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An elementary method of calculating that part of the tensor dielectric coefficient which determines the
propagation of transverse electromagnetic radiation through a free-electron gas in a uniform external
magnetic field is presented. The method presented here is based on a particle-orbit analysis and is some-
what analogous to a generalized version of the Kramers-Heisenberg quantum theory of gaseous dis-
persion. It is shown that the elements of the transverse dielectric tensor can be obtained from a knowledge
of the quantum-mechanical transition probabilities for emission and absorption of photons (that is, from
a knowledge of the Einstein 4 and B coefficients). The formal expression for the dielectric tensor thus
obtained is shown to be valid for both the degenerate and the nondegenerate system of electrons. The
dielectric tensor thus obtained is shown to reduce in the classical limit to the familiar results of the
conventional classical hot plasma kinetic theory. The first quantum correction to the classical hot plasma
dielectric tensor is explicitly given and it is shown that, under suitable conditions, this quantum correction
will play a significant role in the analysis of the experimental studies of the electrodynamic behavior of
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“classical electron-hole plasmas” in a uniform external magnetic field.

1. INTRODUCTION

In this paper we are interested in discussing the
electrodynamic properties of a free-electron gas in a
uniform external magnetic field. In particular, it is our
aim to investigate the response of the system to
transverse electromagnetic radiations. We shall use
the solutions for the particle orbits as the basis for
our discussion. In the literature!™* there exists an
alternative method of handling this problem. There
one seeks a kinetic description of the system onthe
basis of the Vlasov or collisionless Boltzmann equa-
tion. The equivalence of the particle-orbit theory and
the kinetic description on the basis of the Vlasov
equation was first demonstrated by Jeans and is
usually referred to as the Jeans theorem. In general,
the particle-orbit theory is much more of a physical
approach and provides a better insight into the physi-
cal processes involved in a particular problem. How-
ever, the kinetic description on the basis of the Vlasov
equation provides a much more rigorous treatment of
complex problems which may not be easily accessible
to the analysis of the particle-orbit theory.

In electrodynamics the basic quantity for the
description of the collective response of a system is
the retarded frequency and wave-vector-dependent

1 I. E. Drummond, Plasma Physics (McGraw-Hill Book Company,
Inc., New York, 1961), Chap. 2; D. C. Kelly, Phys. Rev. 134A, 641
(1964); J. J. Quinn and S. Rodriguez, ibid. 128, 2487 {(1962); 1. B.
Bernstein, ibid. 109, 10 (1958); E. N. Adams and T. D. Holstein, J.
Phys. Chem. Solids 10, 254 (1959); N. I, Horing, Ann. Phys. (N.Y.)
31, 1 (1965); W. R. Chappel, JILA Report No. 35 (University of
Colorado, Ph.D. Thesis, 1965).

? G. Bekefi, Radiation Processes In Plasmas (John Wiley & Sons,
Inc., New York, 1966).

3 T. H. Stix, The Theory of Plasma Waves (McGraw-Hill Book
Company, Inc., New York, 1962).

¢ D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory
{McGraw-Hill Book Company, Inc., New York, 1964).

dielectric tensor D(w, k). Here w is the frequency of
the electromagnetic wave of wave vector k. In prin-
ciple, both methods—the kinetic description based on
the Vlasov equation and the particle-orbit theory—
enable one to calculate the response tensor D(w, k).
In this paper we shall be interested in that part of the
dielectric tensor which determines the propagation of
transverse electromagnetic radiations through the
free-electron gas in a uniform external magnetic field.

In the kinetic theory approach one starts from the
Vlasov equation which describes the time evolution
of the particle velocity distribution function (or one
starts from the Liouville theorem, which describes the
time evolution of the single-particle density matrix).
As a first step one seeks a linearized perturbation
solution of the Vlasov equation (or of the equation of
motion for the density matrix) in the presence of both
the external uniform magnetic field and the radiation
field. The uniform magnetic field determines the zero-
order trajectory (or the unperturbed Hamiltonian and
the corresponding zero-order eigenvalues and eigen-
states) of the charged particles. In a coordinate system
which follows the zero-order trajectory of the particles,
usually referred to as the Lagrangian system of
coordinates, one calculates the first-order perturba-
tion to the particle velocity distribution function (or, in
the representation in which the unperturbed Hamil-
tonian is diagonal, one calculates the first-order
perturbation to the density matrix). Knowing the
first-order perturbed-velocity distribution function (or
the density matrix) in terms of the perturbing radiation
field, one then calculates the induced macroscopic
current density by taking the first moment of the
perturbed-velocity distribution function (or by taking
the trace of the product of the density matrix and the
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unperturbed current-density operator). This induced
macroscopic current density yields directly the con-
ductivity or the mobility tensor, which, in turn, yields
directly the required dielectric tensor D(w, k).

The particle-orbit theory to be presented below is
somewhat analogous to (a generalized version of) the
Kramers—Heisenberg®® quantum theory of gaseous
dispersion. The underlying physical principle behind
the Kramers-Heisenberg method is that the dispersive
properties of a gas of atoms are simply a manifestation
of a balance between the two competing processes of
photon emission (spontaneous plus induced or
stimulated emission) and photon absorption by the
atoms of the gas. It is our aim in this paper to show
that the response of a system of “Landau electrons”
to transverse electromagnetic radiations is indeed a
consequence of such a balance between photon
emission and photon absorption.

We will begin by assuming Landau’s quantized
particle motion of the electrons in a uniform magnetic
field”; then we calculate the transition probabilities
for emission (spontaneous plus the induced emission)
and absorption of a photon of momentum 7k,
energy hw, and polarization vector €, by a “Landau
electron.” From these we then derive the energy-
balance equation by applying the principle of detailed
balance for a differential path length along the photon’s
trajectory in the free-electron gas. We then seek the
solution of this energy-balance equation and thus
derive equations for the equilibrium photon-number
density and the absorption coefficient per unit path
length of a photon of definite momentum 7k, energy
hw, and polarization vector €,,. We then examine the
angular dependence of the absorption coefficient
7(w, k) and thus construct an absorption tensor
74;(w, k). We then show that the Hermitian part of the
absorption tensor t(w, k) is directly proportional to
the anti-Hermitian part of the transverse dielectric
tensor D(w, k). We then obtain the transverse di-
electric tensor D(w, k) by making use of the fact that
the real and imaginary parts of D,;(«w, k) must satisfy
the well-known Kramers—Kronig relations as a con-
sequence of the causality principle.® It will be seen that

® H. G. Kuhn, F.R.S., Aromic Spectra (Academic Press Inc.,
New York, 1962), pp. 59-68.

¢ H. A. Kramers, Nature 113, 673 (1924); 114, 310 (1924);
G. Breit, ibid. 114, 310 (1924).

? L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1958);
V. Arunasalam, Princeton Plasma Physics Laboratory MATT-439,
1966 (unpublished).

8 C. Kittel, Elementary Statistical Physics (John Wiley & Sons,
Inc., New York, 1958); N. N. Bogoliubov and D. V. Shirkov,
Introduction to the Theory of Quantized Fields, English transl. by G.
M. Volkoff (Interscience Publishers, Inc., New York, 1959), Sec.
46.2.
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the formal expression for D;;{(w, k) thus obtained is
valid for both the degenerate and the nondegenerate
system of electrons. That is, the formal expression for
D (w, k) is unaffected, whether or not one takes
account of the Pauli exclusion principle, as long as one
uses the appropriate distribution function of the
electrons (Fermi-Dirac statistics for a degenerate
system of electrons and Maxwell-Boltzmann statistics
for a nondegenerate system of electrons). Finally, we
will show that the classical limit of the dielectric tensor
D,;(w, k) thus obtained is in complete agreement with
the familiar results of the conventional classical hot
plasma Kkinetic theory (whose starting point is the
Vlasov equation), and we will give the first quantum
correction to the classical hot plasma dielectric tensor.
It will be seen that this quantum correction should
prove useful (under some conditions) in examining the
electrodynamic behavior of “classical electron-hole
plasmas” in a uniform external magnetic field.

II. REVIEW OF BASIC CONCEPTS

We consider the motion of a free electron of charge
g and mass g in a uniform magnetic field B = Bi,,
where i, denotes the unit vector along the « axis. (See
Fig. 1.) Let

R = xi, + yi, + 70, = r + zi,, (1)
V=uoji,+oi+vi=v+uvi

be the position and velocity vectors of the electron.

One can show that the energy-level spectrum of the

electron is given by’

E,p, = (n + Dho, + $uol, ©))

where n=10,1,2, -+, o and w, = (¢B/uc) is the
electron-cyclotron frequency. The nonzero matrix
elements of the perpendicular velocity and position

YA
B=81; ‘ZT
£ks k

Fic. 1. Motion of

an electron in Car- R
tesian coordinates. [aad
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operators are given by

. . *
vmn,n—l = (vmn—l.n)* = —lvﬂn.n—l = (lvvn—l.n)

= (hoy2p)intei%n, (3a)
xn,'n—l = (xn—l,n)* = _iyn,n—l = (iyn—l,n)*
= —i(h/2ywb)%n%e_i¢", (3b)

where ¢, is an arbitrary phase factor and the asterisk
means the complex conjugate. The matrix elements of
exi®:# are given by

<U;l eiik,z lvz> = 6v,‘,vz:|:hk,/;_t' (4)

The photon-electron interaction Hamiltonian that is
responsible for transitions in which only one light

quantum is involved is given by
= —i[A- (v—iﬁ—a—iz) + (v—- i—hiiz) -A:I,
2 u 0z u 0z
©)

where the vector potential A(R) for the radiation field
in a box of volume L? can be written in terms of the
usual creation and annihilation operators as®0

2kt KR * 4 kR
AR) = 2 Bo 21: 2(eksakse + €.5a5€ ), (6)
K s=1,

where k- €, =0 and |e,|> = 1. According to the
golden rule of time-dependent perturbation theory,
the transition probability j(f; i) from an initial state
i) of energy E; to a final state | /) of energy E; is given
by®

Jfs D)= QalB) K(fI HIDPOE, — E).  (T)

We now consider the two fundamental processes of
absorption j, and emission jg illustrated in Fig. 2.

From Egs. (1), (2), and (4)—(7) we get

4772q2 2
4= Nl —=—) |(n + I €, - M [n)|"6, .,
Ja 3 (Lahw) | | € | RS
X Ofw — lw, — k,(v, + Ak, [2u)],
, 47'1'2q2 * T 2
Je =N+ D) Knl€s M [n+DI%0, - o1 iy
Lhw
X 6[60 - lwb - kz(vz + hkzlzﬂ)]’ (8)
(N y¢-11photons

[ ¢
n+l,y
z

Nys photons

Ny +1) photons G "

En,vz
Fig. 2. Emission and absorption of a photon by a “Landau
electron.”

® W. Heitler, The Quantum Theory of Radiation (Clarendon Press,
Oxford, England, 1954).

10 L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Company,
Inc., New York, 1955).
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where

M = [H(e™V + ve™) + i,(v, + fik,[2u)e"]. (9)

M! is the Hermitian conjugate of M and is simply
obtained by replacing i by —i in the above expression
for M since the perpendicular velocity and position
operators v and r are Hermitian and N, represents
the number of light quanta all having a momentum
Pk, energy fiw, and polarization vector €. To evaluate
the matrix elements of M and M! we can use the
simplest form of the multipole expansion

gHkT E:o(l/s!){:ti(kmx + k)l

- 2(1/s!){:bi(k+r_ + ko)), (10)

where k, = 2Nk, + ik,) and r, = 2 })(x + iy)
and the nonzero matrix elements of r, and r_ are given
by

Py =, V¥ = i(h/‘uwb)énée“’".

