider. 

1. INTRODUCTION 

A number of authors1.2 have calculated current 
commutators and Schwinger terms directly in space­
time without using spectral representations or Fourier 
transformations.3 

In case of lowest-order (scalar or spin or) quantum 
electrodynamics, such calculations are equivalent 
(see the Appendix) to defining equal-time pseudo­
limits [i.e., limits defined only on a proper subspace 
of the Schwartz space S(R3)] of products of free-field 
Green's functions. These cases are of considerable 
interest for (i) they contain the most singular 
Schwinger terms known, (ii) the mathematics may 
be made perfectly rigorous, and (iii) they thus 
provide stringent testing grounds for various 
methods of cal~ulation. 

The purpose of this paper is to study these examples 
in detail-we study the precise mechanism by which 
various methods of calculation succeed or fail in 
giving correct Schwinger terms. It should be noted 
that there exist examples in which the equal-time 
limiting process does not commute with a spatial 
limiting process used to define the currents.4 We thus 
contribute to an understanding of the conditions 
under which each method may be appropriately used. 
We now outline the contents of the following sections. 

In Sec. 2 we describe a simple and correct method of 
calculation based on expressing the Green's functions 

• Part of work to be submitted in partial fulfillment of require-
ments for Ph.D. degree. 

t National Science Foundation Pre-doctoral Fellow. 
1 J. Schwinger, Phys. Rev. Letters 3, 296 (1959). 
2 R. A. Brandt, Phys. Rev. 166, 1795 (1968). 
• Closely related work includes the following: T. Nagylaki, Phys. 

Rev. 158, 1534 (1967); B. Hamprecht, Nuovo Cimento 50A, 449 
(1967); K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto) 
Supp!. 38, 74 (1966); J. Langerholc, Deutsches Elektron-Synchro­
tr~)D, Hamburg, Report No. 66/24, 1966; J. C. Polkinghorne, Nuovo 
Omento 52A, 351 (1967); B. Schroer and P. Stichel, Commun. Math. 
Phys. 8, 8 (1968); and U. Viilkel and A. H. Viilkel, Commun. 
Math. Phys. 7, 3 (1968). 

• R. A. Brandt, J. Sucher, and C. H. Woo, Phys. Rev. Letters 19 
801 (1967). ' 

as limits of a parameterized family of continuous 
functions, multiplying these functions, and taking 
the limits (as distributions) of the products. This is 
done for all nonzero values of the time (a calculation 
which does not appear to have been carried out 
previously5). One then takes the equal-time pseudo­
limit to obtain Schwinger terms. 

In Sec. 3A we study various previous methods, 
generalizing them to work for nonzero times. Among 
others, we study the method of Brandt,2 which works 
in a great number of problems. However, as he points 
out, it gives the wrong coefficient for the c-number 
Schwinger term in spin or quantum electrodynamics. 
(Once this is fixed, the method works to all orders in 
perturbation theory.) We find a simple explanation 
for the necessity of taking symmetric averages when 
using these methods. 

In SeC'. 3B we search for a quick and easy short-cut 
method of calculation-in the spirit of previous 
efforts, we try to apply each method directly at equal 
times. All our attempts fail to give correct coefficients. 
We try to make this "understandable" with the help 
of simple examples. 

Section 4 contains a few concluding remarks and 
observations. 

2. THE "iE" METHOD 

A. t ¢ 0 Calculations 

To order e~ in scalar electrodynamics one finds 
formally (see the Appendix) 

C~.(x) == (01 [j/l(!X) , j.( -!x)] 10) 

= 2e~[~+,,.(x; m)~+,,<x; m) 

- ~_,,.(x; m)~_,.(x; m) 

- ~+,/l.(x; m)~+(x; m) 

+ ~_(x; m)~_,,..(x; m)]. (2.1) 

5 There is more information than we use here. We show elsewhere 
how such information can be derived in a more general context from 
spectral representations and used to derive sum rules. 
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TABLE I. I ~O light-cone singularities of products of d's. Where kl' k., and k form a right-handed orthogonal triad, dk ± =dk1 + id'
2 

and ilk denote the spherical angular coordinates (0, 4» in a system with polar axis (0 = 0) along k and 4> = 0 along k l . The param­
eter s is defined by s = (r + ItI)-l • 

(.1+d+ - d_.1_)(x; 0) = -i(sign 1)(321T3r')-1[2s - dr)l'J(r - Iii) 

(d+.1+. t• - d_.1_. tk)(x; 0) = -i(321T3r2)-I(47T/3)! Yf(ilk)[rl(S' + sdr - td;) + (2s 3 - sd'; + md;»)I'J(r - t) 

(.1+. t.1+,k - .1_ ot.1_ .• )(x; 0) = -i(321T3r')-I(47T/3)! Y~(ilk)[rl(s2 + sdr - t d;) + GM;]I'J(r - Iti) 

(.1+. td+,k - .1_.A_.k)(X; 0) = Of i(321T3r 2)-1(81T/3)t y{=l(ilk)[rl(s' + ;dr - t d;) + (fM;)I'J(r - Iti) 

.1+.1+ok'± - .1_.1_.kk ±)(X; 0) = Of i(sign t)(321T 3r')-1(81T/3)t Y;=I(ilk)[3r'(2s - dr) + 4r-l (s' - sdr + t d;) 

+ (2s 3 + sd; - (t)d~)]I'J(r - IIi) 

(.1+.1+,k'± - .1_d_.kk±)(X; 0) = Of (sign t)(32rr3r')-I(t)(47T/5)t ~(ilk)[3r'(2s - dr ) + 4rl(s-' - sdr + td;) 
+ (2s 3 + sd; - (t)d;)]I'J(r - Iti) 

Of i(sign t)(321T3r2)-I(!)[rl(s2 - sdr + t d;) + (2s 3 + sd; - (t)d:»)I'J(r - Itl) 

(.1+.1+. t• - d_d_tk)(x; 0) = ±i(321T3r2)-1(81T/3)! y{=l(ilk)[rl(s2 + sdr - td;) + (2s 3 - sd; + md;»)I'J(r - It/) 

The analogous expression in spinor electrodynamics is 

C!v(x) == (OI[jp(tx),jv( -lx)]10) 

= 4eo{(2g~g~ - gpvgrs)[L~+.lx; m)~+.s(x; m) 

- ~-.rCx; m)~_.sCx; m)] 

+ m2g/lv[~+(x; m)~+(x; m) 

- ~-<x; m)~_(x; m)]}, (2.2) 

where, e.g., 

~±(x; m) == ~ fikX,j(k2 - m2)O(ko) d
4k, 

(21T) 

o 
~±p = -~±(x; m). . oxp 

(2.3) 

The immediate task is to carry out the indicated 
multiplications of ~±~±, utilizing only the space-time 
representations of these distributions. 

Let t == Xo and r = (X2)t. Then, 

~±(x; 0) = lim~±(x; 0; e), 

where 
£-+0+ 

~±(x;O;e) == - -- + . (-1)( 1 1) 
81T2r r + It I r - It I ± ie sign t 

(2.4) 

These are distributions on S(R4) which may also be 
considered as t-parameterized distributions on S(R3); 
we adopt the latter interpretation. Now, since the 
derivative of a limit of distributions is always the limit 
of the differentiated distributions, we have 

0lld±(x; 0) = lim d±.ix; 0, e) 
(-+0+ 

for any distribution-theoretic derivative all' These 
differentiated ~± distributions may be considered as 
t-parameterized distributions [on S(R3)] for every 
nonzero value of t, which interpretation we again 
follow. 

For each fixed nonzero value of t, let us define the 
products 

(~+.~~+.p)(x; 0) ==lim(~+.ix; O;e)~+'p(x; 0; e» (2.5) 
(-+0+ 

and the analogous products of ~-.A-.Il' (The limits 
do not exist when one tries to define ~+~_ similarly.6) 

The relevant limits may be evaluated by means of 
the relation 

lim [ 1 _ 1 ] = -21Ti (_o)n-l,j(U) 
<-->0+ (u + ie)n (u - ie)n (n - I)! au 

(2.6) 

and are listed in Table I, which, together with Eqs. 
(2.1) and (2.2), completely specifies the highest 
(t ¥= 0) light-cone singularities of C~v(x) and ct.cx). 
We need but take the t ~ 0 limits to obtain Schwinger 
terms. 

B. t ~ 0 Limits and Schwinger Terms 

For t ¥= 0, the products of ~'s are distributions on 
S(R3); because of the presence of inverse powers of 
(r + Itl), they have no corresponding distribution 
limit as t approaches zero. However, if we restrict 
attention to testing functions which vanish at least as 
rapidly as r3 at the origin, then, on this proper sub­
space S3 c S(R3), the limit does exist as a continuous 
linear functional. Let us denote this (pseudo-) limit 

6 The one-dimensional analog is l/(x + i€). 

lim __ 
( 

1 )n 
.~O+ x + i€ 

does exist as a distribution for each n. However. since x-2 is not 
locally integrable at x = O. 

lim (_1 )(_1 ) 
.~O+ x + i€ X - i. 

does not exist as a distribution. 
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by liml3; the bar and subscript specify the subspace on 
which the limit is defined. 

A typical term entering in COk is 

(
477)1 yO(ilk)b(r - It I) , e2.7) 
3 r\r + Itl)2 

where YR denote spherical harmonics, e.g., 

y~(ilk) = (3/477)1 cos Ok' 

Acting on an arbitrary testing function w (which we 
express in spherical harmonics), 

w(x) = 2 wl.m(r)y;n*(ilk) = 2 wn.l.mrny;n*(ilk), 
l.m n.l.m (2.8) 

we have, for t ¢ 0, 

[ (
477)1 yO(ilk)b(r - Itl)]ew) 
3 r3(r + Itl)2 

= roo r2 dr(477)1 w(x)Y~(ilk)b(r - It I) dil 
Jo 3 r3(r + Itl)2 

= (477)! w1•0(ltl) (2.9) 
3 41t1 3

' 

where in this notation, the term in square brackets 
is a distribution acting on the testing function in 
parentheses immediately to its right. To calculate 
liml3, consider only testing functions w(x) for which 
the coefficients Wn.l,m vanish for n < 3. Thus, 

[
liml ((477)t y~(?k)b(r -2It l»)](W) 
t-O± 3 3 r (r + It I) 

== lim ((477)1 (W1.0(ltl))) (477)t(lW ) 
t-+o± 3 41tl 3 3 4" 3.1.0 

= - - V' b(x) (w), [
-1 () 2 ] 

40 ()xk 

(2.10) 

which is to say 

lim \ (b(r -ltI)Y~(ilk)(477)t) = -11..V'2b(x) 
t-O± 3 r 3(r + Itl)2 3 40 ()xk 

(2.11) 
(where V'2 denotes the Laplacian operator). 

Evaluating the remaining terms in similar fashion, 
we find, for example, 

lim I (Ll+.oLl+.k - Ll_.oLl_.k )( x; 0) 
t-+O± 3 

= t lim I (Ll+.okLl+ - Ll_.okLl_)(x; 0) 
t-O± 3 

-i () 2 
= - - V' b(x). (2.12) 

96772 ()xk 

Combining these limits with expressions (2.1) and 

(2.2), we obtain the Schwinger terms 

lim I C8k(X) = !lim I ct,.{x) = ie~ 2 ~ V'2b(x). 
t-+O± 3 t-+O± 3 4877 ()Xk 

(2.13) 

This result agrees with the value for CKk obtained by 
Brandt using spectral functions. 2 

For all other Lorentz indices, C/Jv is antisymmetric 
in t, and liml3 C/Jv is zero on Sa. For example, 

lim/ C80(x) = -lim/ C80(x),-..; r-2(.E.-)3b(r) = 0, 
t-+O+ 3 t-+O_ 3 ()r 

(2.14) 

where the last equality holds because S(R3) contains no 
spherically symmetric function going as rk for k odd. [r 
itself is not an element of S(R3). On a suitably enlarged 
space of testing functions the limits are different and 
nonzero.] This situation naturally reverses with each 
new time derivative. 

Thus consider dC/J.(x)/dxo: The (0, k) components 
are anti symmetric in t and have zero limits on S4; the 
(0,0) and (k, k') components are symmetric in t and 
have nonzero limits as continuous linear functionals 
on S4 c S(R3). 

3. OTHER METHODS AND DISTRIBUTIONS 

Let us try to obtain the same results by manipu­
lating with the Green's functions Ll and Ll1 rather 
than Ll±. To do this, one may use relations such as 

(Ll+Ll+ - Ll_Ll_) = (Ll+ + Ll_)(Ll+ - Ll_) = - iLlLl1 • 

Equivalently, in calculating the commutators of 
currents from their definitions in terms of fields, 
rather than just writing [AB, CD] = ABCD - CDAB 
as in the Appendix, one may use commutator identi­
ties to obtain products of commutators and anti­
commutators of free fields, i.e., Ll and Ll1 • (We have 
already noted that the product Ll+Ll_ appears unde­
finable, but we may hope that the implicit use of 
the equation Ll+Ll_ - Ll_Ll+ = 0 will not lead to 
difficulties. ) 

There remains the problem of multiplying distribu­
tions which have overlapping singularities. A possible 
approach is to displace one distribution from the 
other, so that the singularity supports are not so 
strongly overlapping. Then one multiplies the rela­
tively displaced pair of distributions and calculates 
the limit as the displacement approaches zero. 

As Figs. I and 2 indicate, the geometry is generally 
unfavorable for such methods; there is no real vector 
displacement which will make two light cones disjoint. 
Moreover, as the displacement shrinks, the region of 
difficulty approaches the origin, the very point with 
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FIG. I. Two light 
2 cones, displaced by a 

X = 0 purely spacelike vector, 
(X + e)2 • 0 ~ = (0, E). Th~y int~rsect 

- In a three-dImensIOnal 
hyperboloid. At fixed Xo , 
the singular surfaces are 
pairs of spheres, each of 
radius IXol. (See also Fig. 
3.) 

which we are ultimately concerned. Finally, except for 
a purely timelike displacement, the geometry becomes 
rather complicated and computation becomes diffi­
cult. In fact, the real-displacement method was 
intended only for use on the t = 0 plane. Neverthe­
less, we try these methods for t ¥: 0, for, as we have 
seen, the t¥:O answer is a simple distribution, not 
merely a linear functional on a proper subspace of 
seRa). These methods, if they are to work at all, 
would certainly be expected to work for t ¥: 0, and 
any subtleties required to make them work should be 
more comprehensible for t ¥: O. If subtleties are dis­
covered for t ¥: 0, they may then be taken into 
account in a t = 0 calculation. 