(11)
111. THEORY OF THE DIELECTRIC TENSOR

Our aim now is to derive the energy-balance equa-
tion. Let the box of volume L3 under consideration
contain NoF(E, ,) electrons per unit volume in the
quantum state |E,, , ). We assume that the probability
function F(E, , ) is normalized so that

f dv, 2‘, F(E,,) = 1. (12)

The detailed balance relation between the probabilities
per unit volume of emission and absorption for a
differential path length dy of a photon of momentum
fk, energy hw = Ailow, (where the cyclotron harmonic
number / may take any one of the values'! 0, +1,
+2,--+, +0), and polarization vector €,, may be
written as

(- 5
x EO[F(EW,)J'E — F(E,,)js (13)

This equation (13) is usually referred to as the energy-
balance equation or as the equation of energy trans-
fer.1%13 Since j, and j, are proportional to (N, + 1)

11 The emission and absorption corresponding to /=0 are
essentially the Cerenkov emission and absorption processes. The
positive values (that is, /= 41, 42, -, 4+ o0) and the negative
values (thatis, / = —1, —2, -+ -, — o) of / correspond to emission
and absorption of circularly polarized plane electromagnetic waves
(or photons) whose sense of rotation is the same as and opposite to
that of the gyrating electrons, respectively.

12 §. Chandrasekhar, Stellar Structure (Dover Publications, Inc.,
New York, 1957).

13 G. Bekefi and S. C. Brown, Am. J. Phys. 29, 404 (1961).
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and N,,, respectively, the solution of Eq. (13) for a
uniform homogeneous system is

(0]
Nks — Nl(cg)[l — e ((o,k)x]

(14
if we assume that Ny, = 0 at y = 0. Here,

N,
wlk

) do, ilF(En,v,x;A/Nks)

— F(Epi1,0,)JE/Nis + D] (15)

is the absorption coefficient per unit path length for a
photon of momentum #k, energy /iw ~ lhw,, and
polarization vector €, and

it = [ (o) [

X 3 F(Enero W inlNos + 1)] / e, k) (16)

o, k) = (

is the number of photons at steady state. Since the
absorption coefficient 7¥(w, k) is real, by making use
of Egs. (8) and (9), Eq. (15) could be written in the
form

0, k) = ZZRG 73 (0, D)(Ee);), (17)

where i, j = x, y, and z; Re stands for the real part,
and

X i;{[F(En,v,) - F(En+l,v,+hk,/u)]
X H(”(S[w - lwb z(vz + hkzlzlu)]}s
(18)
where
I = (] M{ |n + DI + 1| M, )] (19)

In deriving the above expression for 7{!'(w, k) we have
used the convention |Z|? = [Z*][Z] for any complex
number Z.

It is relatively easy to show that (after Fourier
analysis in space and time) Maxwell’s electromagnetic
field equations for plane waves of the form

ER, ) = g, exp [i(k: R — wt)]
in a medium of dielectric tensor D(w, k) give®?
k x (k X ;) + (0¥c?D - ¢, =0. (20)

Letting k = Re k + i Im k and setting k « €,, = 0 for
transverse electromagnetic waves, from Eq. (20) we

V. ARUNASALAM

obtain

2Imk = (w¥/c?Re k) Im [e}, - D-€,]. (21)

Since E(R, ) = ¢, exp [i(k+R — wt)], we get the
absorption coefficient per unit path length 7(w, k) for
a primary electromagnetic beam of wave vector k,
frequency w, and polarization €,:

(0, k) = 2Imk
= (@*/c* Re k) 3 3 Im [Dy(e5)er); )

We now write
Dii = 51':' + Z Dz‘j),

(22)

(23)

where D¥(w, k) is the retarded frequency and wave-
vector-dependent dielectric tensor appropriate for the
description of the collective response of the system
under study to transverse electromagnetic radiation of
wave vector k and frequency w ~ lw, (where / may
take any one of the values 0, £1, £2, -, £ ).
From Egs. (17), (22), and (23) we get the following
identity:

3 3 Re [ (een),]
= (@' Re ) 3 3 Im (DY) 6] (24)

for all values of i, j = x, y, and z. Hence

(201 [D% — D] = (})(e* Re kfa)[x® + 704,

(25)
where D+ and T+ are the Hermitian conjugates of
D™ and =, respectively. Thus, from Eq. (18), we

obtain the retarded frequency and wave-vector-
dependent dielectric tensor

2
D(w, k) = lim ("w‘;) f dv,

y=>+0\ AW
2 [F(Entvoprnngin) — F(Eno )Y
a0 — lo, — kv, + bk, [2u) + iy’
(26)
where
w} = (4wNog"[p), @7

and we have used the symbolic identity

1
kv, + ik [2u) + iy

lim
y+0 0 — lw, —

- {p 1
w — lwb - kz(vz + ﬁkzlzfu)
— indlw — lo, — kv, + hk,/zml}, 28)
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where P denotes the principal value. It is clear from
this symbolic identity that the real and imaginary
parts of D¥P(w,k) will satisfy the well-known
Kramers—Kronig relations® in accordance with the
causality principle (which states that the effect should
not precede the cause). Equations (23) and (26)
complete our formal theory of the transverse di-
electric tensor for a free-electron gas in a uniform
external magnetic field.

IV. COMPARISON WITH THE CLASSICAL
HOT PLASMA THEORY

It is physically instructive to compare the classical
limit of the dielectric tensor thus obtained with the
familiar results of the conventional hot plasma
theory.2~4 We may do this with the aid of the following
relations:

= (n + Phoy — E, = ',
F(En,e:,) g F(E_L H vz)’

S FEw 1> [CdEFEL o) ]

=jw27v dof(v, v)[ 1,
0

[F(En+l,v,+hk,/u) - F(En,v,)]
0 hk, 0
— | lh —:—|F(E,,
l:wbaEl+/ta:|(lv)

Q22
u/Lv o

where E, = uv?/2 is the kinetic energy of the electrons
in a plane perpendicular to the uniform magnetic
field B = Bi, and f(v,v,) is the electron velocity
distribution function,

On making use of Eqs. (23), (26), and (29), one
finds that the dielectric tensor appropriate for
the description of a classical hot plasma may be
written

]f(v b, (29)

(c)(w k)= 617 + z

l=—0

=0+ 2

l=-—00

[ﬁm DY, k):l
k-0

2

. o
{llm —‘2’
P—>+0 (U

0 S(l)
xf 27 du( & );,
0 o~ lw, — kv, + iy

(30)

o
dv,
—o0
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where

SO = (hm Hg’) [l(‘”’ 9 ik —} f®,0). (1)
ko v oOv aU

By making use of Eqs. (3a), (3b) or (11), (9), and (10)
in Eq. (19), one can readily obtain the various elements
of the tensor II" as a function of (n + $)hw, and
(v, + hk,[2u) for any given value of the harmonic
number /. Then, taking the classical limit, one obtains

lim I1) as a function of v and v, for all values of
A0

i,j = x, y, and z. Our results of Eqs. (30) and (31) are
equivalent to the results of Eqs. (7.13) to (7.17) found
in the book by Bekefi.2 It should be noted that we have
written the tensor S in a Cartesian coordinate
system which manifestly exhibits the cylindrical sym-
metry of the system under consideration, while Bekefi
in his Eq. (7.15) has written the corresponding tensor
S in a Cartesian coordinate system in which the
propagation vector k of the radiation field is assumed
to lie in the x — z plane (thatis, k, = k,and k, = 0).
Thus the tensor S® of Eq. (31) is related to the corre-
sponding tensor S of Eq. (7.15) found in the book by
Bekefi through a similarity transformation. Further-
more, since the frequency w must satisfy the classical
resonance condition w — lw, — kv, = 0, it is rela-
tively easy to show that, in the nonrelativistic limit,
the functions U and W as given by Eq. (7.17) of the
book by Bekefi are such that

~+k,

W U [lwba
v 0

9 ]f(v, ). ()
Uz

v, U

Finally, in the Appendix we show that the classical
dielectric tensor D!(w, k) of Eq. (30) is in complete
agreement with the familiar results of the conventional
hot plasma theory.2

V. THE FIRST QUANTUM CORRECTION TO
THE CLASSICAL HOT PLASMA THEORY

It is our aim now to evaluate the dielectric tensor
D,i(», k) to the first order in the Planck constant A.
On making use of Egs. (23), (26), (30), and (A21), one
finds that, to the first order in 4, the dielectric tensor
may be written

D, (w,k) = D{¥(w, k) + AD,(w, k),

where the first quantum correction AD,;(w, k) may be
written

AD,(w,K) = ¥ [hm <

l=—w | y—+0 (,0

(33)

dv f 27 dv@)ﬁ’],

(34
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where
O — AS;) } n (i) { k:Si;

Y o — lo, — k,, + iy 2ul (@ = lw, — kv, + iy)*

SN /lw, 0 0
Dig V(0 2T 4
+[(Q,)(v o0t ”avz)(

where Q, is given by Eq. (All), S{! is given by Eq.
(31), and the first quantum correction AS} is given by

ASY = jQ, lim {(Hg;’ — lim Hgg’) / hil. (36)
h=0 k=0

Let us now choose a Cartesian coordinate system in
which the x axis lies in the plane of the vectors k and
B (that is, k;, = k, and k, = 0). In such a coordinate
system, the elements of the tensor S are given by
Eq. (A10), and from Egs. (9), (19), (36), (Al8),
(A19), and (A20) we obtain the elements of the
tensor AS® as

ssz=e((2)(2)

{J’ + (sgn z)[(zz + 1)(”1) _ 21.1',]},
e

x Ji{(z) + (sgn 1)[(12+ 1)J; ‘2’(11)}}

AS) = 0,03 {(hk fJuv,) + (sgn D(hoy/uv®)},

ASY = —ASY = iv?Q, (’“b)
2uv®
1
x { ( Al) + () + (sgn D)
2
x [2(12 + 1)(&)% - 21(2’) - 21(J;)2}},
2 7
As(l) As(l) = le
ik, \ (172 h‘w,,)
X HH—Z){—) + JJ, + (sgn !
{(2ﬂvz)(l) (2M ( (sgn )
2
[(212 + 1)(” ) -~ 211,1{,)},
AS = ~ASE = ~ins0,

() (G ([5] + om0
[(212 + 1) — 21(’j 2)})}

(37

Iy 2

ok, %) (o, vz)jl / o — lo, — kv, + iy}, (35)

where sgn / is 41 for positive values of / and —1 for
negative values of /, and A is given by Eq. (A4).

It is physically instructive to examine the order of
magnitude of the ratio [AD(w, k)/D'?(w, k)]. Since
the leading contribution to AD;;(w, k) comes from the
ASP term of Eq. (35), we may, for example, examine

the ratio

%) A Ai;’;) /hwb\ (@) (38)

( D)~ ( s@) " N/~ \awr)
where we have made use of Egs. (37) and (A10), the
angular brackets refer to a statistical average over
the electron states, T is the kinetic temperature of the
electrons, and « is the Boltzmann constant. For a
gaseous plasma of electrons and ions whose electron
temperature T ~ 1 eV in an external magnetic field
of 5 x 10% gauss, (fiw,/2«T) ~ 3 x 107, Thus one
can ignore the quantum corrections to the classical
dielectric tensor for most laboratory gaseous plasma
studies. However, if one is interested in studying the
electrodynamic behavior of a “classical plasma”
formed by electrons and holes in semiconductors at
not too high carrier densities and not too low tem-
peratures T (that is, under conditions where the
electrons and holes obey classical statistics), in the
presence of an external magnetic field B, then, for
some values of T and B, one has to use the first
quantum correction to the classical dielectric tensor.
For example, for InSb (for which the effective electron
mass is about 0.015 times the free-electron mass) at
liquid nitrogen temperatures (that is, T' &~ 77°K) in
an external magnetic field of 10* gauss, (fiw,/2«T) ~
0.6. Thus, although the electron-hole plasma is
“classical” in the sense of statistical mechanics, the
quantum corrections (to the classical dielectric tensor)
arising from the “Landau quantization” of the electron
orbits in a uniform magnetic field are significant. The
results of this section will therefore prove useful for the
analysis of the experimental studies of the electro-
dynamic behavior of such “solid-state classical plas-
mas” in external magnetic fields of moderate strengths.

VI. SOME REMARKS

In what has been presented so far we have assumed
that the system of electrons in the box of volume L3
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under consideration is nondegenerate. If the system of
electrons is degenerate, then one has to take account
of the Pauli exclusion principle,!® and in applying the
principle of detailed balance we must bear in mind
that a transition can only take place to an electron
state which is vacant. Thus, we can use the above
theory for a degenerate system of electrons, provided
we make the following modification: We must replace
F(E,,,,)and F(E, )by F(E, ., )1 — F(E, )} and
F(E, 1 — F(E,,,, )}, respectively, in Egs. (13),
(15), and (16). Since

[F(En,vz) - F(En+l,vz+hk,/u)]
= [F(En,vz){l - F(En+l,vz+7ik,/u)}
- F(En+l,a;z+hkz/u){1 - F(En,v,)}]a

Egs. (18) and (26) remain valid for both the degenerate
and the nondegenerate system of electrons.

Finally, it may be noted that the method presented
here is somewhat analogous to the Kramers-Heisen-
berg>® quantum theory of gaseous dispersion. The
basic philosophy behind the Kramers-Heisenberg
dispersion theory is that, starting from a knowledge of
the fundamental quantum-mechanical transition prob-
abilities for emission and absorption of photons (that
is, from a knowledge of the Einstein 4 and B coeffi-
cients), one can obtain the equation of energy transfer
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or the energy balance equation by a straightforward
application of the principle of detailed balance. From
the solution of this energy-balance equation one can
obtain information about the absorption of electro-
magnetic energy by the system under consideration.
The dissipation or the absorption of energy by any
system is, in general, represented by the anti-Her-
mitian part of the dielectric tensor appropriate for the
description of the system. Since the real and imaginary
parts of any dielectric tensor must satisfy the well-
known Kramers-Kronig relations as a consequence of
the causality principle, one can thus obtain the entire
dielectric tensor from a knowledge of its anti-Her-
mitian part. Thus, in conclusion, it is interesting to
find that the original ideas of Kramers and Heisenberg
suffice to examine the dispersion properties of a hot
plasma which is customarily done by a kinetic
description based on the Vlasov equation.!™*
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APPENDIX

From Egs. (10) and (11) we get

(€5, =
Ly,

2N uw,

B\ 1 -
6m,n + (_) [k+(n + 1) 6m,n+1 - k—\/n 6m,n—1]

N l(i){ki[(n + 2)(n + Do np0 — kk 200 + D9,

+ K2t — D, 0} £ L(v’i—)z{k:“:[(n +3)01 + 2)(n + D6, 0
3N\uw,

— Kk 300 + D+ 118,041 + kek®3nn 87y — K2[n(n ~ D)(n — 2185,

1
41\ uw,

+ —(—”—) {(KiL(n + 9)(n + 3)(n + 2(n + DI, 00 — Kk_(@n + 6)[(n + 2)(n + DS, 10

+ KEKE3RY 4 3(n + 128, — ko k2(dn — 2)[n(n — DS, s

+ KA[n(n — D(n — 2)(n — )6, ) + l(i)2~{l<i[(n + 5)(n + 4)n + n + (n + DI
SN pw,

X Oppnys — KLk_S(n + 2)[(n + 3)(n + D + Doy nys + K220 + 4n + 3)[n + 1]

X Opnps — KIK2S(20® 4 1)\/0 0,y + kyKES(n — Dln(n — D(n — 215

— K [n(n — D)(n — 2)(n — 3)(n — D8, .o} + - )

m,n—3

(A1)
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where we have evaluated the first six terms of Eq. (10). Grouping together the terms that belong to the same
Kronecker 4’s, the classical limit of Eq. (A1) may be written

fim ("), = {6"""[1 B (k+2’:o_§vz) * 2‘12’(%1;_;2)2 T J
k K2k 1 (KK
+ ém,n+1[(ﬁ%b) 2!(2\/2 Z)b) 21 31(4:/5 Z)g) + - ]
e k K2o® 218 5
el (J5) 56D * i) + ]
+ Oes 2'(’;%) 31! (k;l; gv) + }
- 2 2
R e e e R
+ Omonis :% (25%):02) - Zl;(:f};—:;) T ]
-1 k3 3 4.5
T Omns| 5 (2\/—50603) - ‘%(‘I:/I%—:’g) T }
+ Ornnsa ‘%(%) + ] * 6"""“[41! (’i:g) }
~ 5,5
N 5m.n+5_;(4\];%vwg) 4. } F o, n_s[s'(djz ;b) + :I + - } (A2)

In order to compare our results with those found in
Sec. 7.2 of the book by Bekefi,? let us now choose the
coordinate system such that the propagation vector k
lies in the x — z plane of the Cartesian frame (that is,
k, =k, and k, = 0). Then

k,=k_ = (kl/\/i). (A3)
Let

A = (kyofwy). (Ad)

Then it is apparent that one can show that the com-
plete form of Eq. (A2) may be written

3 B DR,

l=—00

where J;(4) is the Bessel function! of order /. Let

lim (%), , =

F-0

(AS)

= 4o, £ iv,). (A6)
From Eq. (3a) it is relatively easy to show that
i (0) 0 = a2 (A7)
From Egs. (A5) and (A7) we get
lim (¢4, = (£ DD (A8)
B0

14 1. N. Sneddon, Special Functions of Mathematical Physics and
Chemistry (Oliver and Boyd Ltd., London, England, 1961).

and

lim [{(e* “”vd: + v,e* ik-r)]n+l,n
k-0

- (il)"ﬂ'@(»(é). (A9)

Here the plus and minus signs in (£1) correspond to
those in exp (£ik-r) and / £ 1 correspond to v,.
From Egs. (9), (19), (31), (A6), (A8), and (A9) we

get
I . 1J,J; 12
Qt( l) 1U2Qz = v, Qz
A
S = |~ QU —iopQu L,
lJz . ’ 2 2
v UQL iv,vQ,J,J, v,0.J;
(A10)
where
lwy 9
0, = [ +k, —]f(v b, (ALD
v 3
and we have used the relations*
3,12 + (D] = (/DJI(2) (A12)
and
(D) — Jia(D] = Ji(A). (A13)
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Here the prime denotes differentiation with respect to
A. We wish to emphasize that the tensor S of Eq.
(A10) is written in a Cartesian coordinate system in
which the z axis is directed along the external magnetic
field B and the x axis lies in the plane of the vectors
k and B. Thus one sees readily that our results of the
dielectric tensor agree in the classical limit with the
corresponding results found in Sec. 7.2 of the book
by Bekefi.?

We now wish to show how one obtains the first
quantum corrections to the results of the classical hot
plasma theory. Since (n + $)hw, — uv?/2, it is rela-
tively easy to show that, for s > 0,

(i)"z[(n 490 +s— 1)+ O
MWy

1 /vy 1 s%hw
—(—=)l1+= "] Al4
~aa)[ 5] @

(0, + k200, = (ED0, DL + (k,[2u0,) + (sgn D(Phoy /2],

1313
and
(i)’/ztn(n — 1) (n— s+ D
po,
g3 ] @

to the first order in A. On making use of Eqs. (A14)
and (A15), one can easily show that

(eiik.r)m n —2 6m n+l(:*:1)|ll
X JMIL + (sgn D(PPhes,|2uv™)]  (A16)
and

(0mn = OO DL F (hooy/2u®)] (AL7)

to the first order in %. Here sgn/is +1 for positive
values of /and —1 for negative values of /. From Egs.
(A6), (A12), (A13), (Al6), and (A17) we get

(A18)

e, + 060,10 = G0 [ 28] 4 (R2) )+ oo p DD ),

(A19)
and
. . (A 211
e+ 0™ = D0 (10 + (2 [ + o+ vin - Z5ET)
2uv
(A20)
to the first order in /. Furthermore, one can easily show that
lo, 3 )
+ k, == )f(v, 1)
(:u/h)[F(En+l,'v.+ﬁk./u) - F(En,'v,)] = ( v a “ov
o — lw, — k,(v, + bk [2p) + iy w—lw, — kyp, + iy
(lwb d + K, __a_) (l_w_,,_a_+ )f( ,0,) k:(%_a__*_ k,—Q—)f(v, v,)
4 Fi\v ov v,/ \ v Ov " v Ov dv, (A21)
2u o — lw, — ky, + iy (0 — lw, — kv, + ip)?

to the first order in 4. In this way one can easily obtain the first quantum corrections to the results of the

classical hot plasma theory as given by Eqs. (33)-(37).
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It is shown that conformal invariance alone, with no specific dynamics, provides severe constraints on
the location of singularities of the off-mass-shell amplitude for elastic scattering of spinless particles.
Kinematical and dynamical singularities are correlated in an interesting fashion with the singular and
general solutions of differential equations which follow from the momentum-space requirements of
conformal invariance. Explicit expressions are found for the location of singularities which are inde-
pendent of ¢, the square of the momentum transfer, The possibility of having an asymptotic behavior of 1%
for large ¢ together with singularities specified by the function « is discussed.

1. INTRODUCTION

The conformal group'—® is a higher space-time
symmetry group in which the Poincaré transforma-
tions form a subgroup. Conformal transformations
map light cones into light cones and conserve angles
defined locally. Maxwell’s equations! and various
massless field theories? including electrodynamics and
A¢* theory are conformal invariant.

Exact conformal invariance implies vanishing
masses or continuous mass spectra.? However, a
symmetry may be useful, as is $T5, even though its
unbroken form has unrealistic riass constraints. Mack
and Salam? discussed a scheme for broken conformal
symmetry in Lagrangian field theory. In S-matrix
theory, constraints on mass spectra manifest them-
selves as restrictions on the singularity structure of
scattering amplitudes. We will show that the interest-
ing singularity structure of conformal-invariant
amplitudes is off the mass shell with singularities
converging toward zero energy as the mass shell is
approached. The way in which singularities are
located might suggest reasonable symmetry-breaking
schemes within the framework of S-matrix theory.
We make use of some results of Bali, Coon, and Katz,?
who recently investigated the restrictions imposed by
conformal invariance on the off-mass-shell amplitude
for scattering of massless spinless particles.

It has been conjectured that the conformal group
may provide an approximate description of some

* Work supported by the U.S. Atomic Energy Commission
AT(45-1)-1388,

1 E. Cunningham, Proc. London Math. Soc. 8, 77 (1910); H.
Bateman, ibid. 8, 223 (1910).

2 J, Wess, Nuovo Cimento 18, 1086 (1960).

3 Discussion of the conformal group and many references to the
other articles can be found in: F. Giirsey, Nuovo Cimento 3, 988
(1956); T. Fulton, F. Rohrlich, and L. Witten, Rev. Mod. Phys.
34, 442 (1962); H. A. Kastrup, Ann. Physik 7, 388 (1962).