A. Real Vector Displacements 

1. Purely Spatial Vector Displacement; t¥:O 
Calculation of ~(x; O)~l(X; 0) 

This method is closely related to the limiting pro­
cedures of Brandt. 2 In order to multiply ~(x; 0) and 
~l(X; 0), we consider first the displaced product 
~l(X + ~; O)~(x; 0) and then let ~ = (0, ;) approach 
zero. [The answer we are looking for is 

(~+(x; O)~+(x; 0) - ~_(x; O)~_(x; 0» 

as previously defined.] 
With variables as before, letting P denote the 

Cauchy principal part, 

~(x; 0) = (sign t) (c5(r - Itl», (3.1) 
4nr 

~l(X; 0) = - + P . (3.2) 1 1 (1) 
4n2r (r + Itl) (r - It I) 

The following fact is also useful: If {T",} is a bounded 
family of distributions and, for each (/., W'" is a testing 
function locally on U", (supp T",) and w'" ->- W (a 
testing function) and T", -- T (a distribution), then 

FIG. 2. Two light 
cones, displaced by a 
purely timelike vector, 
;- = (EO, 0). They intersect 
in a three-dimensional 
sphere of radius! 1$01 at 
X o = -!;o. At other 
values of X o , the singular 
surfaces are concentric 
spheres. 

r 8 

FoG. 3. Coo"''''''' ,,,,= ~ 
used In Sec. 3A. 

T",(w",) ->- T(w). The statement remains valid on 
replacing "distribution" by "continuous linear func­
tional on a subspace of testing functions to which all 
w belong." 

Now let ~l(X + ~; O)~(x; 0) act on a testing 
function w(x) at fixed t = xo > 1;1. The natural 
coordinate system is spherical, with polar axis aligned 
with; (see Fig. 3). A part of the product is given by7 

[ ,-1c5(r - ItD(_l_)p( 1 )](w(r, o» 
Ix + ;1 Ix + ;1 - t 

~; f dOw(ltl, 0) 

x p([1 + 2(1;1/t) cost () + 1;12/t]! _ J. (3.3) 

Since the denominator of the latter integrand blows 
up independently of () (¥: n/2) as; ->- 0, the expression 

lim ~lx + ~; O)~(x; 0) 
Ii-+O 

is meaningless for fixed t ¥: O. Suppose one averages 
over ± ~ before letting ; ->- O. Then one finds that 
the principal part contributes zero and (letting 
AVH denote this average) 

. (sign t)c5(r - It I) 
hm (Av±1i ~1(X + ;; O)~(x; 0» = 3' 
I~I-+o 2 It I 

(3.4) 

This is the wrong answer for ~1~' since (in contrast 
to the first entry in Table I) it contains no derivative 
of c5(r - Itl). 

~(x + H; O)~l(X - H; 0) 

behaves differently. We find 

lim Av# [~(x + l$; O)~l(X - i;; 0)] 
llil-+O 

= c5(r - It I) _ 1 i c5(r _ Itl). (3.5) 
21tl 3 2 or 

This does give the correct answer as in Table I. Thus, 

~(x; 0)~1(X; 0) 

= lim Av±~ [~1(X + M; O)~(x - t~; 0)] 
11;1-+0 

¥: lim Av±; (~(x + ~; O)~lx»). (3.6) 
llil-+O 

7 We have used the fact mentioned in the preceding paragraph to 
replace Ix + 1;1-' by 1-1• 
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Later, when we work with t = 0 directly, we will 
recall this distinction and attempt to use the former 
expression. 

Here is a culprit to answer for these subtle com­
plications: In the expression 

the ~+~_ terms cancel upon replacing x by x + ~ 
and y by x - ~ and then averaging over ±~. Terms 
involving the dangerous expression ~+~_ remain 
unless the averaging is performed. 

At this point we leave the t ':/= 0 real spatial­
displacement method-when spatial derivatives are 
present, geometric problems make it difficult to 
proceed. 

2. Purely Timelike Displacements; t ':/= 0 
Calculations of ~l(X; O)~(x; 0) 

In strict analogy with the spatial limiting process, 
one may consider the expression ~(x + ~; O)~l(X; 0) 
for ~ = (~O, 0). At fixed I ':/= 0, the singularity surfaces 
are concentric spheres (see Fig. 3). The results are 
strictly analogous to the spatial limiting results. We 
find that 

Mx; O)~l(X; 0) 

= lim AV±50 [~l(X + i~o; O)~(x - ir)] 
15°1 .... 0 

':/= lim Av±d~l(X + r;O)~(x; 0)]. (3.7) 
15°1 .... 0 

As above, we attribute the inequality to the undefined 
nature of ~+~_. 

Happily, the geometry is not complicated and we 
may attempt to multiply derivatives of these distri­
butions using real time-like displacements. Upon 
doing so, we uncover apparently insurmountable new 
difficulties. These occur simply because there are too 
many inverse powers of (r - It I) for a symmetric 
averaging to remove-the limit, even after averaging, 
does not exist as a distribution. 

B. Calculations Directly at Xo = 0 

It would be very nice to be able to obtain the 
Schwinger terms of Eq. (2.14) by an easier method, 
such as using the canonical commutation relations 
for fields. In searching for a method, we take the 
t -- 0 limits of ~±, ~, ~l' and their derivatives, Ihen 
multiply them. This is purely experimental; there is 
no a priori reason to expect the results to agree with 
(2.14). (Neither will there be an a posteriori reason­
the results do not agree.) Similar phenomena have 
been noted by Brandt, Sucher, and Woo.s 

Recalling (3.6), we calculateS 

lim I Av {[lim~.o(X + H; O)][lim~l.k(X - H;O)]}, 
I~I""O 3 t .... o t .... o 

where 

lim ~.o(x; 0) = -b(x) 
t .... o 

and 

lim~l.k(x; 0) = - ~ _1_, for r ':/= O. (3.8) 
t-+O oXk 27T2

r2 

Let w(x) = w(r, 0-) be a testing function in Ss c seRa). 
Then, 

[ lim I Av ~ b(x + i;) ~ 1 ] [w(x)] 
I~I""O 3 27T1 oXk Ix -i;1 2 

Similarly, 

= [~ lim Av b(x) 2~k ] [w(x -i;)] 
27T I~I""O Ix _ ;1 2 

= _1 lim Av 2~kW( -i;) 
27T2 I~I""O 1;ls 

= [_1_ ~ V 2b(X)](W). 
2407T2 0Xk 

(3.9) 

lim I Av ~ b(x + H) 1 = -=.!.... ~ V2b(x) 
151 .... 03 oXk 27T2 (x -i;)2 4807T2 0Xk • 

(3.10) 

These answers are incorrect by factors of five-that is, 
they give Schwinger terms with coefficients only one 
tenth of the correct value for the spinor case and three 
tenths the correct value in the scalar case.' 

Analogous results are obtained when one simply 
sets I = 0 then E = 0 in the "iE" method. An 
example may clarify the mechanism by which the 
"iE" method breaks down when one sets t = 0 
formally. Consider the I-parameterized distribution 
r-2(r + Itl)-nb(1 - Itl). Letting this act on the space 
Sn of testing functions which fall as rapidly as rn at 
the origin, we find 

lim I b(r - Itl) = (-it on b(r). (3.11) 
t-+o± n (r + Itl)nr2 n! r2 or 

On the other hand, if we just set t = 0, divide 
ill E Sn c S(RS) by rn, and define ,-(n+2)<5(r) as a 
bounded linear functional on Sn by 

(3.12) 

8 Here the average is taken over all angles. When the limit is 
taken without averaging. the answer varies in the interval (0. h) 
times the correct answer in the spinor case [correspondingly in the 
interval (0. "i~-) in the scalar easel. depending on the direction of ~. 



                                                                                                                                    

1530 PAUL OTTERSON 

then we obtain 

r-<n+2)<5(r)in (w) = (-tan <5(r) (w), (3.13) 
n! ar rZ 

which differs from (3.11) by a factor of (t)n. 
If one considers a real-displacement method 

augmented with the "i€" method, then the correct 
order of limiting is 

lim (lim lim) 
t-+O <-+0 ~-+O 

and the limits must be taken in precisely the order 
given. 

6. CONCLUDING REMARKS 

When a matrix element of a' current commutator 
C/lv(x) may be written as a sum of products of two 
distributions, such that in each (i) one factor is 
locally a testing function at the origin and (ii) the 
other factor has a well-defined equal-time limit, then 
the equal-time limit of C/lv(x) does exist and may be 
taken either before or after various spatial limits used 
in defining currents are taken. 

However, in the examples we have studied, con­
dition (ii) is violated. Under these circumstances, we 
have seen that (a) the equal-time limit of C/lv(x) does 
not exist as a distribution (but does exist as a suitably 
defined pseudolimit) and (b) it is not generally 
permissible to change orders of taking limits. 

These examples are sufficiently simple and trans­
parent and reasonably realistic, so that one may 
regard the phenomena under consideration as 
understood.9 
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APPENDIX A 

In scalar electrodynamics, it is convenient to use 
the independent Hermitian fields CPl and CPz, defined 
by 

(::) = (2~![~i ~J(:). (Al) 

In terms of these, thecurrentj/l == ieo :CP+(d: - ;[")rf: 
may be written 

(A2) 

(The advantage of using rfl and cpz is the absence of 
normal-order symbols in the latter expression.) 

To calculate formally the commutator of two 
currents, we write, for example, 

[( rfl(x)rfz.ix», (rfl(y)rfZ.v(Y»] 

= CPl(x)rfz.ix)CP1(y)rfZ,iy) - CPl(y)CPZ,v(y)CP1(X)CPz.ix) 

= rfl(X)rfl(y)CPz.ix)CPz.iY) - CPl(y)CP1(X)CPZ.v(y)CPz.ix). 

(A3) 

(The latter equality holds because independent free 
scalar fields commute.) Similarly, expanding the 
other terms and noting that the only state connected 
to the vacuum by both CPICPl and CP2CP2 is the vacuum, 
we obtain Eq. (2.1). 

It is amusing that in the spinor case the analogous 
fields are 'lfl and 'lf2' defined by 

(::) = (;)1[;2 ~2J(;)' (A4) 

where y2 = {J1X2. These are independent in the sense 
that 

(01 'If~(x)'If~(Y) 10) = 0 = (01 'lfg(x)'If~(Y) 10). 

In terms of them, the current j/l = e :ijJY/l'lf: may be 
written 

(AS) 

With these, one may proceed to calculate the current 
commutators just as in the scalar case. Equati01. (2.2) 
is the answer. 
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The partition function and critical equations for the generalized triangular Ising lattice are determined 
in terms of weight factors associated with the decorating lattice. As an example, a lattice which incorpo­
rates the Kagome, hexagonal, triangular, and rectangular lattices is solved by the method developed. 

1. INTRODUCTION 

Since the calculation of the partition function of 
the rectangular Ising lattice by Onsager ,1 many other 
two-dimensional Ising lattices have been solved.2 

Use of the combinatorialmethod involves the counting 
of closed polygons with a weight factor which can be 
drawn on the lattice. Hurst and Green3 have shown 
how a' Pfaffian can be used directly to perform the 
counting. Kasteleyn4 has shown how the Ising problem 
is related to the dimer problem and that all planar 
Ising lattices can be solved in principle by using a 
Pfaffian whose elements are found by correct orienta­
tion of the bonds of the related dimer lattice. Fishers 
showed that Kasteleyn's method can be simplified by 
taking as the dimer lattice one in which there is a one­
to-one correspondence between polygons on the 
Ising lattice and dimer configurations on the dimer 
lattice. He gives a scheme by which any planar Ising 
lattice can be solved in principle. The purpose of this 
paper is to give a method by which the solution can be 
carried out in detail. We use the method of Hurst 
since the weight factors of the lattice-point polynomial 
and the consistency conditions on the weight factors 
defined in I give a simple method of expanding the 
determinant in the partition function. 

In I it was shown how all the two-dimensional 
lattices could be classified such that to each class there 
corresponds a single basic lattice point or cell. For a 
planar lattice these cells must be connected by parallel 
bonds to form a generalized triangular lattice as shown 
in Fig. I of I. Thus the class is given by the number of 
horizontal, diagonal, and vertical bonds adjacent to 
the cell. Particular members of a class differ in the 
internal structure of the cell, which must be the same 
for all cells since we consider only periodic lattices. 

1 L. Onsager, Phys. Rev. 65,117 (1944). 
• See, for example, C. A. Hurst, J. Chern. Phys. 38, 2558 (1963), 

hereafter referred to as I. 
3 C. A. Hurst and H. S. Green, J. Chern. Phys. 33, 1059 (1960). 
• P. w. Kasteleyn, J. Math. Phys. 4, 287 (1963). 
• M. E. Fisher, J. Math. Phys. 7, 1776 (1966). 

Bonds connecting points inside a cell will be called 
internal bonds, while bonds between cells will be 
called external bonds. 

We label the cells in the helical ordering with i 
running from 1 to N, and we label the bonds connected 
to the ith cell from 1 to 2g. We adopt the convention 
that bonds numbered from 1 to g connect the ith cell 
to cells with lower index (except cells in the first row) 
and those numbered from g + 1 to 2g are connected 
to lattice points with higher index. So, a bond con­
necting cells i and i' will, therefore, have two labels, 
one fixing its ordering with respect to i and the other 
its ordering with respect to i'. We call these two labels 
associated labels. In the language of Ref. 2, these 
labels refer to terminals rather than bonds and the 
latter are specified by the labels of the terminals which 
form their end points. 

In the generalized triangular lattice considered here, 
the bonds can be grouped into six classes according to 
the following convention: 

(1) Terminals labele.d from 1 to h which connect 
horizontal bonds entering the ith cell from the 
(i - 1 )th cell. 

(2) Terminals labeled from h + I to h + d which 
connect diagonal bonds entering the ith cell from the 
(i - m - l)th cell. 

(3) Terminals labeled from h + d + I to h + d + 
v = g which connect vertical bonds entering the ith 
cell from the (i - m)th cell. 

(4) Terminals labeled from g + I to g + h which 
connect horizontal bonds leaving the ith cell for the 
(i + i)th cell. 

(5) Terminals labeled from g + h + I to g + 
h + d which connect diagonal bonds leaving the ith 
cell for the (i + m + I)th cell. 