4 G. Mack and A. Salam, ICTP Preprint 1C/68/68, Trieste, 1968.
This paper includes references to more recent work.

5 N. F. Bali, D. D. Coon, and A. Katz, University of Washington
Preprint No. 539, Seattle, Washington, 1968; J. Math. Phys. (to be
published).

processes® such as scattering at high energy and high
momentum transfer. Integral representations® for
conformal-invariant elastic scattering amplitudes
involve arbitrary functions of only two variables
rather than the six implied by invariance under the
Poincaré subgroup alone. One might think that some
of this information could remain relevant, at least
in an asymptotic region, when the symmetry is broken.

We begin, in Sec. II, with the momentum-space
requirements of conformal invariance given in Ref. 5.
From these requirements, three second-order partial
differential equations are derived with six Lorentz
scalars as independent variables. The off-mass-shell
elastic scattering amplitude must be a dilatation-
invariant solution of these equations. Singularities of
solutions of such partial differential equations lie
along characteristic surfaces which are investigated in
Sec. IIL. Attention is focused on singularities whose
positions are independent of ¢, the square of the
momentum transfer. In Sec. IV, it is shown that, for
a conformal-invariant amplitude to have an asymp-
totic behavior of #* for large ¢, then « must satisfy the
differential equations which determine characteristic
surfaces.

11I. CONFORMAL INVARIANCE AND SCAT-
TERING AMPLITUDES

The conformal group® is made up of Poincaré
transformations, the inverse radius transformation

X, = Xx,/x%,

(1)
and dilatations
x, — bx,,

@

where b is an arbitrary parameter. If an inverse radius
transformation, a translation, and another inverse
radius transformation are performed successively, the

8 H. A. Kastrup, Nucl. Phys. 58, 561 (1964); Phys. Rev. 142,
1060 (1965); 143, 1041 (1966); 150, 1183 (1966).

1314



CONFORMAL-INVARIANT SCATTERING AMPLITUDES

resulting transformation has the form

x, + a,x°
X . 3)
P14 2ax + a° (
The corresponding infinitesimal generator is
K, = —i(x*d, — 2x,x* 0). @

We now consider elastic scattering of spinless
massless particles with momenta p,, where i=
1, 2, 3, 4. By virtue of the Poincaré subgroup, which
implies Pyt Pt ps 4 pa=0, )

the usual off-mass-shell amplitude can be expressed as
a function of the six Lorentz scalars

s=(pr+p)s 1=(pr+pa) (©)
p,=p2, i=1,2734 (7
It has recently been shownS that, for the § matrix to be

conformal-invariant, the off-mass-shell elastic scatter-
ing amplitude M must be invariant under dilatations

and

—b7'p} (®)
and must satisfy the equation

3
> LEM =0, ©)

=1

h

M L= opr -0, p 4+ 63 (100
= piOi—2p 004 — 205 (10b)

Here 0* and [, indicate differentiation with respect
to p,. Except for the last term in Eq. (10a), the differ-
ential operators L¥ are just the momentum-space oper-
ators corresponding to the coordinate-space operator
K*. The last term in Eq. (10a) is present because
O(p1 + ps + ps + p)M is the Fourier transform of a
conformal scalar density rather than a conformal
scalar. The only dependence on the weight® of this
scalar density is in the coefficient of the first derivative
terms in Eqs. (10).

Feynman diagrams of massless A¢* theory provide
examples of formal expressions which satisfy the
above requirements. This is most easily seen in
coordinate space where divergences are avoided.

From Eq. (9) we obtain the following three partial
differential equations for M in terms of Lorentz
scalars:

62M 82
R S T=0, 11
1 2y a o + R4S+ (11)
32M 82
-_— R+S5S=0, 12
B2 3y a ot + R+ (12)
62M 82M
- R T=0, 13
Va ayg a at + R + (13)
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where
r=2g [ B 50
+n y—aaij‘i (14)
sEaas[s%]‘fwaaMHylz 1+2yzaaﬂ, (15)
ng[ a—aj‘f+ aaﬂ+2 1‘;y1+2ysgﬁ- (16)

Making use of the differential statement of dilata-
tion invariance
oM
Ppdial
Os
we can write three linear combinations of Egs. (11)-
(13) in the more compact forms

4
+1 ™ 3y Moo,
ot 9 dy,

62M a M
W ayi‘ a Py + (J’3 Va) 30t
0 0 0 Jd oM
. —_— - — = =0,
+[ylay1 o o, y“ayjar
o2 2 (18)
M 6 oM
Vs ay§ 3 2 T 1=y 3501
0 0 ¢ oM
- i - — [=— =0,
+[y‘ayl CFIREEF™ “ayjat
. . (19)
0 M 8 o°M
2 5 o + (ya — y4) Py
F; 0 2 9 oM
= - - = =0
+ I:yl aJ’1 o a,V:a &F a.Va — a i| Os )
(20)

The off-mass-shell amplitude M must be a dilata-
tion-invariant solution of these linear partial
differential equations. The coefficients only involve
y; = p?. Thus, derivatives of M with respect to s and ¢
must also be homogeneous solutions of Eqs. (18)-(20).

I1I. CHARACTERISTIC SURFACES

Singularities of solutions of a linear analytic second-
order partial differential equation lie along char-
acteristic surfaces.” Characteristic surfaces are surfaces
along which the partial differential equation represents
an interior differential equation. The differential
equation does not determine higher normal derivatives

?R. Courant and D. Hilbert, Methods of Mathematical Physics
(English transl.: Interscience Publishers, Inc., New York, 1962),
Vol. I, pp. 170-180, 486488, 552-574, and 635. Our characteristic
surfaces are in the six-dimensional s, ¢, p? space.
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from given initial data (Cauchy data) on such a
surface. Characteristic surfaces are found by solving a
first-order partial differential equation® which 1s
related to the original second-order equation.
We now let

(s, 1, Y1, Y2, Y3, 90) = 0 @D
specify a characteristic surface. The characteristic
equations® associated with Eqgs. (18)-(20) are

.VI(D-f - Y2(D§ + (s — y)0, D,

+ [y1®@1 — yo@; + y®5 — y,0,]0, =0, (22)
y503 — y,.@F + (1 — y2)9,P,
+ @, — y:@: + yoP5 — y@(]®, = 0, (23)
¥y @2 — y05 + (y2 — y)0,9,
+ [P + y:@z2 — ysP3 — y4D,]®, = 0, (24)
where we use the notation
(I),.Eaib, (1)3599, etc, (25)
oy; Os

The same function ® appears in all three equations
because we wish to determine the characteristic
surfaces which are common to Eqs. (18)-(20). That is,
we are interested in combining the constraints of all
three equations on the location of singularities.
There are two cases® to be considered:
(1) If @ satisfies Eqs. (22)-(24) identically in s,
t, and y,, then ® = 0 is a characteristic surface which
belongs to a one-parameter family of characteristic
surfaces given by ® = const.
(2) If @ satisfies Eqs. (22)-(24) only on the surface
® = 0, then ® = 0 is a characteristic surface which is
not a member of such a family of characteristic
surfaces. In this case, Eqs. (22)—(24) are not inter-
preted as differential equations since they are not
satisfied identically in s, ¢, and y;.
If Eq. (21) is solved for s so that
§ =\F(1,}’1,}’z,)’a,}’4), (26)
then we have another way of specifying the same
surface. Dilatation invariance implies that @ depends
only on ratios of variables and that'¥" is homogeneous
of degree one in the variables ¢ and y;.
Equations (22)-(24) correspond to the following
equations for ¥':
yi¥1 = Y3 — (s — y)Y,
+ ¥y — 3V + ys¥s — y ¥, =0, (27)

yo¥3 — y¥i — (0 — »Y,
+ [J’qul — yo¥e + y¥y — y, V¥, =0, (28)

¥t — y¥5 — (va — ¥V,
— ¥+ y¥s — ya¥s — y¥al =0, (29)

8 See Ref. 7, pp. 552-558.
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with subscripts denoting derivatives as in (25). These
equations are satisfied identically in the variables
t and y;. Thus, both cases considered above now
involve solutions of differential equations.® Again
there are two possibilities:

(1) That ¥ is obtained by finding general solutions
of each of the differential equations encountered in
combining the homogeneity condition and Egs.
27-(29), or

(2) that ¥ involves the singular solutions of at
least one differential equation.?

In the following, we will solve equations for ® and
¥ separately in order to illustrate the relation between
the above statements concerning ® and V.

t-Independent Singularities

Since many significant singularities of the amplitude
are independent of one kinematic invariant, we now
find the t-independent dilatation-invariant solutions
of the characteristic equations. (The s- or w-inde-
pendent solutions can be found from these by inter-
changingindices of the y,.) In this case, Eqs. (22), (23),
(27), and (28) simplify greatly. Together with dilata-
tion invariance they imply

(I) — (D[ml +%O'm2 , mg + C()m4:| (30)
s st
and
¥ = (m, + amz)zF[w], (31)
my + om,
where
m; =y} = (pt. (32)

Also, 0 = +1 and o = +1 independently. The signs
associated with m; and m; are chosen to be positive.
Here ® and F are arbitrary functions of their argu-
ments.

Since @ now depends on only two variables, Eq.
(24) can be reduced to the form of a partial differential
equation with two independent variables. The
equation can be factored into two linear partial
differential forms. To find those ® which satisfy these
equations identically, we simply interpret the equa-
tions as partial differential equations. The solutions
are

© (D[{s — (4 mt & {s — (my + m4)2}*]’

m, + my 4+ my + my

(33)
where @ is an arbitrary function of its argument and

? When dilatation invariance is combined with a characteristic
partial differential equation (for V) which possesses no singular
solution, we may obtain a differential equation which does have
singular solutions.
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each m, can be replaced by —m,. This replacement is
possible because Eqs. (22)-(24) only involve y; = m}.
Thus, we have found the one-parameter family of
characteristic surfaces given by ® = constant.

Dilatation-invariant functions ® which satisfy the
characteristic equations only on the surface ® = O can
most easily be found from the differential equations
for ¥. By combining Eq. (31) with the remaining
equation (29) for ¥, we obtain the ordinary differen-
tial equation

(22— 1)[%5]2 — 4z(F — 1)‘% + 4F(F ~ 1) = 0,

(34)
where

z = (m3 + om,)[(my + om,). (35)

This nonlinear equation can be solved by introducing
the quanitities

24 =(z — 1)-d£ —F—-1) (36)
dz
and
—2B=(z + 1)~d£ —2(F -1 37
dz
and writing Eq. (34) as
F=AB + 1. (38)

Equations (36)-(38) can be combined so that we need
to solve only a single linear differential equation for A.
Thus, we obtain the general solution

F= (1/4c)[(c + 1)2z% + 2(c® — 1)z + (¢ + 1)3],
(39)

where ¢ is an arbitrary constant. The singular solu-
tions'?

F=1 and F=2z? (40)

can be obtained directly from Eq. (34).

By examining the differential equation (34), we
discover that if F(z) is a solution, then z2F(1/z) is a
solution. The symmetry is related to the interchange of
incoming and outgoing particles. The solutions (39)
and (40) exhibit this symmetry. We also observe that
F(—z) must be a solution. This corresponds to the
replacement of ¢ by 1/c in Eq. (39).

We now have found all the #independent solutions
of the characteristic equations (27)~(29) for ¥'. In
terms of the variables m; = (p?)t and the arbitrary
constant c, the characteristic surfaces s =¥ are given

10 The manner in which these singular solutions arise is stated in
Footnote 9.
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by
s = 4i [(c + D¥(my + omp)® + 2(* — 1)(my + omy,)
c

X (my + omy) + (¢ + 1%(ms + om,)*], (41)
(42)
43)

where 0 = +1 and o = *1 independently. The
family of characteristic surfaces (41) is the same as the
family of surfaces ® = const associated with Eq. (33).
This can be verified by solving Eq. (41) for the
constant ¢. Equations (42) and (43) are obtained from
the singular solutions (40) and have no arbitrary
constants. They can be put into correspondence with
dilatation-invariant ®’s which satisfy all characteristic
equations (22)—(24) only for ® = 0.

Integral representations® for dilatation-invariant
solutions of equations such as Eqs. (18)-(20) are
quite complicated. However, in some special cases the
representations reduce to elementary functions:

s =(m £ mz)za

s =(my = m4)2,

s — m; — my

30 (49

{[S ~ (m, + mz)z][s — (m, — mz)z]}'
mims/s®, (45)
mimamim3/s*. (46)

The singularities of (44) are given by Eq. (42) and the
singularity at s = 0 is given by Eq. (41) with ¢ = —1.

No change in dynamics can affect the positions of
singularities associated with Egs. (42) and (43). Such
singularities are purely kinematical. If the amplitude
has dynamical singularities, they must be associated
with Eq. (41). This is reasonable since the constant ¢ in
Eq. (41) can take on a set of values each of which
might depend on some coupling constant. Of course,
kinematical singularities may also be associated with
Eq. (41).

IV. ASYMPTOTIC BEHAVIOR

In order to see what kind of restrictions conformal
invariance might impose on the asymptotic behavior
of amplitudes, we assume that some amplitude
behaves like

e, 47)

where
a = als, p2, pi, p3, Pd), (48)
B = B(s, p}. pi, p3. Pd), (49)

for large ¢. Dilatation invariance of the amplitude
implies that « is dilatation invariant. We also assume
that the asymptotic behaviors of the derivatives in
Egs. (18)—~(20) are given by the derivatives of the
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asymptotic behavior (47).! The leading terms on the
left-hand side in Eqs. (18)-(20) then behave like
(In £)%t*. These terms are generated by derivatives
acting on the o in % From the requirement that the
sum of the coefficients of the leading terms in each
equation must vanish, we obtain three first-order
partial differential equations for «. In fact, these
equations are precisely the characteristic equations
(22)-(24) for a r-independent characteristic surface.
The solution of these equations has already been
found in Sec. III. From Eq. (33), we see that

o = oc({s — (my + ’”2)2}2lf + {s —(my + m4)2}%)
my + my + my + my ’

(50)
where o is an arbitrary function of its argument.

It is interesting that « must identically satisfy the
characteristic equations because this admits the
possibility that an amplitude with asymptotic behavior
(47) may have singularities along surfaces given by
« = const. An example of a function with a set of
singularities along such surfaces is 1/sin wa. Of course,
Eqgs. (18)—(20) provide restrictions on the nature of the
singularities as well as their location.

It is also interesting that « is not related to the
characteristic surfaces (42) and (43) which are
associated with strictly kinematical singularities.

V. DISCUSSION

We have given partial differential equations for the
surfaces along which the off-mass-shell amplitude
can have singularities and we have found the possible
locations (41)-(43) of r-independent singularities.
Some features which are, perhaps, suggestive are the
appearance of singularities (42) and (43) resembling
thresholds and pseudothresholds and the dependence
of other singularities (41) on arbitrary constants which
might be related to coupling constants. However,
there is no guarantee that such singularities will
actually be present in the Feynman diagrams or the
amplitudes of a theory with conformal-invariant
dynamics. The formulas (27)-(29) and (41)-(43)
derived here constitute severe constraints, but con-
formal invariance does not require the amplitude to
have singularities along any given characteristic
surface. This is obvious since a constant “amplitude”
would trivially satisfy all the requirements. A constant
could represent the Born term in Ag* theory.

11 This is compatible with and possibly indicative of next leading
terms behaving like ##/In ¢, 12/(In 1%, etc., and 191, 122 etc.
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The purely kinematical singularities (42) and (43),
which resemble thresholds and pseudothresholds,
originate from the singular solutions of a differential
equation (34), while the other class of singularities
(41), which could encompass dynamical singularities,
originates from the general solution of the differential
equation (34). It is very interesting that there is a
natural way for the differential conditions of a higher
space-time symmetry to provide two such categories
of singularities.

Since the singularities (41)~(43) converge to s = 0
as the mass shell is approached, there can be no
production of particles with mass. The differential
equations (18)-(20) for the amplitude also provide
restrictions on the nature of possible singularities.
It should be noted that all of the formulas presented
here are consistent with crossing symmetry.

One might wonder if any of the singularities (41)-
(43) other than s = 0 could arise in individual Feyn-
man diagrams. An interesting possibility is that they
might arise in the process of making conformal-
invariant subtractions or cut-offs. A diagram with a
logarithmic ultraviolet divergence could develop an
infrared divergence if we perform a subtraction at
s = 0. Performing a subtraction at s = const # 0
would destroy dilatation invariance. Perhaps a
resolution of the difficulty is to let the subtraction
point depend on the p? and insist that the resulting
amplitude satisfy the conditions (17)-(20) of conformal
invariance. This conformal-invariant subtraction pro-
cedure could introduce singularities off the mass
shell and not at s = 0. Because of the mathematical
subtleties involved, this question will require careful
investigation.

The restrictions of conformal symmetry apply to
the whole amplitude as well as individual Feynman
diagrams so that singularities connected with summing
an infinite number of Feynman diagrams should also
be restricted by Eqgs. (27)-(29) and (41)—(43).

Finally, we observe that if the (p?)? are replaced by
nonvanishing masses, then the singularity structure
(41)-(43) and its possible connection with the asymp-
totic form (47) are in accord with the usual features
of S-matrix theory. The reasons for, and the signifi-
cance of, this phenomenon are not clear.
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Explicit, exact solutions, satisfying a bootstrap criterion in the form of Levinson’s theorem and
having real coupling constants, are exhibited for the two-channel Low equation for arbitrary real values
of the parameter appearing in the 2 X 2 crossing matrix. This disproves a claim made recently in the
literature that the bootstrap criterion will restrict values of the crossing-matrix parameter to those corre-
sponding to the internal-symmetry group SU,. It is demonstrated that the previous alleged proof is

inconclusive.

I. INTRODUCTION AND SUMMARY
OF RESULTS

There have been several attempts~ to bootstrap
internal symmetries in exactly soluble two-channel
static models. To date, only Cunningham? has
claimed that a bootstrap requirement in the form of
Levinson’s theorem, first suggested for this purpose
by Huang and Low,® along with the usual require-
ments of unitarity, crossing, analyticity, and the
reality of coupling constants, will restrict the crossing-
matrix parameter to the integer values which corre-
spond to the internal-symmetry group SU,. This
result seemed remarkable in light of the negative
results of several previous attempts with similar models
to bootstrap this internal symmetry. Warnock® has
shown that solutions exist for the n-channel Low
equation with an arbitrary n X n crossing matrix.
Warnock’s solutions have no subtractions, one bound
state, and one CDD pole in one channel, with no
bound states or CDD poles in the other channels. The
present author® had studied a model with coupled
inelastic channels in a two-dimensional space-time
and found that bootstrap solutions exist for contin-
uous real values of the crossing-matrix parameter.
Finally, there is the impressive paper of Blankenbecler,
Coon, and Roy,” which demonstrated that the assump-
tion of diagonalizability of the S-matrix by a constant
real orthogonal matrix rigorously and with no
approximations implies SU, as a symmetry group
for a system of pions as an essentially kinematic result
independent of the strong-interaction dynamics. In
this proof the existence of the third crossed channel
plays a crucial roll.

* Work supported in part by the U.S. Atomic Energy Commission.
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Since Cunningham’s proof assumes a static model
with only two crossed channels, one subtraction, and
no CDD poles, the papers mentioned above do not
conclusively imply that his result cannot be correct.
However, we shall demonstrate that Cunningham’s
arguments show only that a certain representation of
the solutions to the two-channel problem does not
exist for arbitrary values of the crossing-matrix
parameter, not that no solutions exist. The source of
the trouble comes from using Rothleitner’s special
solutions,® which have an infinite number of poles
and zeros for arbitrary real values of the crossing-
matrix parameter and then attempting to find an
infinite-product representation of an arbitrary multi-
plicative function which will cancel all but a finite
number of these poles and zeros in order to produce
S-matrix elements with only a finite number of poles
and zeros. It turns out that no infinite-product
representation of the form assumed exists. However,
we are able to show that a form of solution given by
Martin and McGlinn! does allow S-matrix elements
having all of the desired properties. We shall exhibit
one class of bootstrap solutions. It is not claimed that
these are all of the solutions nor that they are unique.

II. STATEMENT OF THE PROBLEM

A mathematical statement of the two-channel static
model, describing the scattering of mesons of mass m
from fixed baryons, is the following: If we let z =
X + iy be the complex energy variable, then, in units
h=rc=m=1, there are two S-matrix elements,
S2), « = 1, 2, which are uncoupled from each other
in the physical region (i.e., z real and above threshold).
The complex z plane has the direct-channel cut
running from +1 to + oo along the positive real axis
and the crossed-channel cut running from —1 to — o
along the negative real axis. Unitarity implies that

S.(x + ie) = exp [2id,(x)], )

& J. Rothleitner, Z. Physik 177, 287 (1964).
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where x > 1 and 8,(x) is real on this cut. Also, we have

Si(z*) = 87(2). ()
The continuation of S,(z) onto the second sheet

through the unitarity cut, denoted by S'®(z), is given
as

52(z) = 1/S,(2). 3)

Finally, the statement of crossing symmetry on the
first sheet is

2
Sa(_z) =g1AaﬂSﬂ(z)‘ (4)
Since crossing twice must bring us back to the initial
channel and since both channels are physically identi-
cal in this problem, the crossing-matrix elements
must satisfy

zAav w = 6aﬂ’ (5)

zAaﬂ =1 (6)
p=1

The most general 2 X 2 crossing matrix satisfying
these requirements is'-2

__1 (—1 2t+2)
2t + D\ 2t 1 /)

The subset of these 2 X 2 crossing matrices corre-
sponding to SU, has ¢t = n, where n is zero or an
integer. General solutions to the problem as defined
above have been given for arbitrary values of ¢ by
Martin and McGlinn' and by Rothleitner.® We shall
discuss both solutions in the following sections.