(6) Terminals labeled from g + h + d + I to 2g 
which connect vertical bonds leaving the ith cell for 
the (i + m)th cell. 
Here, m denotes the number of cells in a row. The 
bonds can be labeled from I to g according to the 
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~I} 
·h 

r ,~", 'g+~ 2g g+h+d+1 ,'~+d,,\ 
g+h'+1 

h+'~, "1'" , h+d'i' 9 
h+d,~ 

FIG, I, Ordering of terminals at a vertex, 

terminal by which they enter the cell. The ordering of 
the terminals is as shown in Fig. 1. Because of the 
structure of the lattice, to every bond numbered j 

. connecting i-I to i and ordered with respect to i, 
there will be an associated label j' for the same bond 
ordered with respect to i-I. It can be seen from 
Fig. 1 that 

j'=g+h-j+l, if 1 ~j ~ h, 

j' = g + 2h + d - j + 1, if h <j ~ h + d, 

h + d <j ~ g. j' = g + 2h + 2d + v - j + 1, if 

We see that j and j' are the terminals by which the 
jth bond enters and leaves the ith cell, respectively. 
We denote by Crst '" w the lattice-point weight factor 
corresponding to the set of diagrams drawn on the 
cell which are consistent with the terminals labeled 
rst ... w of the cell being connected by external bonds 
and with an even number of bonds being connected to 
every spin of the cell. The weight factors have an 
even number of indices, ranging from zero, when there 
are no external bonds connected, to 2g when all 
possible external bonds are connected. These weight 
factors will be functions of the internal parameters 
Zl' Z2,"', Zr which depend on the internal bond 
energies J and the temperature T. For subsequent 
work, it is useful to define new weight factors 

(1.1) 

where {ab· .. h} is that subset of the 2g indices which 
is complementary (in the set-theoretical sense) to the 
subset {rs ... w}. 

In I it was shown how a lattice-point polynomial 
involving the weight factors Crs '" w and creation and 
annihilation operators could be associated with each 
cell. For planar lattices, the weight factors satisfy the 
consistency conditions 

(Cab" 'dY-/l-1Cab"'k = \Cab"'dtil, (1.2) 

where Cab .. 'k is a weight factor with 2Y indices, 

Cab, "d is a weight factor with 2ft indices which are a 
subset of {ab •.. h} and Cab. "dij is a weight factor with 
2(ft + 1) indices. The indices are restricted by the 
inequalities 

a<b<"'<d<"'<e<"'<g<"'<h 

and the Pfaffian on the right-hand side of (1.2) is of 
order 2(y - ft). The polynomial is factorized into a 
product of linear fermion operators and the expecta­
tion value of a product of polynomials gives a 
Pfaffian which is evaluated as the square root of an 
antisymmetric determinant. The combinatorial equiv­
alence of this method and the counting of closed 
polygons gives the partition function for the lattice 
considered. 

For the generalized triangular lattice, the partition 
function is 

where 
~ = C~~' 

is a matrix of order 2g with elements 

A -A - ( 1)i+i-1C' ti - - ii - - it , 

and, for i <j, 

for 1 ~ i ~ h, 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

Ai; = -x i e
i8tJji', 

= - x ,ei (8+,p) tJ 00' 
" n' 

= -xiei,ptJii" 

for h < i ~ h + d, 

for h + d < i ~ g, 

=A~. 
Here, 

and 
tJii , = 1, if j = i', 

= 0, otherwise, 

where i' is the associated label of i. 

(1.7) 

(1.8) 

In Sec. 2 we show how the determinant can be 
expanded in a compact expression which is quadratic 
in the weight factors. The partition function for each 
member of a class of lattices can then be found by 
calculating the weight factors. In Sec. 3 we consider 
the critical equations for the singularities in the parti­
tion function corresponding to physical singularities 
found in I and show how the Pfaffian method gives 
conditions on the weight factors. In Sec. 4 we solve a 
new lattice with two spins to a cell by the method 
developed. Finally, we conclude with a discussion of 
the method and comparison with other methods. 
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2. EXPANSION OF THE DETERMINANT 

The determinant I:::. can be written so that all the 
C;i have a positive sign by using Ct; = - Cii , for 
i < j, and then multiplying the odd columns and even 
rows by -1 giving 

(2.1) 
where 

P=i+i', if i<j, 

= i + i' + 1, if i > j, 
and x is the appropriate angle given in Eq. (1.7). 

The special structure of I:::. enables it to be reduced to 
a compact expression depending on the coefficients 
Cab"'h and which is quadratic in these coefficients. 
From Eq. (1.5) it can be seen that I:::. is the determinant 
of a matrix which is the sum of a real anti symmetric 
and an anti-Hermitian matrix. The latter matrix is 
such that all the nonzero elements above the main 
diagonal have row indices which range from I to g and 
column indices which range from g + 1 to 2g. Hence 
the row and column indices of Ai; for i < j form dis­
junct sets. Furthermore, because I:::. is an even-order 
anti-Hermitian determinant, it is a real number. 
Hence the phase factors can only contribute to I:::. in 
the form cos (pO + q1», where -(h + d) ~ P ~ 
(h + d) and -Cd + v) ~ q ~ d + v. For the moment, 
we shall put (0 + <1» = X and consider the coefficient 
of 

exp i{(P1 - q1)fJ + (P2 - q2)X + (Pa - qa)1>}' 

with 

o ~Pi,qi ~ h, 0 ~P2,q2 ~ d, 0 ~Pa,qa ~ v. 

The integers Pi define the number of phase factors of 
the various types which come from the portion of I:::. 

above the diagonal whilst the numbers qi give the 
number of phase factors which come from below the 
diagonal. 

In order to evaluate the determinant 1:::., we consider 
the coefficient of X~l, X~2, ••• , x:', where 0 < 11. < 2. 
Let A21 , A22 , •.• , A2n denote the indices A for which 
11.). = 2, let A+, A+, .•. ,A~ denote the indices A corre­
sponding to 11.). = 1 and a positive sign in the phase 
factor, let Aii, A12 , ... , A1q denote the indices corre­
sponding to 11.). = I and a negative sign in the phase 
factor, and let A01' A02 ' Aom denote the indices corre­
sponding to 11. = O. All the indices satisfy the inequality 
I ~ A2, At, AI' Ao ~ g and associated with the indices 
are the associated indices A~, At', AI" and A~ which 
satisfy g ~ A~, At', AI', A~ :::;; 2g. Let n1 ,P1' q1, and m1 
denote the number of bonds selected in the horizontal 
direction such that 1 :::;; n1 , PI ' ql' m1 :::;; h; n2, P2 , q2 , 
and m2 denote the number of bonds selected in the 

diagonal direction such that 1 -~ n2 ,P2' q2' m2 ~ d 
and n3, P3' qa, and ma denote the number selected in 
the vertical direction with 1 ~ na, Pa, qa, ma ~ v. 
The required coefficient can be uniquely denoted by 

D(A2 ; At; AI; Ao) 
== D( A21 . . . A2n ; At . . . At2l ; All . . . Alq ; A01 . . . Aom) 

(2.2) 
and the determinant can be expanded as 

I:::. = ~ ~ ~ exp i{ (P1 - ql)O 
2l q m+n=g-2l-q 

+ (P2 - q2)X + (Pa - qa)1>} 
X X~lX~2 • •• x:' D(A2; At; AI; Ao). (2.3) 

The coefficient (2.2) can be geometrically represented 
by a cluster of 2g terminals ordered from 1 to .2g as 
described at the beginning of this section. The labels 
denoted by A2 and A~ represent the bonds from one of 
the cells i-I, i - m - 1, i - m to i and from i to 
one of the cells i + 1, i + m + 1, i + m, respectively. 
The labels denoted by At' represent bonds from i to one 
of i + 1, i + m + 1, i + m, while the labels Al repre­
sent bonds from i - m, i - m - 1, i-I to i. The 
labels Ao and A~ represent no bonds to those terminals 
of the cell. 

The coefficient D(A2; At; AI; Ao) is a determinant of 
order 2g - 2n - P - g = 2m + P + q which is ob­
tained from I:::. by striking out the rows and columns 
containing the factors x). appearing in the product 
X~1~2 ••• x:" The striking out of the 2n rows and 
columns for which 11.). = 2 eliminates the indices A2n, 
A;n from the determinant. The striking out of the P 
rows and columns above the diagonal and the q rows 
and columns below the diagonal for which 11.). = 1 
removes one set of the indices At, At, AI' AI' from the 
determinant. As all indices occur twice in the original 
determinant, these indices are still present but only 
occur once. The rows of the determinant are labeled by 
A1, Ao, A~, At' and the columns by At, Ao, A~, A1' and, 
from the manner of construction, the sets {A1, At'} 
and {At, AI'} are disjunct. The rows and columns 
labeled by Ao, A~ for which 11.). = 0 form a real anti­
symmetric submatrix of D(A2; At; AI; Ao). The sign 
factors arising from these and subsequent operations 
are discussed in Appendix B. We ignore the sign 
factors in the following discussion, giving the total 
sign for D in Eq. (2.8). 

The determinant can be reduced in order by remov­
ing the antisymmetric submatrix by the method shown 
in Appendix A. At each step of the reduction, the 
elements of the determinant become 4 x 4 Pfaffians, 
which can be replaced by a higher-order weight factor 
by using the consistency conditions (1.2). On the first 
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reduction, D is reduced to a determinant of order 

2m + p + g - 2: 

D = C~ IC:jl 

= C2(C' ,)4-2m-p
- Q I D' I o A01A01 ' (2.4) 

where 

C~01A01' C~Olj CIA01 

C~01'j C;A01' 

C;j 

Using the consistency conditions Eq. (1.2) with 'jI = 2 
and fl = 0 gives 

D'j = Co' c: , , .. = c: , ,.,. 
t Jl.OlII.Ol '1.3 A01"'01 1,,3 

In Appendix A we show that the new determinant 
still contains a real anti symmetric submatrix so the 
process can be continued until all the antisymmetric 
part which is labeled by Ao is removed. The result is a 
determinant of order p + q: 

(2.5) 
where 

AO denotes AOIA~IA02A~2 ... AomA~m 

and ij are the indices of the sets {AI' At'} and {At, AI'}, 
respectively. 

The terms of the determinant of order (P + q) form 
a subset of the terms of the Pfaffian \ C>'ors I of order 
2(P + q), where the indices r, s range over the com­
bined set 

{At, AI' At', AI'}. 

Thus, the determinant in Eq. (2.5) is equal to the 
Pfaffian if the terms in the Pfaffian with both indices 
from the set {At, AI'} are made zero. Thus the deter­
minant IC>'oijl can be written, apart from a sign factor 
discussed in Appendix B, as 

IC>'oiJI = {\C>.orsl - I \C>'oabl \C>.orul 

+ I I \C>'oabl \C>'otuJ}· (2.6) 

The Pfaffians in Eq. (2.6) are of order 2(P + q), 2 and 
2(P + q - 1), 4 and 2(P + q - 2), respectively. The 
summations are over the 0, 1, 2, ... pairs of indices 
a, b which can be selected from the set {At, AI'}. By 
using the consistency conditions (1.2), these Pfaffians 
can be replaced by weight factors 

Cr.;q-IC>'OA1+AC).1+' ).1-" (-I)RC>.oabCr.;Q-2C>'otu·" W 

and 

( -1 )RC7I.oabCd , (-1 )RC7I.o C7I.oabCd' c~~Q-ac7I.ov' .. w . 

Here ab· .. d are indices from the set {At, AI'} and 
ru ... ware the complement of ab ... d in the set 
{At, AI' At', AI'}· The sign factor R is the parity of the 

permutation required to arrange {ab'" d} and its 
complement in numerical order. 

Finally, we combine Eqs. (2.5) and (2.6) and use 
Eq. (1.1) to express the determinant in terms of the 
original weight factors giving 

D = (-1)S{c>'z).1+).1-).1+').1-,c>'2 

- (-)R I C>'2tU' .. wC7I. zab 

+ (_)R I I C>'zV'" WC>'2abcd" .}. (2.7) 

Here, all the indices are in numerical order and S is the 
sign factor discussed in Appendix B given by 

S = t(Pl "+ ql)(2n + PI + ql) 

+ t(Pl + q2)(2n2 + P2 + q2) 

+ !(Pa + qa)(2na + Pa + qa) 
I 

+ t(P + q)(2n + P + q). (2.8) 

The structure of (2.7) can best be seen by giving a 
geometric representation. Each term on the right-hand 
side can be represented by two clusters of 2g terminals 
labeled as in Fig. 1. The first term corresponds to all 
the terminals (A2' At, A~, and A2) being connected by 
external bonds in the first and second cluster, respec­
tively. The second term corresponds to the terminals 
(A2tU' •• wand A2a, b) being connected by external 
bonds in the first and second cluster, respectively. The 
second term differs from the first in that the terminals 
a, b are connected by external bonds in the second 
cluster rather than in the first. The third term corre­
sponds to the terminals (A2V ... wand A2abcd) being 
connected by external bonds in the first and second 
cluster, respectively. In no cluster are the terminals 
labeled by Ao connected. 

So, finally, we see that the determinant !1 can be 
expanded as 

!1 = I D(A2n; 0; 0; AOm)x~1x~2 ... X~' 
mj-n=g 

+ I I I D(A2n; Ai';,; A~; Aom)xt1 ... x~· 
p q=p m+n+p+q=g 

X exp i{(Pl + P2 - ql - q2)() 

+ (P2 + Pa - q2 - qa)c/>} 

+2II I DX~1X~Z .. ·X~· 
p q<p m+n+p+q=g 

X cos {(PI + P2 - ql - q2)() 

+ (P2 + Pa - q2 - qa)c/>}, (2.9) 

where D is given by (2.7). The first summation is over 
the 29 ways in which the bonds X I X 2 ' •• Xg can be 
separated into two groups A2l , ••• , A2n with IXA = 2 
and AOI ' ... ,AOm with IX). = O. In the second sum­
mation, the p bonds Atl"", Atp can be selected 
from above the diagonal in (~) ways, the bonds 
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Ali, ... , A~ can be selected from below the diagonal 
in (U;P) ways, and the remaining g - 2p bonds can 
be separated into the group A2l , ••• , A2n and AOl , ••• , 
AOm in 2g- 2P ways. For a given selection D(A2n ; Atp; 
AlP; Aom), there is another selection D(A2n ; Alp; Atp; Aom) 
and these terms combine together to give a cosine 
term. The third summation is over the (~)(g-;;V)2g-p--q 

ways in which D(A2n; Atp; Alq ; AOm) can be selected. 

3. CRITICAL BEHAVIOR 

In I it was shown that critical equations for a general 
lattice could be derived by satisfying the conditions 

~(eiO, ei"') = 0, 

a -0 ' .. 
- ~(e' e''I') = ° ao' , 
a '0 'A, 

aif> ~(e' ,e''I') = 0. 

(3.1) 

Since ~ is given by (2.9) as a sum of cosine terms in 
multiple angles of 0 and if> , the second and third 
equations will be satisfied when 0, if> = 0, 7T'. Other 
solutions may exist, but the fact that they were 
nonphysical in the simpler model considered in I 
suggests that they will be nonphysical in our model 
also. Therefore, we confine our attention to the solu­
tion of the first equation of (3.1) for 0, if> = 0, 7T'. 

When 0 = if> = 0 are substituted in (2.1), the 
determinant becomes 

~-= C; IC;i + (-I)Pxit5ii'I, (3.2) 

since eix = e-iX = 1 when X = O. Since P = i + if 
if i < j and i + i' + 1 if i > j, the determinant is 
antisymmetric and hence it can be written as a 
Pfaffian 

(3.3) 

This Pfaffian can be expanded as a sum of terms 

X~'X~2 ... x~g, 

where IXi = 0, 1. Let Ai' ... , An denote the indices for 
which IX;., = 1, where nl are chosen such that 1 :::;;; A :::;;; 
h, n2 are chosen such that h < A :::;;; h + d, and na are 
chosen such that h + d < A :::;;; g. Let the coefficient 
of ~'x~' ... x~g be denoted by P(Al' ... , An), where 
n = nl + n2 + na. Then the required expansion is 

~! = "" peA. ... A )x"'x"" .. x"y k 1, 'n 1 2 go (3.4) 
";.,=0.1 

The coefficient P(Al' ... , An) is the cofactor of the 
Pfaffian when the rows and columns containing the 
indices AI"'" An and their associated indices 
A~, ... ,A~ are removed from the Pfaffian and the 
bond weights x" for which IX" = ° are made zero. The 

cofactor itself is a Pfaffian of order 2(g - n) with 
elements C~b whose rows and columns are labeled by 
the set of indices {a, b, ... , h} which is the comple­
ment of the set {A} in the set {l, 2, ... ,2g}. By the 
consistency conditions (1.1), the Pfaffian \C~bl can be 
replaced by COl Cab " 'h so that 

P(Al ,"', An) = (_)TCo \C~bl 

= (-fCab"'h' 

Here, T is the sign factor to remove the bond weights 
for which IX)" = 1 which is discussed in Appendix C. 
From Eq. (1.1), which relates the weight factors, we 
have 

so that 

~! = .2 (-)TCAX~'X~2.·· x~g. (3.5) 
a),,=O.l 

The form of the critical equations for the other 
values of 0 and if> can be found from the case 0= if> = 
o by transformation of the bond weights. From the 
structure of the determinant in Eq. (1.7), it can be 
seen that the change 0 = ° to 0 = 7T' has the effect of 
changing x)" to -:X;., if 1 :::;;; A :::;;; h + d. Similarly, the 
change if> = 0 to if> = 7T' has the effect of changing 
x)" to -x)" if h < A :::;;; g. In Appendix C we show that 
those changes can be incorporated in the sign factor 
T given by 

T = n + nln2 + n2na + nIna, if 0 = if> = 0, 

=n-nln2+n2na-nlna, if 0=0 if> = 71', 

= n + nln2 - n2na - nIna, if 0 = 7T' if> = 0, 

= n - nln2 - n2na + nIna, if 0 = 7T' if> = 71'. 

(3.6) 

4. A LATTICE WITH TWO SPINS TO A CELL 

In this section we show how the partition function 
and the critical equations for the lattice shown in 
Fig. 2 can be written down by using the results of 
Secs. 2 and 3. The power of the method lies in the 
fact that the calculations are straightforward, although 
tedious. In general, only the method of calculation and 
the results will be given. 

FIG. 2. Example of a lattice 
with 2 spins to a cell. 
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X1--1 ------;;*""""----8-XI 
\ 
\ 
\Xo 7-X2 
\ 
\ 

X3-- 3 -----:*"'---- 6 -- X3 

5 

/ 
Xs 

FIG. 3. Cell structure for lattice of Fig. 2. 

In order to represent the lattice of Fig. 2, each cell 
is given ten terminals and these terminals are con­
nected to the spins as shown in Fig. 3. There is a 
weight factor for each way in which an even number 
of external bonds are connected to a cell. This weight 
factor describes the ways in which the internal bonds 
can be arranged so that there is an even number of 
external and internal bonds to each spin. The weight 
factors can easily be found from Fig. 3 to be 

Cab' •. h = xo, if the indices ab ... h contain an odd 

number of the set {3, 4, 5, 6, 7}, 

= 1, otherwise. (4.1) 

Thus Co = C12 = 1 and CIa = xo, etc. The lattice has 
five external bonds and one internal bound; the cell 
has ten terminals and h = 3 and d = v = 1. There 
is one terminal for each bond entering or leaving the 
lattice and the external bonds are labeled Xl' X 2 , ••• , 

X5 corresponding to the terminal of the set {I, 2, ... ,5} 
to which they are connected. The bonds Xl' X2, and 
Xa represent horizontal bonds between cells, X 4 rep­
resents a diagonal bond between cells, and X5 

represents a vertical bond between cells. It can be seen 
that the pairs of terminals (1, 8), (2,7), (3, 6), (4, 9), 
and (5, 10) are the associated terminals defined in 
Sec. 1. The coefficient of XlX~X4X5 cos (0 - X + 4» is 
D(2; 1, 5; 4; 3), with nl = PI = Pa = q2 = rnl = 1 
and n 2 = na = P2 = ql = rn2 = rna = O. From Eq. 
(2.8), the sign factor is even. Since I' = 8, 2' = 7, 
3' = 6,4' = 9, and 5' = 10, Eq. (2.7) gives 

D(2; 1,5; 4; 3) = {c1245789l0C27 + C2478910C1257 

+ C24578l0C1279 + C1 247810 C2579}' 

The sign factors R of the second, third, and fourth 

terms are positive because (4,8,9,10,1,5), (4,5,8, 
10,1,9), and (1,4,8,10,5,9) are odd permutations 
of (1,4,5, 8, 9, 10). The weight factors are shown in 
Fig. 4. It can be seen that each spin has an even number 
of bonds (external and internal) connected to it. We 
see that D(2; 15; 4; 3) = 2(1 + x~). It can be seen 
that X2 is always connected in both clusters, whereas 
Xa is never connected. The result of combining each 
cluster is a bond weight xlxix4X5' Each term in the 
expansion of the 10 X 10 determinant can be evaluated 
as above. 

We notice that if Xl and X2 are selected from above 
the diagonal and not selected from below the diagonal, 
the 1st and 2nd columns of the determinant, which 
remain when the 1st and 2nd rows and the 7th and 
8th columns have been removed, are equal. No matter 
what further selections are made, the 1st and 2nd 
columns will remain equal so that D(A'2; 1, 2, At; 
AI; .1.0) will be zero for all .1.2, Ai, AI' .1.0 ' Similarly, we 
find that 

D(A2; 1,2, At; AI; .1.0) = D(A2; At; 1,2, AI; .1.0) = 0, 

D(A2; 2, 3, At; AI; .1.0) = D(A2; At; 2, 3, AI; .1.0) = 0, 

D(A2; 3,4, At; AI; .1.0) = D(A2; At; 3,4, AI; .1.0) = 0, 

D(A2; 4, 5, At; AI; .1.0) = D(A2; At; 4, 5, AI; .1.0) = 0, 

D(A2; 1,4, At; AI; .1.0) = D(A2; At; 1,4, AI; .1.0) = 0, 

D(A2; 5, At; 3, AI; .1.0) = D(A2; 3, At; 5, AI; .1.0) = 0, 

D(A2; 5, At; 1, AI; .1.0) = D(A2; 1, At; 5, AI; .1.0) = 0. 

These relationships reduce the number of terms in the 
expansion of the determinant considerably. 

The first summation in Eq. (2.9) produces the 25 

terms which arise on selecting the 5 external bonds in 
two groups .1.21 , ••• ,A2n and .1.01 , ••• , Aom. The co­
efficient of X~lX~' ••• ~6 where IX;. = ° or 2 is found 
from Eq. (2.7) to be 

From Fig. 3 it is easily found that cA. is Xo or 1 if A2 
contains an odd or even number of elements from the 
set {3, 4, 5, 6, 7}, respectively. 

The second summation corresponds to selecting P 
bonds from above the diagonal and the same number 
q = p of different bonds from below the diagonal. 
Since there are only five bonds altogether, only the 
two cases p = q = 1 and p = q = 2 need be con­
sidered for this lattice. Furthermore, we have 
D(A2; At; AI; .1.0) = D(A2; AI; At; .1.0), since by Eq. 
(2.7) the coefficient depends on the set {Ail' ... , Ail>' 
All' ... ,Ala} for a given A2 • Thus the coefficients 
combine together to give cosine terms. For selections 
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such that Pi = qi' for i = 1, 2, 3, the angle 

{(PI + P2 - ql - q2)O + (P2 + Pa - q2 - qa)rp} 

is zero. 
The third summation corresponds to selecting P 

bonds from above the diagonal and q = P bonds from 
below the diagonal. For selections such that PI + P2 = 
ql + q2 and P2 + pa = q2 + qa, the above angle is 
zero and these contribute to the absolute term. 

The coefficients D(A2 ; At; AI; Ao) are . evaluated by 
the method illustrated in the example given above and, 
after some tedious algebraic manipulations, the deter­
minant is found to be 

6. = t(l + x~)(1 + x~) 
x [(1 + x~)(1 + x~)(1 + x!)(1 + x~) 
+ (1 - x~)(1 - x~)(1 - x~(l - x~)] 

+ 4xox2(1 + x:)(1 + x~) 
x [XI(l + x~) + xa(l + xDl 

+ 2xIxa(1 + x~)(1 + x~)(1 + x!)(1 + x~) 
+ 4x4xS(l + x~)(1 + x~) 
x [XI(l + x:) + xa(1 + x~)] 
+ 8xox2x4xs(1 + xNl + x:) + 32xoXIX2XaX4xs 

- [Xl(l + x:) + xa(l + xDl 

x [(1 + x~)(1 + x~)(1 - x:)(1 - x~) 

+ (1 - x~)(1 - x~)(1 + x:)(1 + x~)] cos 0 

- 2(1 + x~)(1 + x:)[xox2(1 - x:)(1 - x~) 

+ X4XS(l - x~)(1 - x~)] cos 0 
- 8xIxa[xox2(1 - x!) + (1 - x~) 

+ x4xs(1 - x~)(1 - x~)] cos 0 
- 2(1 - xi)(1 - x;)[xox4(1 - x~)(1 - x~) 

+ X2XS(l - x~)(1 - x:)] cos (0 + rp) 

- 2xoxs(l - xi)(1 - x~)(1 - x:)(1 - x:) cos rp 

+ 2xIXa(l - x~)(1 - x~)(1 - x!)(l - x~) cos 20 
- 2X2Xi1 - x~)(1 - xi)(1 - x:)(1 - x~) 
x cos (20 + rp). (4.3) 

This result can be checked against the known results 
for the rectangular, triangular, hexagonal, and Yama­
moto lattices. A particular bond Xi of the lattice can be 
removed by putting Xi = 0. A bond can also be made 
redundant if we coalesce the spins which form the end 
points of the bond by putting Xi = 1. From Fig. 2 we 
can see that Xo = 1 and any of the choices X2 = Xa = 
~=Om~=~=~=Om~=~=~=Om 
X2 = Xs = X5 = 0 will produce a rectangular lattice. 
For the first choice the determinant is 

ilR = (1 + xD(1 + x~) 
- 2xD - x~) cos () - 2xs(l - xi) cos rp. 

The critical equation for this lattice can be found by 
the method developed in Sec. 3. For a singularity at 
o = rp = 0, the critical equation is given by Eq. (3.5) 
as 

Co - C18XI - C27X2 - Ca6Xa - CUX4 - c510x5 

+ C1278XIX2 - C1368XIX3 - C1489XIX4 + C15810XIX5 

- C2367x2Xa - C2479X2X4 - C2571oX2X5 - c3469xax4 

- ca5610xax5 - C45910X4X5 - c12a678xIx2xa 

- CI24789XIX2X4 - CI257810XIX2X5 - cIa4689xlxax4 

+ c13568loXIxax5 - C14S891oXIX4XS - C2a4679X2XaX4 

+ C2a56710X2xaxs + C24579IoX2X4X5 - Ca456910xax4x5 

- cl2a46789xIX2xaX4 - cI2a5678IoXlx2Xax5 

- C12457891oXIX2X4X5 - cIa45689loXlxax4x5 

- C2a45679Iox2xax4X5 + cl2a4567891oxlx2xaX4xs = 0. 

The sign of the terms have been found by using Eq. 
(3.6). The weight factors substituted from Eq. (4.1) 
give the critical equation after some algebraic manip­
ulation as 

(1 - xox2)(1 - x4x5)(1 - xI)(l - xa) 

- (xo + X2)(X4 + x5)(1 + xl )(1 + xa) = O. (4.4) 

The other critical equations corresponding to the 
other values of 0 and rp at which a singularity may 
occur can be found by transforming the bond weights 
according to the sign factor given in Eq. (3.6). One 
can show that Eq. (4.4) gives the correct equation for 
the rectangular, triangular, hexagonal, and Yama­
moto lattices by the same method as used in the pre­
vious paragraph. For example, if we put Xl = Xa = 0, 
we obtain the equation 

1 + XOX2X4X5 = XOX2 + X4X5 + XOX5 + X2X4 + X2XS, 

which corresponds with the Eq. (47a) of I for the 
Yamamoto lattice. 

5. DISCUSSION 

The above method of expanding the determinant in 
the partition function as a quadratic expression in the 
weight factors is applicable to any two-dimensional 
Ising lattice without crossed bonds possessing a 
periodic structure of similar cells. Fisher has shown 
how such lattices can be solved in principle in terms of 
a Pfaffian. However, for a complicated cell structure, 
his determinant is very large being of order 3(~iqi -
2r), where r is the number of spins in the Ising lattice 
cell and qi is the number of bonds with spin. For the 
example of Sec. 4, a determinant of order 24 would 
require evaluation. Our method evaluates a deter­
minant of order 10 using weight factors which can be 
found graphically. 
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A cell withfspins has been considered as a multiple­
state model with 2' states for each cell.6 An interaction 
energy between states can be defined and the condi­
tions which must be imposed of the interaction energy 
for the problem to reduce to the combinatories of 
closed polygons on the lattice has been investigated. 7 

If the cell structure is simple enough, the weight 
factors can be easily found and a model with many 
bonds between cells can be constructed. By choosing 
the strength of the bonds to decrease as the number of 
bonds increases, we hope to investigate a continuum 
model in a future paper. 