Our criterion for a bootstrap solution will be that
suggested by Huang and Low,® namely, Levinson’s
theorem with no CDD poles,

Aaa = 6a(w) - 61(1) = —TH,, (8)

where Ad, is the change in phase of the phase shift
8,(z) of Eq. (1) between threshold and infinity along
the physical cut and n, is the number of bound states
in channel «. As in Huang and Low,® the coupling
constants squared are introduced via the Low equa-
tion for the function #,(z) defined as

@)

S, = 1 + 2ig(D(@h,(), ©
where we are scattering S-wave mesons and
9(2) = (* = DY, (10)
and the cutoff function v(z) has the form
v(2) = «*/(g* + <), (1n

with « > 1. For reasons that have been fully discussed
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in Ref. 6, in order to be able to have bootstrap
solutions we must choose ¢ =1 and allow for one
subtraction in the Low equation. (These are also
Cunningham’s choices.) The once-subtracted Low
equation is

hz) = Pz) + C, + = f L g ()
h 2 2 n12
. [I L3 Aaﬁlhﬂ(x)l} )

x'—z j=1 + z

where the subtraction was made at z = 0 and the
C, are subtraction constants. Here P,(z) contains the
crossing-symmetric combination of poles appearing
in the strip —1 < x < +1,

P =3[ 4 +z,4,, z+

i@ X -2z

Z], (13)

where the x; are the location of the bound states (i.e.,
Ix,] <1) and the 4, are the coupling constants
squared (i.e., 4;, > 0). The only use we shall have
for the Low equation is to connect the residues of the
S,(z) at bound-state poles with the 4,, of Eq. (13).
If we consider the special case of one bound state in
each channel (as will be sufficient for our purposes
later), and if p,(z) denote the bound-state pole terms
of the S,(z) with effective coupling constants A,
defined as

A, = 200c)(1 — xD,, (14)
where x, is the bound-state energy in channel «, then
we see from Eqs. (7), (9), (13), and (14) that

—Ay + 1 [ Ap 20t + l)Alz:I
QCt+ Dlx; + 2 X+ z
Ag + 1 |: Ay 20+ 1)A22:|
Xo—z (2t+Dlxy+z xs+2z |
(15a)
—Asp 1 I:ZtAn Ay }
- +
X1—z (2t4+Dxs;+z x4z

Qt+Dlxy+z x4 2]
(15b)

The two-channel S-matrix problem as defined in
Egs. (1)-(7) is solved by defining two auxiliary func-
tions which have simple properties under unitarity
and crossing,'8% of which the first is

1S:(z) + (t + 1)S,y(2)
Sa(2) — Si(2)

? G. Wanders, Nuovo Cimento 23, 817 (1962).

pi(2) =

poz) =

X2'_Z

B(z) = (16)
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Crossings on the first-sheet and the second-sheet
continuation follow from Eqs. (4) and (3) and are,
respectively,

B(—z) = —B(2), an
B®(z) = —B(z2) + 1. (18)
The most general solution for B(z) is®?
1,1 iz
B(z) = 5 + ;ln [z + (2% — DY + P! B(z)
1. _ iz
= 7—7 sin™ (z) + . 1)} B(z), (19)
where f$(z) is an arbitrary real [i.e., f(z*) = 8*(2)]

even meromorphic function. For our purposes we
shall choose
: 8@ = bo, @0)

where f, is a real positive constant (cf. Refs. 4 and 6).
We shall also need to know some of the properties of
q(z) defined in Eq. (10). They are

q'?(z) = —q(2), (21a)
q*(2) = —q(z%), (21b)
4(—2) =4(2), (210)

Img(z) > 0, (214d)

where the last statement holds on the first sheet only.
[These properties of g(z) are most easily proved by
use of the mapping z = cosh (w), w = u + iv.]

We shall now state separately the solutions given
by Rothleitner® and by Martin and McGlinn,! since
these forms shall be important for what follows.
Rothleitner defines a second function

U(z) = Sy(2) (22)

for which crossing and unitarity become
v = v 327 (23)
U®(z) = 1/U(2). (24)

It is easy to see that the most general solution to these
functional equations is

U(z) = Uy(2)D(2), @5)

where Uy(z) is any solution to Egs. (23) and (24) and
D(z) is an arbitrary real even function satisfying

D®(z) = 1/D(2).
Rothleitner constructs a Uy(z) as
Ug(z)
T B(z) — ¢ Bz)+t+1
| [2 B(z)]I‘[ . ]r[ - ]

tan B’ B + ,)} F[B(z)z + t] F[B(z) S 1] .
(27)

(26)
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Finally, the S-matrix elements are given as

$,(2) = U2) D(z)[%}
_ B(z) —t—1
$4(2) = Uy(2)D(2). (28b)

Martin and McGlinn write their S~matrix elements
as

Sz) = A(z)[B(z) — t — 1]

_ B(z)—t—1

= Sz(z)[—“—-—B Eyp } (29a)
Sy(z) = A(2)[B(2) + 1], (29b)

where B(z) is defined by Eq. (16) and A(z) is an
arbitrary antisymmetric real analytic function in the
cut z plane. Equations (29) automatically satisfy
crossing. The second-sheet continuation for A(z) is, in
our notation,

AP (A@Z) = —1/[B(z) — ¢t — 1][B(2) + 1], (30)
the most general solution of which is
A(z) = 4y(2) D(2), €2y

where Ay(2) is any particular solution of Eq. (30) and
D(z) is an arbitrary real even function satisfying Eq.
(26). Martin and McGlinn constructed an Ay(z)
having no zeros or poles (away from both branch
cuts), except for a simple pole at the origin. In our
notation this particular solution is

[l —i(z* — D}

Ay(z) =
(t+ ¥z
i(z22 — D} 1 + PO dx’
X exp{ - J; (x,z _ l)i-(x,g _ Zz)}’
(32)
where, for 1 < x < o0,
—1
Fi =
®O=a+p
R G e o)
(33)

Here, f(x) is the arbitrary function in B(z), Eq. (19).
We shall make the choice f(x) = §,, Eq. (20).

III. CUNNINGHAM’S PROOF

One possible way of attempting to construct
bootstrap solutions is to begin with Rothleitner’s
solutions, Eqs. (27) and (28). Let us first examine
Uy(2), Eq. (27), when ¢ is zero or a positive integer.
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If ¢ is zero or an even integer,

t=2n n=20,1,2,--, (34)
then, since
tan [37(B(z) + 2n)] = tan [$7B(2)] (35
and
'z + 1) = zI'(2), (36)
we find
B(z) B(z)+1
N—==-—n|l|—/———— +n
B it ]

T

which will be simply a ratio of two finite-order
polynomials in B(z). If ¢ is an odd integer

t=2n4+1, n=0,1,2,--+, (38)

then, since

tan {37[B(z) + 2n + 1]} = —1/tan [17B(z)], (39)

we have

Uy(z) = —tan® [}7B(2)]
o TBBE) — 1) — n|lB(2) + n + 1]
T[}(B(z) — 1) + n + 1IT}B(2) — n]
(40)
However, since tan® [}7B(z)] has the properties of a
D(z), Eq. (26), this term can be put into D(z) so that
Uy(z) is again effectively a ratio of polynomials in
B(z).
Although Huang and Low® have investigated the
roots of

B(z) = v, (41)

for arbitrary f(z) of Eq. (19), we shall explicitly study
the case when f(z) = f, > 0. In this case the
substitution

y real,

z = cosh (w),
w=u-+iv (42)

shows that when z ranges over the entire (cut) first
sheet, w is restricted to the range, —o0 < u < + 0,
0 < v < =. Then, since

B(z)E§+i1n [z + 4] + —= f,

q(z)
_1 v B sin (20)
2 7 2 sinh®u cos®v 4 cosh®u sin®v
Afu  Bo sinh (2u) )
i — - b
+ (71 + 2 sinh® u cos® v + cosh® u sin® v

(43)
Eq. (41) can have a root only when the imaginary

JAMES T. CUSHING

part of Eq. (43) vanishes. This can happen only when

u=0, (44)
so that

(45)

which implies that the roots of Eq. (41) lie on the
real axis between the cuts (i.e., —1 < x < +1). For
x in this range Eq. (19) becomes

z =cosv,

B(x) = j_Tsm—l ) + ———’“x—)% Bo,  (46)

(-

which makes it evident that Eq. (41) has two real,
symmetrically placed roots for any given value of y.
Therefore, we see from Eqs. (37), (40), and (28) that
the S,(z) can be constructed to have a finite number
of poles and zeros if we choose the D(z) to have
only a finite number of poles and zeros (aside from
the tan® [37B(z)] factor when ¢ = 2» 4 1) whenever
t is zero or an integer.

However, when ¢ is not an integer, Uy(2), Eq. (27),
will have infinitely many poles and zeros. This is
easily seen since the I' functions in Eq. (27) have poles
only when their arguments are 0 or negative integers,
whereas the tangents have poles and zeros whenever
their arguments are odd and even multiples of #/2,
respectively. Unless ¢ is an integer, there will be
infinitely many of these poles and zeros which will
not cancel each other. The form of B(x) given in Eq.
(46) shows that B(x) will take on any arbitrarily large
real value as x approaches threshold from below.
Furthermore, when ¢ is not an integer, Uy(z) has both
an even and an odd part, each of which has infinitely
many zeros and poles. Therefore, we cannot simply
factor out the troublesome term as we did the
tan® [§7B(z)] when ¢ was an odd integer. If we want
the S-matrix elements of Eqs. (28) to have only a
finite number of poles and zeros and if we use the
Uy(z) of Eq. (27), we must construct a D(z) which
will exactly cancel all but a finite number of the poles
and zeros of Uy(z).

Now Huang and Low® have shown that if D(z)
has only a finite number of zeros and poles, it can be
represented as the finite product

p(z) =T}~ el p L= 4@ + @)
m 14 iryg = (14 a,g9)(1 — atg)

where g(z) has been defined in Eq. (10). Cunningham?
assumed that this could be extended to an infinite
product if D(z) had infinitely many poles and zeros.
We shall show that this infinite product never con-
verges. From Eq. (46) we see that the roots of

B(xy) =N

(47)

(48)
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are, for large N,
xy—1— B3N, (49)

so that these roots accumulate at x = 1~ (and at
—1%). If t is not an integer, D(z) must contain a factor

] — © 2 1 2 1}
I (1———”mq) =11 (1 42l x) %), (50)
m=0 \1 + ir,.q m=0 1—r, (1 —x%
wh
ere F——> m]fo. (51)

The necessary and sufficient condition that the infinite
product in Eq. (50) converge is that

0

I (52)

a0l — ro(1 — xF
also converge.'® A necessary and sufficient condition
that this series converge is that if we find an f(y) such
that

r

= =0 53
f(y m) l—rm(l—xz)’} (53)
then
[y (54)
must exist.!! From Eq. (51) we see that
r m
= o ; (55)
1=r (1 —x)*™% By, — m(1l — x¥?
so that
y
) =—mm——. (56)
Bo — y(1 — xz)%

Since the integral in Eq. (54) diverges, the infinite
product in D(z), Eq. (47), also diverges. Therefore,
all Cunningham* should have concluded was that
the required D(z) cannot be represented as the infinite
product of Eq. (47), not that no such D(z) exists.
Furthermore, Levinson’s theorem has not even been
relevant here.

IV. EXPLICIT BOOTSTRAP SOLUTIONS

We shall now demonstrate that the S-matrix
elements represented by Egs. (29), (31), and (32)
satisfy Levinson’s theorem (8) and provide once-
subtracted solutions to the Low equation (12). For
this we shall need to know the analytic structure of
the exponential in Eq. (32), namely,

i(z* — Dt fw In [1 + F¥x")]x' dx’
Lo - DRt - Y

10 E. C. Titchmarsh, The Theory of Functions (Oxford University

Press, London, 1939), 2nd ed., p. 14.

11 W. Kaplan, Advanced Calculus (Addison-Wesley Publ. Co.,
Reading, Mass,, 1952), p. 315.

I(z) = , (57

w
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where F(x) is given in Eq. (33). The detailed examina-
tion of this function will be left to the Appendix. The
B(z) we shall use is that given in Eqs. (19) and (20).
Since the nonsingular part of the integrand in Eq. (57),

In[1 4+ F*(x)]x
-1}

is continuous and has a continuous first derivative on
any open interval 1 < x < R, where R is large but
finite and positive, the function in Eq. (58) will satisfy
a Holder condition!® here. Therefore, the integral in
Eq. (57), and even its principal value, will exist'? for
all finite values of z%, except possibly z% = 1. The
behavior of I(z) in the neighborhoods of z =1 and
z = oo is studied in the Appendix.

In order to verify that Levinson’s theorem can be
satisfied, we define, for the range | < x < oo,

, (58

Ao(x) = |4o(x)] exp [i$(x)], (59a)
D(x) = exp [(2)], (59b)
B(x) —t —1=|B(x) =t — 1] exp [ip(x)], (59¢)
B(x) + t = |B(x) + 1] exp [ix(x)], (59d)
so that, from Eqs. (8) and (29), we have
Aoy = 3(Ad + AG + Ay), (60a)
Ady = E(Ad + AB + Ay). {(60b)
From Egs. (A5) and (A13) we see that
Ap = —bm — (—m) =0, (61)
while Egs. (19) and (20) show that
Ap =0 = Ay. (62)
Therefore,
Ad, = A, = A0, (63)

Since Egs. (9) and (11) imply that the cutoff poles
must appear in each S,(z), since Eq. (32) shows that
Ay(2) has a simple pole at z = 0, and since Eqgs. (63)
and (8) tell us to arrange for the same number of
bound states in each channel, a reasonable form for
D(z) would be

(1 — ig/)(1 — iq/s,)

PO (T goa g &
where
B(xy) —t—1=0, 0<x,<1,
ss=(1—x), 0<s<1. (65)

We see from Eqgs. (29) that the pole at z = x, will
appear only in S.(z) but not in S;(z). Therefore,

12 N. 1. Muskhelishvili, Singular Integral Equations (P. Noordhoff
Ltd., Groningen, The Netherlands, 1953), pp. 11 and 26.
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Eq. (64) implies that

g(x)(x + $o)
tan [10(x)] = —| ——F 66
woeo1 = —[ T2 (e)
or
INO = —m, 67)
so that
A, = Ay = —m. (68)

Therefore, if we consider the target a bound state in
channel 1 at z = 0 and another bound state in channel
2 at z = x,, then Egs. (15), with Ay, =0 = Ay,
require that

0+, _
Qf + 1)A11 Res [51(2)]lz—0’

AZZ = Res [Sz(z)]lz=:coa
where, from Eq. (8), n, = n, = 1.
We must now verify that Ay, and A,, are positive in
order that there be no ghosts. If we define the mani-
festly positive constant C as [cf. Eq. (32)]

(69a)

(69b)

€ = (t+ § lim [z44(2)] (70)
then Eqs. (28a), (64), and (69a) imply that
Ay = c(" + 1) (lﬁ) >0, ()
K — 1 1 - So

since ¥ > 1, Eq. (11), and 5, < 1, Eq. (65). Similarly,
we find that

Ay =202t + 1) ( s"/K)Ao( %) > 0. (72)

1 4 s/

Finally, we see from the representation given in
Eqgs. (29) and (32) that the S-matrix elements have no
poles on the first sheet, aside from the bound-state
poles just discussed, only a finite number of zeros,

and, from Eq. (A20),
[S(2)]
1oad = 73
jel== [In |2]]t )

along any ray on the first sheet so that one subtraction
is sufficient for the Low equation.
ACKNOWLEDGMENT

The author wishes to thank Professor W. D.
McGlinn for several valuable discussions and criticisms
of the work contained in this paper.

APPENDIX

In this appendix we shall study the threshold and
asymptotic behaviors of
i(z2 — 1) Jw In[1 + FA(x"))x" dx’

1 (% - Dt - 2)

Kz) = , (AD

k)
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where
-1
F(x) =

t+b
3
x{;ln[x+<x2—1)1+(x _l)éﬂo}

(A2)

We begin by computing I(z) as z approaches threshold.
We shall show that the most singular part of the
integrand of Eq. (A1) yields a finite result at threshold,
so that the less singular terms yield nothing. We simply
state a result which is easily verified by an application
of Cauchy’s integral theorem,

_lf‘” In(y — 1) dy
adi (= Dy —(z=D]

ln (e"2)
l(z)%

where the phase of the argument of the logarithm has
been chosen to produce a cut for 0 < x < coand a
real logarithm for — oo < x < 0. Then, since F(x) is
dominated by the second term in the square brackets
as z approaches 1,

,» (A3)

Kz) —> ______i(zz — 1)‘}
z=1 27
f‘” In {[85/(t + HAN/(y — D]} dy
1 v = D}y . )
t+HEE -1
=1In , A4
[ Bo i ] 9

where we have taken the upper limit on the integral

to be 1 4+ ¢ and then added on a piece which vanishes

in the limit when z approaches 1. Therefore, from
Ag(2) —> (22 — DYig,.

In terms of the phase ¢(x), defined in Eq. (59a), this
implies that

$(1) = —3m. (A5)
Also, Egs. (19), (20), (29), (32), and (64) show that
Se(2) —p> 1, (A6)

so that the S-matrix elements have the proper thresh-
old behavior.

It is somewhat more difficult to find the asymptotic
behavior of 1(z) as |z| approaches infinity along an
arbitrary direction in the z plane. Even though I(z) in
Eq. (Al) is a function of z? and the whole z* plane is
only the upper half z plane, the reality property of
Ay(2) [i.e., Ay(z*) = A5 (z)] and of the S,(z) will imply
that there are no essential singularities anywhere on
the first sheet of the cut z plane if there are none on
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the first sheet of the cut z? plane. If we let R be an arbitrarily large but fixed constant and choose z > R,
then the dominant asymptotic behavior of I(z) is given as

In? (x)

1(z) __,‘(ZZ—'IE f “In {

2] 00 ks R
G

w

> In [n(t + %)][1 - %] +

ko

— In [n(t + %)](1 - 2)

where we have again added or dropped terms which
vanish when the limit is taken. Let

i [® dx x—z
h(z) = — - I
@ ﬂfR x In (x) 8 (x + z)
iJ'°° dx I (x+z)
=— n .
7 Jr X In(x) X —z

If we let z be real and positive, then

h(z) =In(InR) — In(In 2)
+l'f’ dx ln(x+z)
7JrRXxIn(x) zZ—X
i [\ dx X+ z
- 1
+7r£ xln(x)n(x—z)

- pl
> —ln(ln2) + iU
L R

o0 m

(A%)

dy
/12y In (zy)

() L (5)]

(A9)

Since a standard definite integral is

f ! (1 + x) dx =°
In —=—,
0 1—x/x 4

we see that the two integrals in Eq. (A9) have the
respective bounds

2 1

4 In(R)’
7 1

(A10)

(Al1a)

2

4 1n(z)

(A11b)

Therefore, as z approaches infinity along the positive
real axis,

m(t+ 3 w1
1) — ln[ J+l41nR’

Inz

(A12)

where the last term can be made as small as we please.

{_2 In [=(t + %)]ﬁw(xzd_x 2%) +

2iz

] x dx

(t + 322 (% — DG — 22)

© Ip [In® (x)]x dx
& (x* — D¥(x? — 22)}
®1In [In (x)] dx

r (*—2Z

—1n(1nR)—1f°° dx_ 1, ("_z), (A7)
mJr xIn(x) X+ z
From Eqgs. (32) and (59a) we see that
$(0) = —im, (A13)

while Egs. (19), (20), (29), and (64) show that, on
the real z axis,

1S.(2)| —> 1, (A14)
as must be the case in order to satisfy unitarity, Eq. (1).
Finally, we must examine I(z) as z approaches
infinity along any ray on the first sheet. If we let
z = pe'#, then®
In ("_—+ ) ~in {[(x2 — P + 4x%p* sin? ¢1’f}
x—z . x* 4+ p® — 2xp cos ¢

+ itan™! (2_____x2p s f ) , (Al5)
x“—p
where 0 < ¢ < 7, since we have already studied the
case when zis real. Also, in order to recover the proper
expression for real positive z (i.e., ¢ = 0), the inverse
tangent in Eq. (Al5) ranges from = to =/2 as its
argument goes from zero to infinity, when p > x, but
from 0 to #/2 if p < x. Furthermore, since we shall
need only |S,(z)|, and therefore | 44(z)[, we can examine
just the real part of h(z), Eq. (A8), since the imaginary
part is bounded:

Re h(z) = — lf 9 ot (2__xp S ¢)

mJr xIn (x) x* — p?
-t P
Lot B
= _1 fl dy -1 (2ysiné
+ f[ ———R;;y lntf:‘)l 2—y—5i(‘—‘;31 | yim
e (755) ) @9

The last term in Eq. (A16) vanishes as p — oo since
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the integral is bounded by

_L_ 1 ﬂ tan-" (Zy sin (ﬁ) ’
InpJo y 1—37
and the integral in (A17) clearly exists [cf. the state-
ment about the range of the inverse tangent following
Eq. (A1S)]. The first integral in Eq. (A16) has the
following asymptotic bounds, again because of the
range of the inverse tangent:

(A17)

JAMES T. CUSHING

Because of the minus sign in Eq. (A16), we see from
Egs. (Al), (32), (29), and (19) that, asymptotically
for z not real,

[4o(2)] < 7(r + H(In |z])~* (Al9)

so that

1S:(2)] < (In |z))2, (A20)
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In [(In )] < 1 f Py which implies that one subtraction will be sufficient
7 Jrip y In (py) for the Low equation. That one subtraction is neces-
« tan-! 2y sin ¢2) <In(lnp). (Al8) sary for bgotstrap solutions has been shown by Huang

—1+4y and Low.
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It is discovered that the algebra of the Lee-model fermion eigenfields is not that of free-particle operators.
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algebra. The asymptotic convergence of these eigenfields is not examined. However, it is found that all
such Lee-model fermion fields, including those constructed by the Yang-Feldman method, must satisfy
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the above algebra and do not enjoy a free-fermion canonical algebra.

1. INTRODUCTION

Asymptotic fields are essential to the LSZ formula-
tion of field theory and have been studied intensely by
many authors. In order further to understand the
nature of asymptotic fields, it is useful to examine
them for simple soluble models; in-fields for a sepa-
rable potential model have already been constructed,*
while Ezawa? has previously studied the Lee model>*
in its lowest sector.

One common way to define an asymptotic field is

* Supported in part by the U.S. Atomic Energy Commission.

t Based on part of a doctoral thesis submitted by Stanley Jernow
to the graduate school of The Pennsylvania State University.

1 Present address: Knolls Atomic Power Laboratory, Schenec-
tady, New York.

1 E. Kazes, Phys. Rev. 135, B477 (1964).

¢ H. Ezawa, Ann. Phys. (N.Y.) 24, 46 (1963).

2T. D. Lee, Phys. Rev. 95, 1329 (1954).

4 G. Killén and W. Pauli, Kgl. Danske Vidensk. Selsk. Mat.-Fys.
Medd. 30, No. 7 (1955).

through the Yang-Feldman construction.>® This
construction yields fields which automatically obey
the equation

(H, Af]_ = E.Af (1.1)

in the Heisenberg picture, where E; is an energy, H is
the relevant Hamiltonian, and A} is the asymptotic
field creation operator. In the present work the solu-
tions to Eq. (1.1) are examined for the Lee model in
momentum space. Here the field operators are con-
structed, not by the Yang-Feldman method, but by
the most general possible expansion in terms of bare
fields.” This procedure allows us to examine the
in-fields in greater detail than Ezawa has done.

5 C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).

§ W. Zimmermann, Nuovo Cimento 10, 597 (1958).