S H. S. Green, Z. Physik 171, 129 (1963). 
7 R. G. J. Mills, Ph.D. thesis, University of Adelaide, 1966. 

APPENDIX A: REDUCTION OF A DETERMINANT 
WITH AN ANTISYMMETRIC SUBMATRIX 

We consider the reduction of a partly antisymmetric 
determinant ICu,1 of order 2m + r. By partly anti­
symmetric we mean that the determinant has an 
antisymmetric submatrix of order 2m. We select the 
smallest integer ,101 such that C '<OlA ,and C;. " are in 
.. 01 01"01 

thiS submatnx. Then to every row of the determinant 
other than the A~1 th we add a constant multiple oc: of 
the A~1 th row so as to make all the elements of "the 
A~lth column zero except C'<OlA01': 
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with 

and hence 

Then to every column of the determinant other than 
the A~lth we add a constant multiple {3jl of the A~lth 
column so as to make all the elements of the A01 th 
row except C ;'01;'01': 

IC~;.,I = IC~,l' + ~I'JjlA,{JI'C~,lOl'l, 
i.e., 

IC~;,'I = ICu' + ~Al.1'0(I'CA01';" + ~I'JI'A,{JI' 
X {CH01 ' + ~I'J;'I'O(I'C;'Ol';'Ul,}1 

= ICu' + ~I'J;'I'O(I'C;'Ol';" + ~I'JI';.,{JI'C;';'ol,l, 
since C;'o,';'o,' = 0. To find {3jl we require C;O'I' = 0, i.e., 

C;'o'l' + (JjlC;'Ol;'Ol' = 0, 

and hence 

Thus 

1 
C;'o,;'o,' C;'o'A C;'o'A' 

--- CA01 ';' CAO,').' (A2) 
C Ao,Ao,' 

C;.;.' 

As a check, we note that C;o,A' = C;AO' = 0. The deter­
minant is expanded by the A01th row and then the 
AOlth column, giving 

D = ICu,l = C~-;;-,(;~-;t-r-2) \\CAo,Ao"C;'ol'A,C.u-I\. (A3) 

We note that the new submatrix formed from the 
original antisymmetric submatrix in this way is still 
anti symmetric because 

C;'O').O,' C;'Ol).O', C;'o;'o, 

C~o;'o' = C ;'0";'" C;'o;'o,' 

C).o;'o' 

C ;'0';'01' C;.O,).O -C;.";.o, 

CA•l').. -CA.)..l' 

-C)..';'. 

and so the reduction process may be continued until 
all of the anti symmetric part of the original deter­
minant has been removed. 

APPENDIX B: DETERMINATION OF THE SIGN 
OF D(A2 ; At; Al Ao) 

In this appendix we list the operations and their 
sign factors for the selection of the coefficient 
D(A2n; At»; Ala; Aom) from Eq. (2.1) where all the 
cij are positive and the sign on the bond weights Xi 

above and below the diagonal are (- 1 )i+i' and 
(_l)i+i'+l, respectively. From the relationship be­
tween the terminals and their associated terminals, we 
have 

sign (i + i') = sign (g + h + 1), if 1 ::;; i ::;; h, 

= sign (g + d + 1), if h < i::;; h + d, 

= sign (g + v + 1), if h + d < i ::;; g. 

(1) Selection of {A2n} (n = n1 + n2 + na) with 
IX;. = 2. We ;elect n bonds from the set g above the 
diagonal corresponding to A21 ... A2n and n bonds from 
the set g below the diagonal corresponding to 
A~l ... A~n' Associated with each selection is a sign 
from the bond weight and a sign from the position in 
the determinant. The total sign change for all these 
selections is zero. 

(2) Selection of {At»} and {Ala} with IX;. = 1. We 
select p bonds from those remaining above the 
diagonal and then q bonds with different labels from 
the p bonds from below the diagonal. Again we get a 
sign factor from the bond weight and a sign factor 
from the position in the determinant. The total sign 
factor is 

tp1 (1 - PI) + tp2(1 - P2) + tPa(1 - Pa) 

+ tql(l - q1) + iq2(1 .c.- q2) 

+ tqa(1 - qa) +.n(p + q) + n1(P1 + q1) 

+ n2(P2 + q2) + na(Pa + qa) + q(P + 1). 

(3) Selection of {AOm} with O(,l = 0. This selection 
is done while reducing the antisymmetric submatrix 
as in Appendix A. There is no bond weight so the 
sign comes only from the position in the determi­
nant as 

(P + q)m + (Pl + q1)m1 

+ (P2 + q2)m2 + (Pa + qa)ma. 

(4) Comparison of the reduced determinant Eq. 
(2.5) with the determinant (2.6) can be found by 
comparing the terms from the principal diagonal 

t(P + q)(P + q - 1). 

(5) Combining the row indices {A-, A+'} and the 
column indices {A+, A-'} in numerical order gives a 
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sign factor 

pq + PIql + P2q2 + Paqa· 

(6) Since D is a quadratic expression in the weight 
factors with A2 appearing in both weight factors, there 
is no sign factor resulting from bringing the A2 to 
numerical order. 

(7) Finally, there is a sign factor for combining the 
numerical set A2 and the numerical set {A-, A+, A+' , A-I} 
into numerical order: 

(PI + ql)(m2 + ma) + (P2 + q2)(ml + ma) 

+ (Pa + qa)(ml + m2)· 

If we combine the signs found above and use the 
relations 

h = nl + PI + ql + ml , 

d = n2 + P2 + q2 + m2 , 

v = na + pa + q3 + ma, 

g = n + P +q + m, 

we obtain the sign factor for D given in Eq. (2.S). 

APPENDIX C: DETERMINATION OF THE 
SIGN OF P(~, ... , An) 

The sign T of the Pfaffian P(AI' ..• , An) given in 
Eq. (3.6) after selecting out the bonds X~I, ••• ,x:. 
for which <x). = 1 is the product of the sign factor 
(-1»).+).' of the bond weight and the sign factor 
(_I)i+HI corresponding to its position in the Pfaffian. 
We shal1list the operations and their associated sign 
factors for the expansion of the Pfaffian by the method 
of Sec. 3. 

(1) Selection of AI,"', Ani from the set {I, 
2, ... ,h}. Here, A + A' = g + h + I: 

sign = nl(g + h + I) + (1 + g + h + I) 
+(l+g-I+h-I+l) 

+ ... + (I + g - n + 1 + h - nl + 1 + I) 
= nl(g + h + I) + tnl(S + 4g + 4h - 2nl) 

In finding the position of the bond weight in the 
Pfaffian, one must remember to remove all the rows 
and columns containing the indices and the associated 
indices of the previously selected bond weights. 

(2) Selection of Anl+!, ... Anl+n2 such that h < i < 
h + d. Here, A + A' = g + d + 1 (mod. 2): 

sign = n2(g + d + I) 
+ (h - nl + 1 + g - nl + h - nl + d + I) 
+ ... + (h - nl + 1 + g - nl ... n2 

+ I + h - nl + d - n2 + 1 + I) 
= nl n2 + n2 (mod 2). 

(3) Selection of Anl+n2-:I, ... An such that h + d < 
i < g. Here, A + A' = g + v + I (mod 2): 

sign = na(g + v + I) + (h - nl + d - n2 

+I+g+g-~-~+h-~+d-~ 

+ v + ... + (h - nl + d - n2 + I 
+ g - nl - n2 - na + I + h - nl + d 

- n2 + v - na + I + I) 
= nIna + n2na + na. 

Thus the .total sign factor on selecting AI' ... , An is 

T = n + nln2 + n2na + nl n3' (el) 
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The Berlin-Witten-Gersch model of a classical gas gives a phase transition in one dimension for a 
potential 

v = -gye-YR , R > 15, 
= co, R < 15, 

in the limit y --->- O. The correlation function is nonvanishing in the transition region; it vanishes outside. 
Investigation of the P-L isotherms (where L is the one-dimensional volume) shows a discontinuity in the 
first derivative at the transition points. 

1. INTRODUCTION 

Recent discussions of the theory of superconduc­
tivity as to whether a one-dimensional system such as 
a whisker can become superconducting1 makes the 
question of one-dimensional phase transitions more 
than academic. Further, interest in phase transitions 
in one-dimensional systems has gained momentum 
recently due to Little's work2 on long-chained polym­
ers which may become superconducting. It is not too 
amiss to approximate these long polymers by one­
dimensional systems. 

Models which undergo a phase transition in one 
dimension are of interest especially because proof or 
evidence for the existence of one-dimensional phase 
transitions is still inconclusive. Existence or nonexist­
ence depends markedly upon the model employed. 
We do have Van Hove's3 famous work wherein he 
shows that a one-dimensional system cannot exhibit 
a phase transition if the forces are of finite range. The 
delicate nature of this type of transition is appreciated 
when one makes a comparison of our model with 
other similar ones. The Kac model4 gives no phase 
transition whereas those of Kac, Uhlenbeck, and 
Hemmers and Gersch6 do. 

We describe here a simple model of a classical gas 
which has long-range forces such that we can vary the 
range parameter, at the same time holding the total 
energy of the system constant. In the limit of infinitely 
long range, a phase transition is obtained. 

We approach the problem of a classical gas with an 
attractive-pair potential -gyryR for R :?: 0, where 
R is the distance between particles and g is a coupling 
constant. For R < 0, the potential is infinite (positive) 

1 R. A. Ferrel, Bull. Am. Phys. Soc. 2, 315 (1966), All. 
J W. A. Little, Phys. Rev. 134, A1416 (1964). 
• L. Van Hove, Physica 16, 137 (1950). 
4 M. Kac, Phys. Fluids 2, 8 (1959). 
• M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4, 

216,229 (1963); 5, 60 (1964). 
a H. A. Gersch, Phys. Fluids 6, 599 (1963). 

as in a hard-sphere gas. In particular, we are interested 
in the case when y becomes arbitrarily small. 

The role played by g can be seen by considering the 
potential energy. In a first approximation we may 
regard the density as uniform about a given particle 
and neglect the correlation function. The average 
value of the potential energy a per particle will then 
be 

a = 1'10 U(R)p dR, 

since in a given length element there will be p dR 
particles (where p is the density) with energy U(R). 
Adding up the energy over all the particles gives, for 
the total potential energy U T , 

UT = iNa, 
where the factor i prevents our counting the same 
pair twice. Letting p = NIL, we obtain in the limit as 
1'-+0 

U T = - - gye-yR dR = - - g. N2100 N2 

2L 6 2L 

That is, g measures the average potential energy of 
the system. 

It is easy to show that a gas of hard spheres shows 
no condensation phenomena (even in three dimen­
sions where phase transitions abound). A first guess 
might be deceiving in our problem, because with 
I' = 0 we are left with a potential identical to the 
hard-sphere gas. But the calculated results show that 
there is a transition region for a temperature below 
a critical temperature. As the parameter y grows 
smaller, the "long-rangeness" of the potential "pre­
dominates" to effect a many-particle collective action. 

Investigation of the P-L curves discloses the first 
derivative to be discontinuous at the transition points. 
The correlation function is nonvanishing in the 
transition region, whereas outside it vanishes. We have 
a first-order phase transition. 

1541 
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In comparing our results with those of Kac, Uhlen­
beck, and Hemmer,5 we note that our model leaves no 
uncertainty that in the limit y --+ ° there is a sharp 
distinction in the correlation function between the 
condensed-phase and the single-phase region. 

Our correlation function and the rate at which 
x --+ ° (Appendix A) both on the vapor dome and in 
the two-phase region agrees with the work of Gersch.6 

Our method does not permit comparison in the region 
of the transition for small y, since it allows us to 
obtain only the limit functions. 

2. THE CLASSICAL PARTITION FUNCTION 

The configurational partition function for an 
imperfect gas is a sum over all the allowed states 
weighted by a Boltzman factor exp (-E/kT); in our 
case, this becomes an integral in configuration space: 

ZN = ~! r· J dT1 '" dTNexp [-(JW(r1'" rN)], 

v (2.1) 

where W(r1 ... rN) is the potential energy of a con­
figuration of particles, rj the position vector of the ith 
particle, and (J = IjkT. The total free energy'f of the 
system composed of one type of particle is 

exp [-(J'f] = [21Tm/«(Jh2)1~NZN' 
We will have more occasion to use the limiting value 
of the free energy per particle 1p, defined to be 

( (J) 1
· 'feN, V, (J) 

1p D, = 1m , 
N-+oo N 

V/N = D, (2.2) 

where D is the specific volume. The thermodynamic 
pressure is given by 

p = -01pjOD. 

We now divide the total volume V into K cells of equal 
volume T such that KT = V and such that the cells are 
numbered from I to K. The number of particles in the 
jth cell is n j • We can then write 

ZN=1. I( kN! )fdT1···fdTNexP[-(JW]. 
N! {nl} llj=1 nil 

(2.3) 

The sum is over all combinations of integers {nj }, 

'fJj ~ 0, subject to the restriction 
k 

In; = N. 
1=1 

In principle, the specific subdivision of the space 
into cells should be irrelevant for the final result. We 
make the choice T = D, where D is the specific volume 
in n dimensions. Then (nj) = 1 for all values of (J, D. 

3. AN APPROXIMATION TO THE 
IMPERFECT GAS 

We now seek to approximate Eq. (2.3). We proceed 
to list the assumptions and their direct consequences. 7 

(1) First we assume that the interaction between 
particles is pairwise, 

where rij is the distance between particles i and j, and 
U(r) is the potential energy of interaction between 
a pair of particles. 

(2) When two particles i and j are in different cells 
k and m, we assume that U(r ii) = U(Rkm), where 
Rkm is the distance between centers of the kth and 
mth cells. The total interaction energy with respect to 
particles in different cells becomes 

W(rl ... rN) ~ If nknmU(Rkm). 
lSk<mSN 

Note that this energy is now independent of the 
coordinates of the particles; it can be taken outside 
the integral. 

Within a cell we define an average interaction by 

exp [-(JWkl 

== 1. fdT .. ·fdT exp [- (JW(r ... r )]. vnk 1 nk 1 "T, 

(3) Let Wo be defined by 

Wk == ink(nk - l)Wo· 

In general, Wo will be a function of D, (J, and nk • We 
now assume that the dependence of Wo on nk can be 
neglected. 

The consequences of assumptions (1), (2), and (3) 
lead to 

ZN = I ( ;N ) exp [iN(JWo - (J ~ ajkn;nk] , 
{nl} TIi=l nil 1.k 

where use of the following identity has been made, 

I Wk = I nk( nk - 1) Wo = Wo I (n; - nk) 
k k k 

= - NWo + I akknknk , 

and where 
k 

j=k. 

(3.1) 

(3.2) 

(4) The sum over the set {n,}, where nj are non-
negative integers and subject to the condition 

N zn j = N, 
i=l 

7 T. H. Berlin, L. Witten, and H. A. Gersch, Phys. Rev. 92, 189 
(1953). 
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is a sum over lattice points, in an N-dimensional 
Euclidean space, bounded by an (N - I)-dimensional 
figure, a "hyperhedron." The center of this hyper­
hedron is the point (1, 1, ... , 1), which describes the 
configuration with one particle in each cell. This is the 
average configuration, since (ni ) = 1. 

Our next assumption is to replace the sum over the 
lattice points by an integration throughout the 
volume .Q of the hyperhedron. We write 

ZN = A(N)vN exp [tN~Wo] 

x J dn1 .. J dnN{exp [ -~ t aiknjnk]I 
Q 

where A(N) is a normalization constant. 
(5) The division of physical space into cells of 

volume v implies that the fluctuation in the number of 
particles per cell, a = «n j - 1)2), is finite for all v, 
~, unless of course purely attractive forces are present. 
This suggests that a significant contribution to the 
above integral arises from points which lie on the 
intersection of the hyperplane 

N 

In j = N 
}=1 

with the N-dimensional sphere 

N 
I (nj - 1)2 = R2, 
j=1 

where R2 = NO'. The intersection is the surface of an 
(N - I)-dimensional sphere with center at the center 
of the hyperhedron. The volume of the intersection is 
of the order of magnitude of the volume of the 
hyperhedron. 

The volume integral in Eq. (3.3) may be written 

J dnl .. J dnN = SoN dR J dn1 .. J dnN' 

Q N N 
1: (n;-O'=R', 1: n;=N 

}=1 1 

The difficulty here is that, for R > 1, a good part 
of the surface of the (N - I )-dimensional sphere lies 
outside the hyperhedron. However, integration be­
comes feasible if the whole surface of the sphere is an 
allowed region. We allow this extended region, but we 
introduce a weighting factor to compensate for the 
additional unwanted states. We employ a factor which 
is 1 for R < 1, which is of the order of e-N for 
R ,....", N!, and which is negligible with respect to e-N 

for R,....", N. We, therefore, assume that 

J dn 1 " J dnN 
Q 

~ LX) dR exp [ - 2~ R4] J dn1 ... J dnN 

N N 
1: (n;-O'=R',1: n;=N 
1 1 

where ~ is a finite constant. 
(6) Since in both the gas and liquid regions we 

can expect 0',....",1, the r(nj + 1) will be mostly of 
order 1. Let us then approximate the gamma function 
byexp [an/nj - 1)]. We could then choose a = ! In 2 
to fit the point nj = 2. But it is more interesting to let 
a play the role of a parameter and see its effects upon 
the isotherms and the critical thermodynamic v:ariables 
as done in Sec. 6. 

(7) The final assumption is to set the Born-von 
Karman periodic boundary conditions on the physical 
space. A one-dimensional gas would be confined to a 
ring, a two-dimensional gas to the surface of a torus. 
The mathematical analogy is extended to the three­
dimensional gas. The effect of this assumption is to 
cyclize the interaction matrix au. 

The partition function of our approximation to the 
imperfect gas is 

ZN = AvN exp [tN~Wo]LX) dR exp [ - 2~ R4] 

X J dn 1 " J dnN 

X exp [ -a %In/ nj - 1) - ~ t, ajknjnk} 

We fix the constant A by comparison with the ideal 
gas; in the limit the potential we use is that of a gas 
of hard spheres. 

4. EVALUATION OF THE PARTITION 
FUNCTION 

Let us transform from the variables {nj} to the 
variables {Yj} by a translation and rotation such that 

(4.1) 

N 

I ajin j - 1)(nk - 1) = I Ajy;' (4.2) 
j,k 1 

The eigenvalues Ak and eigenvectors Ijk normalized 
to unity are given by8 

(N+O/2 [27T 
Ak = an + 2 I a1p cos -(k - 1)(p - 1)J' 

p=2 N 

Ijk = N-!{cos [(27T/N)(j - 1)(k - 1)] 
(4.3) 

+ sin [(27T/N)(j - 1)(k - I)]). (4.4) 

8 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952). 
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The subscript p refers to the cell number with respect 
to cell 1. With the exception of AI, the eigenvalues 
are doubly degenerate because 

Ak = AN- k+2' k F- 1. 

The hyperplane is described by YI = O. This can 
readily be seen from the transformation equation, 
x = Ty, which, upon solving for Yl, becomes 

YI = 1 tl~k = N-i 1 Xk = N-i 1 (nk - 1) = o. 
k 

Employing Eqs. (4.1) and (4.2), our partition func­
tion now becomes 

ZN = B LX)dR exp [- 2~ R4] r· J dY2'" dYN 

~1I'=R' 

X exp [ - ~2 (a + fJA;)Y~l (4.5) 

where we define B == AvN exp [NfJ(i Wo - AI)]' 
Relaxing the restriction on the region of integration 

of the variables {Yi} by means of the delta function, 
then 

ZN = ~ (So+;oo dS exp (NS
2
)fOO dw 

2m )So-iOO 20c -NSf(/. 

X exp (- .!!:.-- w2
) {IT 7Ti (S + a + fJA;)-i}. (4.6) 

2N ,=2 

The product in the integrand can be written as 

N 

II (S + a + fJA,)-i 
1=2 

= exp [ - t t In (S + a + fJA/)} 

We are interested in the limit as N -+- 00. Let 

1 N 
/(S) = lim - 1ln (S + a + fJA;). 

N-+oo N ;=2 
(4.7) 

Then (for one dimension) 

1 12lr /(S) = - dw In [S + a + fJA(w)], 
27T 0 

(4.8) 

where 

A(w) = all + A.(w) 
wr 

= all + 21 aIr COS - . (4.9) 
r L 

The sum !r is over all the cell centers in the physical 
space, excluding cell 1. The distance r has its origin 
at the center of cell 1. 

Let S denote the algebraically smallest value of 
a + fJA.(w). If the s plane is cut from s = - 00 to 
s = -S along the real axis, then the integrand is 
analytic in the cut plane. The behavior of the integral 

in the neighborhood of s = - S is characterized by 
the density of eigenvalues A( w) in the neighborhood 
of the algebraically smallest eigenvalue. This behavior 
incompletely describes the behavior of Eq. (4.8) in the 
neighborhood of s = - S because the singular nature 
of the integral has in general nothing to do with tl1e 
singular nature of a single term in the sum, Eq. (4.7). 
We may, therefore, separate out this singular point. 

In the integral over win Eq. (4.6), the important 
values of ware of the order of Ni. For finite s, the 
lower limit of integration is of the order of N. In this 
situation we can extend the lower limit to negative 
infinity; the integral over w becomes (27TN/ex.)! if sis 
positive. We must, therefore, evaluate 

ZN = ~ 7TitN- I ) (27T~\l (So+;oo eNGtS~ dS, 
2m ex. J )So-iOO S + S 

(4.10) 

where 

G(S) == (S2/2ex.) - l/I(S). 

Applying the method of steepest descent to the 
integral, we find that 

B7T!tN-I) eNGtS) 

ZN = (S + S)[ex.(02G/OS2)]tsl' 

if a saddle point S8 can be found such that S. is real, 
positive, to the right of the singularities of the inte­
grand, and with 

[a~~S)l. = 0, [a~(;)l. > O. 

The constant A shall be determined by normalizing 
to the ideal gas, for which ZN = VN/N!. For the 
ideal gas ajk = 0 for allj, k, so that Ai = 0 for alIj. 
Then 

G(S) = (S2/2ex.) - 1 In (S + a), 

[aGes)] = s. _ 1 = 0 
oS s, oc 2(S. + a) , 

[
02G(S)] =! + 1 > 0 
as2 s. ex. 2(S, + a)2 . 

The solution of the saddle-point equation that 
meets the requirements is 

S, = Sid = Ha 2 + 2ex.)* - tao 

The positive square root is chosen because G(S) has a 
cut to left of s = -a. It is found that 

. In A e 
hm - = In 1 - G(Sid)' 

N-+oo N 7Tl! 

For the free energy per particle this gives 

-fJ'IjJ = lIn (27Tm/fJh2) + In ev + fJ[lWo - A(O)] 

+ G(S.) - G(Sid)' (4.11) 
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For our one-dimensional gas model, the saddle­
point equation becomes 

2S 1 127 dm -' = - = I(S, , y). (4.12) 
ex 27T 0 S, + a + (JA(w) 

In our calculations we approximate this sum by an 
integral; essentially we are averaging the interaction 
over the distant cells: 

2 J' l(m) ""' L dRa(R) cos (mR/L), (4.13) 

where the prime signifies that the integration is over 
all space excluding a length L centered at the origin. 

We employ a potential _gye-yR for b ::::;; R ::::;; 00, 

where b is the diameter of our particles. For R < b 
we assume hard spheres: the potential is infinite 
(positive). The definition of g has been clarified in 
Sec. 1. (We have now confined ourselves exclusively to 
one dimension: v = L.) We are interested in the 
thermodynamic quantities in the limit as y -+ O. 

From Eq. 4.13 we obtain 

2g ye-
yLl2 

( m m m) l( m) = - - y cos - - - sin - , 
L y2+(m/L)2 2 L 2 

leO) = _ 2g e-yLI2. 
L 

These values follow readily from the definition of 
l( m): 

l(m) = - - dRe-yR cos-2gYlOCl mR 

L LI2 L 

="2gy [e-YR cos [(wR/L) + ml]OCl , 
L [y2 + (m/L)2i LI2 

where 
tan m = w/yL. 

Substituting limits and using the equation 

cos (x + y) = cos x cosy - sin x siny, 

we obtain lew). 
The saddle-point equation can be rewritten as 

2S 1 {21T dm 

-: = 27T Jo S, + a + (Jan + (Jl(m) 

1 {21T dm 

= 27T Jo -(Jl(O)[1 + xl + (Jl(m) , 

where we define E, x by 

S. + S = E = -(Jl(O)x. 

After a slight rearrangement we can rewrite this as 

2S. 1 1 1 
-=-------

ex 27T -(Jl(O) 1 + x 

X {27T + {2u ).(m) dm }. (4.14) 
Jo l(O)[1 + x] - lew) 

........... 
x 

FIG. 1. Behavior of saddle-point equations for small y. 2S./a. 
intersects I(x, y) at x.(y) and the dotted curve, [-,8).(0)(1 + X)]-l, 
at x,(O). 

Let us define the integral as K(x, y). In Appendix A 
we prove that for all values of x > 0, the limit of K, 
as y -+ 0, is zero. However, if x is set equal to zero, 
the integral K(x, y) blows up. Therefore, if K(x, y) is 
to be nonvanishing, x must go to zero as y -+ O. Just 
how rapidly x will do this is proven in Appendix A, 
where K is evaluated. 

We evaluate K(x, y) by placing an upper and a 
lower bound on it and discovering that as y -+ 0 the 
two bounds converge to the same limit value. 

As y -+ 0, the value of x can change in order that 
the saddle-point equation holds. 

In Fig. 1 we h.ave plotted qualitatively the mono­
tonically decreasing function I(x, y) in solid line and 
2S.Jex against x. We have made a transformation: 

S + S = - (Jl(O)x. 

For finite y, I goes to infinity at x = O. It is also 
obvious that K(x, y) is always nonnegative. By x,(y) 
and x.(O) we denote the saddle points for the two 
cases, respectively, when y is finite and when y -+ O. 
In this limit 

l(x y)-+_I_ 1 0 
, 1 + x -(Jl(O) ' x > , 

which is the dotted line in Fig. 1. 
The function S = a + (Jan + (Jl(O) for large values 

of L is about equal to a. It decreases to a minimum 
value as L decreases, and then increases to infinity as 
L decreases to a value of the order of the particle 
radius. That is, in Fig. 1, the intercept 2S/ex starts at 
-a for L = 00, rises, and then returns through -a 
on to - 00 as L goes from infinity to some quantity of 
the order of b. 

We show in Appendix B that for sufficiently large 
values of (J, the intercept - 2S/ ex crosses and rises 
above the intercept [-,8).(0)]-1. The range of L for 
which this happens we call the transition or condensa­
tion region, and we call the two points of crossing the 
transition or condensation points. When this happens, 
it is clear that x -+ 0 so that the K(x, y) function 
absorbs the difference between 2S / ex and [- (Jl(O) ]-1. 
If x is set equal to zero, K(x, y) = 00. This is obvious 
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from inspection of the denominator of the integrand 
which defines K(x, y); it vanishes as w2

• Therefore, 
the only alternative is for x -+ 0 as y -+ 0 in some way 
which keeps K(x, y) finite. The rate of x is y2 and is 
proven in Appendix A. 

Let us now review Fig. I as L goes from infinity to 
b. At infinity the two intercepts are separated. As L 
decreases, the two intercepts approach each other. 
For sufficiently small {J, they reach a minimal distance 
and then separate again. There is no phase transition. 
If, however, {J is sufficiently large, then, as L decreases, 
the intercepts cross each other; the intercept -2S/rx. 
rises above that of [-{JJ.(O)]-l. For continually 
decreasing values of L, then, the separation of the 
intercepts will reach a maximum, then decrease, 
cross each other again and recede. With L approaching 
15, -2S/rx. goes to negative infinity. 

Let us now define a critical temperature {Jc and 
critical volume Lc. For {J extremely small, there 
clearly exists no transition, and for {J extremely large, 
there is a range of L. However, between these extremes, 
there will be some {Jc, Lc such that the two intercepts 
just touch. 

5. CORRELATIONS 

We define a correlation Cjk between the number of 
molecules nj and nk situated, respectively, in the jth 
and kth cells as 

C. = (njnk ) 

'k - (n;)!(n!)!' 

where the average value of a function F is defined to be 

Since the average number of particles per cell is 1, it 
would be more appropriate to use the variable 

We obtain then 

(XjX
k

) = l-.L (21T cos (wR/L) dw 
2 27T Jo S8 + a + {Jan + (JJ.(w) 
1 1 [21T cos (wR/L) dw 

= '2 27T Jo -(JJ.(0)(1 + x) + (JJ.(w) 

1 1 1 { (21T wR 
= '2 27T -{JJ.(0)[1 + x] Jo cos L dw 

_ (21T }.(w) cos (wR/L) dw ). 
Jo -.1.(0)[1 + x] + A(w) 

The first integral vanishes, since R = nL, where n is 
an integer. We compare the second integral with 
K(x, y). If we expand the cosine function, the first 
order term gives K(x, y). Higher-order terms vanish as 
y -+ 0, since higher powers of w appear in the numer­
ator of the integrand. Therefore we write 

I· ( ) 1 1 1 K() 1m x·x = -- x . 
y .... O 'k 2 27T -{JJ.(O)[l + x] , y 

We see, therefore, that the correlation function 
(xjxk ) vanishes outside the transition region, but 
inside it takes some finite value. 

6. PRESSURE AND ISOTHERMS 

The equation of state can now be obtained from 
Eq. (4.11) by the relationp = -o1p/oL: 

p{J = .! + ~ oWo _ (J oA(O) 
L 2 oL oL 

- - - dw (J -- [S8 + a + (JA(w)] , 1 1 i21T { OA(W)/ } 
227T 0 oL 

where use of the saddle-point Eq. (4.12) has been made. 
Rewriting this equation and making use of the 

results of Appendix C, 

= _1 +!. oWo _ oA(O) + oA(O) (S - €) 
P {JL 2 oL oL oL rx. 

+ - 1 + - (S - €) (y -+ 0) 1 { 2€ - } 
2{JL rx. 

= 2;L - ~~ + [~! - (JL(L
b 

_ b) + {J~] [S ~ €} 
(6.1) 

Clearly the pressure is a continuous function at the 
transition point. The derivative of the isotherm is 

oP ___ 3_ 4g 
oL - 2{JL2 + IJ 

+ [_ 4g + b(2L - b) 
L3 {JI3(L - b)2 

- {J~2 + {J~ :~J [S ~ €] 
+ (1) [2g (l € ] 

~ L2 - (JL(L - b) + (JL 

[
2g{J b O€] 

x L2 - L(L _ b) - oL ' (6.2) 

where 

S == a - In [1 - (b/L)] - 2g{J/L. 
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We define 

~(OP) = (OP) _ (OP) . 
oL oL normal aL transition 

It is clear from Eq. (6.2) that there is a singularity only 
if there is a difference between oE/aL in the two regions. 
Clearly such quantities as 8 and o8/aL will be the 
same on both sides of the transition point. 

An equation for E and its derivatives can readily be 
obtained from the relation for the saddle point: 

~ (-8 + E) = ~ _1 __ 1_ {2'7T + K(x, y)}. 
ex 27T -,8A(O) 1 + x 

(6.3) 

For the normal region, K(x, y) - O. We take deriva­
tives of the above equation and remembering that, at 
the transition point E - 0, 

_ (aE) (8 + ,8A(O» + 8,8 aA(O) + ,8A(O) 08 = 0, 
aL normal oL aL 

(6.4) 

which determines (oE/oL) for the normal region. 
For the transition region, K(x, y) does not vanish. 

In Appendix A we have shown 

y 127T(A)! l+x y 
K(x, y) = (Ax)! tan- -; ~ A = I3 - 2L 

in the limit of y - O. A sufficiently accurate approxi­
mation to K(x, y) is 

K(x,y) = j(1 -;) tan-
1 

[);L(1 +;) 1 
since on the vapor dome x behaves as yi. We now 
calculate aK/aL as x - O. The only remaining term is 

aK(x, y) = (-t)yL ax tan-1 [~(1 + ~)] 
aL xi aL x!yL 2 

L ox 7T 
= - 2caL"2' 

where c is introduced by lim x = cyi. 
y--+O 

Using the saddle-point equation (6.3) and taking 
derivatives, as y - 0, we obtain 

_ (aE) (8 + ,8A(O» + {3A(O) as + {38 aJ..(O) 
aL trans aL aL 

exL 1 (aE) (6.5) 
= 16c {3J..(0) aL tran; 

Comparing Eqs. (6.4) and (6.5), we see that there is a 
singularity at the transition point. 

FIG. 2. A qualitative plot of E+ as a 
function of L. 

In plotting the isotherms and especially the vapor 
dome, it is instructive to plot qualitatively the curve for 
E+ in the transition region, where 

A and D are defined and discussed in Appendix D. 
We choose the positive sign, since, by inspecting E± 

for L near t'J and L - 00, we see that E+ > 0 and 
E_ < O. (See Fig. 2.) 

We now investigate the interplay of the various 
parameters in determining the critical thermodynamic 
variables and the isotherms. On the vapor dome the 
equation of state is 

P =! {2 _ 2Z + (~) [ t'J _ 2Z]} (6 6) 
vd ,8 2L L2 4Z L(L - t'J) L2 ' • 

where we have found it convenient to introduce 
Z == g,8. We note that Pvd is explicitly independent of 
ex and a. 

We may wish to prevent the pressure over a certain 
region of the vapor dome from becoming negative; in 
particular, the pressure at the critical point should be 
positive. We can accomplish this if we demand in Eq. 
(6.6) that the positive terms be larger than the negative 
ones. That is, 

1. + 1 > 2Z 
L 4Z(L - 1) L2

' 

which becomes 

P(Z) == Z2 - tZL - L2/[8(L - I)J < O. (6.7) 

Setting F(Z) = 0 and calling the solutions 2,+, 2'­
for the zeros of F(Z) , we obtain 

2, =!: ± !:(1 + _2_)1. 
± 2 2 L-l 

2'- is clearly always negative. We discard this 
possibility. Hence a plot of 2,+ indicates it has a 

minimum at L = .J'2 such that 2,+( .J'2) = 1 + .Ji 
It goes to 00, as L - 1 and L - 00. For values of 
Z below 2,+, we can always be assured that the 
pressure on the vapor dome is positive. 
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a-In (i-blLl 

~L 

FiG. 3. For a given Z, (= gP,) and IX, the text describes the manner 
in which the critical volume L, and 0, are determined. 

Let us now recall Eq. (4.14) for the vapor dome: 

S{3)..(O) = (1./2 (6.8) 
or 

( b) 2Z (1.( L) a - In 1 - L = L - 2 2Z == y(L). 

In Fig. 3 we have qualitatively plotted the function 
a - In (1 - 15/L). We can now decide on a critical 
value of the temperature Ze' We plot y(L) for this 
desired Ze for some value of (I.. The zero of y(L), Lo 
occurs at 

Lo = 2Z.(2/(I.)t. 

We now lower the curve a - In (1 - 15/L) by de­
creasing a until the curve just touches y(L) at one 
point Le. This determines ae and Le. 

Now as Z increases above the critical values, to Zl 
say, the zero Lo shifts to the right, and the curve y(L) 
rotates clockwise, both features contributing to y(L) 
intersecting the curve for the logarithm at two points 
Lg and L!, which are the gas- and liquid-phase 
transition points, respectively. We note that this 
analysis does not depend upon whether Le is less than 
or greater than Lo. 

We rewrite Eq. (4.14) for the vapor dome by defining 

~(Z, L, a) == a - In (1 _ ~) _ 2Z + ~(!:.) 
L L 2 2Z 

== a + G(Z, L). (6.9) 

Clearly, Eq. (6.8) is ~(Z, L, a) = O. 
A qualitative plot of ~(Z, L, a) for some arbitrary 

value of a and Z is given in Fig. 4. If we make this 
value of Z our critical temperature Ze, then, by varying 
a until the minimum in the curve just touches the L 

6IZ,L,a) 

v FIG. 4. By choosing a value for 
Z, (within certain bounds), we can 
determineL, (within certain bounds) 
by suitably varying the parameter a. 

FIG. 5. Qualitative plot 
of Q(L)""dll./dL to show 
that Il.(Z, L, a) has only 
a single minimum in the 
region li < L < rfJ. 

axis, we have Lmin = Le' That is, (a~/aL) = 0 gives 
Le , where 

I!(L - b) a~ = (1.13 (L - b) 
iJL 4Z 

+ (2Z - 15)L - 2Z15 == Q(L). (6.10) 

Equation (6.10) allows us to choose Ze and Le inde­
pendently. Later we see that there are regions. for a 
choice of Zc and Lc. Then Eq. (6.10) set equal to zero 
gives us a value for (I.. Finally, to determine a we need 
solve Eq. (6.9) for 

~(Ze, L c , a) = O. (6.11) 

In Fig. 5 we show a qualitative plot of Q(L). From 
Q'(L) we can determine that it will have inflection 
points at L+ and L_ , given by 

L± = t15{1 ± [1 + (12Z/(l.152)(15 - 2Z)]!}. 

Let us normalize by setting 15 = 1. We note that 
Q(1) = -1, Q(O) = -2Ze. Further, 

Q'(L) = «(l.L/4Z)(3L - 2) - (1 - 2Z), 

where henceforth Z means Ze' We are interested only 
in the region L > 1. We distinguish the two cases: 

(A) (1 - 2Z) ~ 0, (B) (I - 2Z) > o. 

Case A: Q'(L) is always positive (L > 1), and hence 
the slope of Q is always positive. Q(1) = -1 and 
hence Q steadily increases as L increases. There is only 
one root of Q(L) = 0 and, hence, of ~'(L) = 0 in the 
range L > 1. 

Case B: Here L± can be unbounded. We observe 
that Q' (0) = - (1 - 2Z) < O. [Recall that Q(O) = 
-2Z> -1.] L_ is negative. The Q curve must pass 
through Q(I) = -1. Either L+ ::::; 1 or L+ ~ 1; in 
either case, again there is only one root of Q(L) and 
hence of ~'(L). 

We conclude that ~(L) has only one extremum 
point in the range 15 ~ L < 00. The other two roots 
of Q (and hence ~/) may be real or complex, depending 
upon whether the left side of the curve intersects the 
L axis. This point is of no further interest to us. 
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Once a and (X are determined for some value of Lc 
and Zc, then from Fig. 4 we see that, by increasing Z, 
a(Z, L, a) descends, intersecting smaller and larger 
values of L for the vapor dome. Clearly, then, Lc can 
take on values greater than or less than Lo. 

We now inspect our equations to determine what 
values are available for the critical temperature and 
critical volume. As we shall see, there is a certain 
region in which we have complete freedom, but we 
may not move outside. In the remainder of this 
section all values of Land Z refer to critical values 
Lc and Zc, respectively. Frequently we find it conven­
ient to substitute Z = g{3 (again, these are critical 
values). 

Let us set Eq. (6.10) equal to zero to obtain the 
critical volume Lc. From this equation, as a condition 
that (X > 0 we obtain 

2Z < L/(L - 1) == W(L). (6.12) 

This curve W == L/(L - 1) then fixes a boundary for 
allowed values of 2Z. 

2,+ has been discussed previously. 2,+ can intersect 
W(L) at only one point, L = t. By considering its 

derivative, 2,+ has a minimum at L = .fi when it lies 
below W(L); it then rises, but always lies below the 
curve W(L) as L -+ 1. 

For a given value of (x, Eq. (6.10) gives the relation­
ship between Z and L when a'(Zc, Lc , a) = O. The 
quadratic equation gives 

2Z = L ± L[1 - 2(X(L - 1)2]i 
± 2(L - 1) 

To keep Z± real, L ~ L1 == 1 + (2(X)-i. This sets the 
"right-hand" boundary to values of L. 2Z± are drawn 
in Fig. 6. 

For a finite (X > 0, 2Z+ clearly always lies below 
W(L); as (X -+ 0, 2Z+ -+ W(L). 2Z+ always lies above 
2,+ until it intersects it, after which it always lies 
below. The point of intersection results from simply 
setting 2Z+ = 2,+ to obtain the cubic equation 

13«(X2 + 2(X) + 31 - 2 = 0, 

where 1 = L - 1. This equation clearly has only one 
real root.9 For (X = 0 this point of intersection is at 
L = j.. At L1, 2Z+ meets the curve a(X)iL for the 
first time and takes the value! W(L1)' 

The allowed values of 2Z+ then lie in this region 
from the intersection of 2Z+ with 2,+(L2) to the 
joining with (t(X)iL at L 1 • Now as (X increases, the 
point of intersection (L2) moves to the left as L1 moves 

• V. I. Smirnov, A Course of Higher Mathematics (Pergamon 
Press, Inc., New York, 1964), Vol. I, p. 491. 

L 

FIG. 6. Qualitative plot of 2,+, W = L,/(L, - I}, W/2 as func­
tions of L,. 2Z, (for 2ZC+ and 2Z,_) is plotted against L, for three 
values of ex. W intersects 2'+ at L, = ~ where the two functions take 
the common value t. W/2, 2,+, and 2Z,± for ex = 8 intersect at a 
common point for L, = £, at which the value of the three functions is 
t. The minimum in 2,+ occurs at L, = v2: such that 2,+(V2} = 
1 + vi Shaded region is allowed values of 2Z,. (The subscript has 
purposely been omitted on La in the drawing.) 

to the left. This intersection point sweeps a lower 
range to 2Z+, namely, the curve W/2. At (X = 8, 
L1 = L2 = t. This can be seen by simply solving 

2Z+ = L = 2'+, for L = 1 + (2(X)-i. 
2(L - 1) 

2Z_ always lies below (t(X)iL (1 ~ L ~ L1), except 
for the single point L = L1' where they intersect. 
2Z_ starts at L = 1 with slope !(X. Its derivative can 
never vanish and is initially positive at L = 1; there­
fore, 2Z_ is always positive and intersects (t(X)iL only 
at L1 where it takes the value W/2. As (X -+ 0, 2Z_ -+ 

0+. When (X = 8, 2Z_ intersects both 2,+ and W/2 at 
L = t. For larger values of (x, we investigate the 
Taylor series expansion for W/2 and 2,+ near L = t 
(see Fig. 6): 

W L 
-

2 2(L - 1) 

= % - 8(L - t) + 32(L - ~l + ... , 
2,+ = t - teL - t) + .... 

And hence W/2 rises above 2,+ as L -+ 1. There is no 
other point of intersection for these two curves. Con­
trary to the case now for 2Z+ ' ex. can continue to higher 
values. As 2Z_ moves steeper and steeper, it first 
cuts across 2,+ and then W/2. All values of 2Z_ 
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p 

1.4 

whether one must vary Z+ or Z_. By changing \/. 
one can force either Z+ or Z_ to pass through the 
selected point. Then, with this value of \/., a can be 
determined from Eq. (6.11). 

_.4L-----...L....-------':---------!---rL 

FIG. 7. P-L isotherms for 4 values of the (inverse) temperature. 
Lc = t, Zc = 1.0, ex = 0.720, a = -0.01629067. flc is the critical 
temperature. The dots on the isotherms locate the transition 
points. 

below 2~+ are allowed. As \/. -+ 00, 2Z_ climbs steeper, 
but 2~+ -+ 00 as L -+ 1 so that there is no bound upon 
2Z_ . 2Z+ now clearly lies outside the region. 

The description of the boundary for Zc as a function 
of La is complete. The lower bound is zero. The upper 
bound is n+ for the range 1 S L s!; then the 
curve W(L) takes over for! S L S Ll == 1 + (2\/.)-!. 
At Ll there arises a "right-hand" boundary which 
forbids larger values of L. In the allowed region the 
curve 2Z+ and 2Z_ then relates Zc to Lc. In Fig. 6 
those values are allowed for which 2Z lies in the 
shaded region. 

From Fig. 6 one can assign initially an arbitrary 
value of Zc and Lc as long as the pair of values lies 
within the bounded region. Depending upon whether 
this value lies above or below the curve, W/2 determines 

We can obtain a qualitative idea of how a must 
vary as the parameters change. On the vapor dome 
and in particular at the critical point, Eq. (6.9) 
vanishes. Solving for 2Z~, we obtain 

2Z~ == 20+ 

= L[a - In (1 - L-1
)] 

+ L{[a - In (1 - L-l)]2 + f\/.}!. 

We see that if L is kept fixed, then 0+ increases if either 
\/. or a increases. But the curve 2Z+ decreases as \/. 
increases and hence a must decrease in order to 
compensate. 

In Fig. 7 we plot a few isotherms for the values 
Lc =!, Zc = 1. We have set 0 = g = 1. Then 
\/. = 0.720, a = -0.0162. The sharp discontinuity in 
oP/oL is evident at the liquid transition point. At 
the gas transition point we use the computer data to 
calculate the discontinuity and we find it to be re­
markably sharp. For example, for fJ = 1.20, 

(OP) = 0:13990 - 0.13965 = 005 
(}L 2 phase 2.8450 - 2.8400 ., 

(OP) = 0.13991 - 0.13992 = -0.0002. 
oL 1 phase 2.90 - 2.85 

For (3 = 1.5, 

(OP) = 0.07864 - 0.07862 = 004 
oL 2phase 3.9935 - 3.9930 ., 

(OP) = 0.07865 - 0.07865 ~ 0 
oL I phase 3.9945 - 3.9940 . 

We are plagued with Maxwell loops, negative pres­
sures, and with the pressure not decreasing with de­
creasing temperature in the two-phase region. Nor is 
the vapor dome decreasing as one moves toward the 
liquid side of the critical point. 

APPENDIX A 
1. Preliminary Discussion 

As we see further on in our analysis, K(x, y) 
always vanishes in the limit as y -+ 0, for x finite. The 
only way to keep K(x, y) finite is to allow x to go to 
zero with y: 

( w w.W)d y y cos - - - Sill - W 
(2" 2 L 2 

K(x,y) ==1< 2 (AI) 

o (1 + X{y2 + (i)] - Y(YCoS~ - iSin~) 
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The important terms are the first-order terms in the expansion of the numerator; the higher-order terms, 
because of the contribution of a term of w4 or higher, clearly vanish as y ---+ o. Call K' these first-order terms, 
so that 

yw2 
y2 __ dw 

[b 2L 
K'(x, y) == J 2 

o [1 + XJ[y2 + (~) ] - y(y cos ~ - ~ sin~) 
== K~ - K~. 

We now show that even for x = 0, one of these terms, K;, vanishes as y ---+ 0: 

K; == L f" W
2
/[y2 + (W/L)2] dw . 

2L 0 [1 + x] - {y j[y2 + (~)]}(y cos ~ - ~ sin~) 
Since x ~ 0, 

since in the range w = [0,277], for sufficiently small y, 

1 

w w. wi w
2 

Y cos - - - sm - < y + -
2 L 2 - 2L' 

(A3) 

Therefore, 

1[1 + x] - {yj[y2 + (irJ}(YCOS~ - iSin~)1 
> [1 + x] _ y2 + (yw

2
/2L). (A4) 

- y2 + (W/L)2 

Therefore, Eq. (A2) becomes, upon replacing the 
denominator by Eq. (A4), 

IK;I s ;Lf." [.!. ~"L ] ~O. 
L2 2L 

Finally, we are left with K~ as the only important part 
of K(x, y). 

2. Rate x-+-O in the Transition Region 

We now evaluate K~ (x, y) as y ---+ 0 in the transition 
region. We shall see that x behaves as y2. We evaluate 
K~ rigorously. We do this by showing that K~ is 
bounded from above and from below. In the limit as 

(A2) 

y ---+ 0 the two bounds converge to the same value. 
Before starting, we might note that it is at w = 0 that 
the integral can blow up. 

We now obtain this value of K(x, y). We set the 
upper bound by using Eq. (A4): 

where 

A == [(1 + x)/E] - (y/2L). 

We see that, to prevent K~ from vanishing, 

x "',yH, n ~ 2. (A5) 

We now set a lower bound to K~(x, y). Clearly, be­
cause of Eq. (A3), the following relation is valid: 

[1 + x] - ycos- - -sm- > O. y ( w w. W) 
y2 + (W/L)2 2 L 2-

Let us now construct the following function: 

2 2[1 + x y2 YJ F( OJ) == Y x + w -- + - + -
L2 8 2L 

- [y2 + (i)][1 + x] 

+ y y cos - - - sm - . ( 
w w.W) 
2 L 2 

We note that F(O) = F'(O) = O. We now show that 
over a reasonably finite range of w (w < 2), F( w) is 
always nonnegative: 

F(w) ~ 0, w < 2. 



                                                                                                                                    

1552 JOSEPH L. STRECKER 

.We proceed to expand F(w) in power series, so that 

F(w) = YJ/-1t+l(~r+T(2n: 2)! + (2n2~ l)J 
We separate the expansion into two parts: 

-- I - + F(w) (w)2n+2[ I' 2/L ] 
I' - n=l,3,5'" 2 (2n + 2)1 (2n + 1)! 

odd 

(
w)2n+2[ I' 2/L ] 

- n2~4,6 "2 (2n + 2)1 + (2n + 1)! ' 
even 

(
w)2n+2{ [I' 2/ L ] 

= n2~3'6 "2 (2n + 2)1 + (2n + 1)1 
odd 

- (~)T(2n : 4)! + (2n2~ 3)J}· 
Clearly F(w) ~ 0 for (w/2) < 1. 

The equivalent statement is 

y2x + w2[1 + x + 1'2 + L] 
L2 8 2L 

~ [1'2 + (~)][1 + x] 

( 
w w. w) 

- I' I' cos "2 - L sm"2 ' w < 2. 

Since both sides of the inequality are nonnegative, we 
can dispense with absolute value signs. Then 

(2" 1'2 dw 
K~(x, 1') ~ Jo y2x + w2[(1 + x)/L2 + 11'2 + y/2L] 

1'2 (2" dw I' _127T(B)! 
= B Jo (y2x/B) + w2 = (Bx)! tan y ~ , 

where the definition of B is clear. 
To prevent the blow-up of K~, x "-' yn, n S 2. 

From the previous relation [Eq. (A5)], we conclude 
that x "-' 1'2. B --+ A as I' --+ 0, and we see that the 
upper and lower bounds converge to the same value. 

We might note that it is possible for K~(x, y) to 
vanish as is necessary on the "vapor dome." Here 
then, x cannot go as 1'2. This means x = yn, n < 2. 

3. Rate x -+ 0 on the Vapor Dome 

We wish to calculate the rate x --+ 0 on the vapor 
dome. This is the point where the phase transition 
just sets in: K(x, y) --+ 0 as the two asymptotes just 
touch. 

The equation of the saddle point is 

2S. 1 II)} - = - -- -- {27T + K(x, y , 
ex 27T - fJ),(O) 1 + x 

where now 
lim K(x, y) = O. 
1-+0 

Substituting in the values expanded to first order in 
y, we have 

~[_ I (L - tJ) + fJgy + 2gfJ _ 2gfJ yL + 2gfJ x] 
ex a+n L 2 L L 2 L 

L L yL L L 1 y 7T (A6) 
= 2gfJ + 2gfJ "2 - 2gfJ x + 2gfJ 27T (Ax)! "2 ' 

where K(x, y) is replaced by its limiting value 

y _127T(A)! I' 7T 
lim K(x, y) = --! tan - - = (A )! -2 . 
1-+0 (Ax) Y x x 

Now on the vapor dome as y -+ 0, x -+ 0 and 
K(x, y) -+ O. Therefore, those terms on both sides of 
Eq. (A6) which are independent of yare equal. We 
have 

~[fJgy _ 2gfJ yL + 2gfJ x] 
ex 2 L 2 L 

L yL L L 1 Y =----x+----!. 
2gfJ 2 2gfJ 2gfJ 4 (Ax) 

For brevity we write 

Bx = Cy + Dy/x!, 

where B, C, D are obvious from the previous equation. 
Now for y/x! to vanish, x = 1'2(1-£>, 0 < E < 1. 
Therefore, our equation becomes 

By2(1-') = Cy + Dy·. 

y' is the leading term on the right: 

By2(1-£) = Dy', 

2(1 - E) = E, 

E = t, x~ yf. 

On the vapor dome x "-' yf. 

APPENDIX B 

In this appendix we demonstrate that for sufficiently 
large fJ the curve 2S./ex crosses above the curve 
[- fJJ. (0)]-1 (1 + X)-l at x = 0 in the limit y -+ O. 
The significance of this result is that the quantity 
K(x, y) cannot vanish, but must take on the proper 
value in order to satisfy the saddle-point equation. 
The range of values of L for which 

_2S~_1_ 
ex -fJ)'(O) 

(Bl) 

we call the transition or condensation region. 
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Fro. 8. Region of integra­
tion for calculation of Ill i • 

The cross-hatched region is 
bounded above by the curve 
X2 - Xl =15 and below by 
Xl - X. =15. The cross­
hatched region is excluded 
from the integration. 

We need to calculate {Jan. From its definition we 
have 

~l == exp [-2{Jan] = h f dxlf dX2 exp [-(JW(12)]. 

(B2) 

Since exp [-(3W(12)] =0 for IXl-x21::;;b, the 
contribution to ~l from the cross-hatched region in 
Fig. 8 vanishes. If we call the remaining region Rl , 

then 

~l = \ ( dxlfdX2 exp [{3gye-yR], R = IXl - x21· 
~ JRl 

We expand the exponential in the integrand: 

~l = \ ( dxl fdX2 ~ JRl 
X {1 + {3gye-yR + ({3~~)2 e-2yR + .. J 

The first term in the expansion is simply the area of 
Rl : 

2[(L/2) - 15]2 + 2(L/2)2 - 152 == (L - 15)2. 

We are interested, as y -+ O. The remaining terms 
vanish in this limit, since 

We conclude with 

~ = (L - 15)2 + 19( ) 
1 {f Y 

(
L 15)2 = ~ [1 + (Jgy] + 19(y2). (B3) 

We now find the conditions sufficient for the 
validity of the relationship in Eq. (Bl). By making use 
of the definition of S, Eqs. (B2) and (B3), we have 

[ ( b)] a-In 1--
[1.(0)]2 + 1.(0) L > ~ 1-. (B4) 

{J - 2 (J2 

Since A(O) is independent of {J, Eq. (B4) can be 
satisfied by sufficiently large {J. 

APPENDIX C 

These calculations allow us to simplify the expres­
sion for the pressure equation (6.1). 

Consider the integral 

I: == (2" [oA(w)/oL] - [oA(O)/oL] dw 
Jo S. + a + (JA(w) 

= (2" [oF(w)/oL] dw, 
Jo € + (3F(w) 

(e1) 

where we define a function 

F(w) == A(w) - 1.(0) == A(w) - A(O). 

We calculate 

of = _ (!. + l)F(W) + A(w)(2/L)(w/L)2 
oL L 2 y2 + (W/L)2 

2g e-yLl2y w. w 
- - -sm-. (C2) 

L y2 + (w/L)2 L2 2 

Placing Eq. (C2) into Eq. (Cl), we can easily show 
that the contributions to the integral from the second 
and third terms of (C2) vanish as y -+ O. Proof is as 
follows: 

f
2" w2,1(W)/[y2 + (W/L)2] 

~~~~~.:..:....!...:~dw 

o € + (3F(w) 

(2" {W2/[y2 + (w/L)2]) 
::;; Jo X {[y2 + (yw2/2L)]/[y2 + (W/L)2]) d 

1 _ [y2 + (yw2/2L)]/[l + (W/L)2] w, 

where the inequalities (A3) and (A4) have been used. 
The right-hand side of the last equation is equal to 

~....:........!~"-- dw-+O. L2 f2" y2 + yw2/2L 
1 - !yL 0 y2 + (w/L)2 

The last integral is 

y (2" (w/~){sin (w/2)/[y2 + (W/L)2]) dw 

Jo € + (JF(w) 

f 2" W2/[y2 + (W/L)2] 
"-' Y dw, 

o E + (3F(w) 

using inequalities (A4). This integral behaves as K~ in 
Eq. (A2). 

Therefore, I: becomes 

I: = _ (~ + r) (2" F(w) dw + 19(y). 
L 2 Jo € + (JF( w) 
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By simple division of the integrands, we obtain 

C----+- 1- ~ 1 ( 1 Y) i27 [ € ] 

{3 L 2 0 € + {3F(w) 

= - ~(i +~) [27T - €(4:S_) 1 
using the saddle-point equation 

APPENDIX D. BERA VIOR OF £+ 

The definition of €+ arises from Eq. (6.3) by setting 
K=O: 

2€± = 8 + {3A(O) ± {[8 + {3A(O)]2 - 4[8{3A(O) -lex]}! 

== A ± (A2 - D)!. 

That we must choose the plus sign is clear from 
inspection of the limits when L -+ 15 and L -+ 00. 

If L ~ 15, the significant term is {3an . Then 

A == 8 + {3A(O) ~ -In (1 - btL) -+ 00, L -+ 15, 

(D/4) == 8{3A(O) - lex ~ {32anA(O) -+ - 00, L -+ 15, 

and clearly the positive sign must be chosen. 
If L -+ 00, then 

A~a, 

D ~ -ex/2, 

and clearly the positive sign must be chosen again. 
We now investigate the behavior of €+ in the 

transition region. We use Eq. (6.3) and set 

28 __ 1_(1 + .!f.) 
ex - {3A(O) 27T ' 

~ = ex/2 (1 + K) + {3A(O) < 0 
{3A(O) 27T - , 

D/4 = (exK/47T) ~ O. 

We see that €+ is negative in the transition region. A 
qualitative plot is given in Fig. 2. 
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