7 H. Ezawa, K. Kikkawa, and H. Umezawa [Nuovo Cimento 25,
1141 (1962)] have given a similar construction for in- and out-fields.
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It is discovered that the fermion eigenfield solutions
to Eq. (1.1) must obey certain stringent conditions:
they must have the noncanonical algebra

A A} =1~ gA?Aj =11 - 474), (1.2
j#t i¥i

where the sum (or product) is over all other eigen-
fields. This algebra is explained by the fact that these
fields represent operators which create states and not
particles; it is proved that any eigenfield which obeys
orthogonality and a general Pauli exclusion principle
(as defined in Sec. 3) has the algebra of Eq. (1.2). In
Sec. 3 it is shown that the harmonic oscillator can be
solved to yield fields having this same algebra.
Another model which displays similar behavior is also
given.

The asymptotic convergence in time of these eigen-
field solutions has not been examined ; thus a question
remains as to whether the field operators are truly
asymptotic fields or rather some linear combination
of in- and outfields. In partial resolution of this
question, it should be noted that the mathematical
expressions which occur in these solutions do contain
appropriate =ie factors, and the fields thus refer to
incoming or outgoing waves (just as do the Yang-
Feldman retarded or advanced Green’s functions;
see Ref. 1 on this point). It is for these reasons that the
words asymptotic field and in-field are used freely in
the following sections. The eigenfield solutions,
furthermore, create scattering states for the sector in
which they are examined, and are thus in-fields in that
sector; they are identical to Ezawa’s? solution in the
N-6 sector. Finally, the fact that the most general
fermion solutions to Eq. (1.1) are found to obey the
anticommutation relations of Eq. (1.2) implies that
any Yang-Feldman Lee-model fermion in-field must
also exhibit this algebra.

2. ASYMPTOTIC FIELDS OF THE LEE MODEL

The Lee model describes three particles, two static
fermions N and ¥V, and a lightboson 6 which may
move relativistically. The Hamiltonian is

H = Hyg+ myNtN + m,V*V + AGtNtV + AGV*N,
(2.1

where

H,= f ko>, 84(k)0(K),

G+Ejﬁkﬂwaa%m,

op = (& + K,
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and
7 7 = {N, N}, = +1,
Ve, V), = (N5 N4, = (7, N}, = (V, N,
=0, (2.2)
[0(%), 6*(p)]- = o(p ~ k),
(6¢k), 6(p)]- = .

All bare fermion operators commute with all bare
boson operators. The real function f{w,) is assumed
smooth and to have a form sufficient to ensure the
convergence of all the integrals which will be en-
countered. Vector symbols for momentum indices of
boson operators have been suppressed. In Eq. (2.1)
all symbols are bare. Renormalized quantities will be
carefully defined when they appear. Often creation and
destruction operators for the boson will be symboli-
cally referred to in the text as 6+ and 0, respectively.

There are two constants of the motion for this
Hamiltonian: the operators

Q,=N'N + ViV (eigenvalue g,)

and
Q, = f 6t (p)(p) dp + V1V (eigenvalue g,) (2.3)

both commute with H. The eigenstates of these oper-
ators thus separate into mutually orthogonal groups
(sectors) of common g, and g,. If an operator is
described as being known to within a certain sector, it
means that the matrix elements of the operator be-
tween states belonging to that sector and to sectors
of lower g; and g, are known exactly; if this is not the
case, it will be made clear in the text. That sector with
g1 = ¢ = 1 is known as the N-6 sector.

Corresponding to the three elementary particle
fields of the model, we expect to be able to construct
three asymptotic field operators obeying the eigen-
value equations

[H, 6(p)]- = w,05(p), (2.4)
[H, Viil- = MV, (2.5)
[H, Nl = myNi, (2.6)

where the energies of 0;,(p) and N} are bare and M,
is physical.

To solve the above equations the in-fields will be
expressed as linear combinations of all fermion terms
of the correct quantum numbers with corresponding
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boson coefficients:
01.(p) = Fi(p) + FE(DV*N + FS(DN'V + F{(p)V"V
+ FE(p)N*N + F{(pN'NV'V, (2.7)
Vi =LVt + L{V*N'N + L{N*V*V 4+ L{N*,
2.8
Ni, = PjV* + P{VTN*N + PINTVTV + P{N™.
2.9)
The quantities Fy(p) - Ff(p), LT — L}, P — P{,
which are defined by Egs. (2.7), (2.8), and (2.9), are
boson operators containing §-particle creation and
destruction operators; therefore, they commute with
all fermion operators, Note that the fermion terms,
because of their quantum numbers, are the only ones
which may appear in the in-fields (no matter how these
in-fields are constructed). The in-fields of Egs. (2.7),
(2.8), and (2.9) are thus the most general asymptotic
fields possible. Obviously, F{ (p), Ff (p), F5 (p), F{ (p),
and L} and L; all have the quantum numbers of a
6+ operator; Fj(p) has the quantum numbers of
g+6+; Py and P; have 6 quantum numbers; and
FH(p), LT, L, Pf, and P{ have the quantum numbers
of the vacuum. Once these boson coefficients are
known, the problem is solved.

The determining equations for these boson oper-
ators are found by substituting Eqs. (2.7)-(2.9) into
Eq. (2.4)-(2.6). By equating coefficients of linearly
independent terms—that is, coefficients of similar
normal ordered fermion operators—the following
equations of motion result:

w,F1(p) = [Hy, F{(p)L_,
(w, + my — m)F{(p) = [Hy, F3(p)]-
+ MG, F{(p)l- — AF{(p)G + AGF{(p), (2.10b)
(w, + m, — myp)F{(p) = [Hy, F3(p)l_ + A[G*, Fi(p)]_
+ AGHFI(p) — AFE(p)G*, (2.10¢)

w,Fi(p) = [Hy, F{(p)l. — AF§(p)G* + AGF3(p),
(2.10d)

w,Fi(p) = [Hy, F(p)I_ — AF{(p)G + AGF}(p),
(2.10¢)

(2.10a)

w,F§(p) = [Hy, F{(p)l- — AlG, F3(p)]_

— A[G, F{(p)L_, (2.10f)

and

(M, —~ m)L{ =[H,, LT + AGL], (2.11a)

(Mv - mv)L;_ = [Ho, L;]_ - /1[6, Lj]— + j-L-gG,
(2.11b)

(M, — my)Ly = [Hy, L31. — AIG*, L{1_ + AL}G
(2.11c)

(M, — my)Li = [H,, L] + AG*L}. (2.11d)

S. JERNOW AND E. KAZES

The equations for P;" — P} are the same as Eqs. (2.11)
with my substituted for M, (the solutions P} differ
from L] by their quantum numbers).

These equations may be solved by constructing the
most general F(p) — Ff(p), L = Lf, P — PJ in
terms of 0+ and 0 operators. An example is

FP) = | fui(p; PO (P1)
+ f Fn2(D5 Pus Pa s k)0 (P07 (p2)0(ky)
+f/n,3(p; P1» Pz» Pss Ky, ko)

X 0 (p)0H(p)0F (p)0(k)b(ky) + - -,
n=1,4,56 (212

Repeated variables are integrated over; corresponding
dp,, dk; have been suppressed. For ease of recognition
momentum variables corresponding to a 6+ operator
have been labeled p;, while those corresponding to a
6 have been labeled k;. The coefficients have been
made symmetric separately in all p; and in all k;; for
example,

/4,3(P;P1,P2:P35 ki ks) =/4,3(P;P1,P2,P3§ ks, ky)
= fas(Ps P1sP3s Pes ki k) = fya(D5 Pas Pos prs ks o)
= /4.3(P;P1,P3,P2§ ks, ky) = etc.

Similar constructions are true for Ff (p), FJ (p), all ..,
and all P} .

The normal-ordered expressions for F;(p), L}, and
P} contain an infinite number of terms, as required by
the equations of motion. That is, after substitution of
the Ff(p), L}, or P;} into the corresponding equations
of motion, those equations must be normal ordered in
order that coefficients of like linearly independent
f-particle operators may be equated. This process
would lead to equations of the symbolic form

6+ 4 6+0+0 = 0+ + 01016 + 6101660

if a finite number of terms were used for Fi(p), L},
or P} . The expansion to an infinite number of terms
for the boson operators avoids this difficulty and,
furthermore, assures that the solution of the equations
of motion will be solutions to all sectors. We will, of
course, only be able to solve for the lowest sectors,
the lowest terms of the series.

Consider 6;;(p). Examination of Egs. (2.10) shows
that Eqgs. (2.10a) and (2.10f) decouple from the rest.
In fact, Eq. (2.10a) is completely separate and allows
solution for F;(p) by itself. It is obvious that substi-
tuting Eq. (2.12) for F{(p) results in an infinite series of
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the symbolic form
Fi(p) ~ 6" + 61010 + 67676700 + - - -, (2.13)
each term of which must have a total energy w,. But
in the limit A — 0, we expect F{(p) = 6*(p), and all
other F}(p) = 0. Therefore, as an initial condition at
A = 0, the value
F{(p) = 6*(p) (2.14)
shall be imposed. Equation (2.10a) is independent of
A, however; therefore, Eq. (2.14) represents F(p) for
all A.
Note that Eqs. (2.10d), (2.10e), and (2.10f) may be
added together to give

w,(Fi(p) + Fi(p) + F{(p))
= [Hy, F{(p) + Fi(p) + F{(p)l-. (2.15)

Setting initial conditions in a manner similar to the
treatment of Ff(p) above,

Fi(p) + Fi(p) + F{(p) = 0 (2.16)
will be demanded for all 4. It is thus possible to
concentrate on F; (p) — FJ (p).

Substituting the general forms for F;(p) — FJ(p)
into Egs. (2.10), using Eq. (2.14), and taking appro-

priate matrix elements yields for the lowest coefficients
A (wy)
= 2.17
/2,1(P) D¥(w, — M, + my) ( )
and
Pf (0,) f(0,,)
/5,1(P§ p) = n )/ (@, T
D¥(w, —~ M, + my)w, — o, + ie)
where (2.18)
D¥(w,) = (w,, + M, —m, + A
dqf*(wy) )
(wa+mN—Mv—wp—i€)
in the limit e — 0. (2.19)
In this derivation, +ie was added to w, in the

realization that 6 (p) will be used in the constructlon
of the N-0 scattering state. It is, of course, the same
+ie which is inherent in the retarded Green’s function
ofa' Yang-Feldman definition of thein-field.® Note that
because of Eqs. (2.4) and (2.6), 6 (p)Ni |0) is the
N-0 scattering state. Since the scattermg amplitude
is proportional to (§+N+ | 05 Nit), we expect the
amplitude to be contained in the constructed 6% (p);

and, indeed, £ .(p;p)) is (aside from klncmatlcal
factors) just this amplitude. The d(w, — w, ) term
which would ordinarily appear on the left-hand side of
Eq. (2.18) has been dropped. The equations of motion,

& See Ref. 1.
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Eqgs. (2.10), do not yield a unique solution for the
coefficient of this term; setting it equal to zero is
consistent with the normalization

(NLOE(D) | BN = 8(p — K.

It was not found possible to proceed any further
with the formation of 6,(p); the equations of motion
appear too complicated simply to separate and allow
solution of higher terms of F;(p), F{(p), F{(p), or
F{(p). When the equations are decoupled, extremely
involved integral equations appear. But considering

(2.20)

05 ~ 8 + VTN + 6*N*N,

it is clear that 6;(p) is known completely within the
N-0 sector.

Now consider the V7 field; because Eqs. (2.11a) and
(2.11d) decouple from the rest, it is possible to solve
for L} and L} alone. Substituting the constructions
analogous to Eq. (2.12) into these equations, normal
ordering, and, where necessary, taking matrix ele-
ments, we get

— 72 2(“’:1) dq
M, —m, sz——————_ ol
and
tulp) = 2ol @) )

M,,—mN—a)p

In Eq. (2.22), £}, is arbitrary. An appropriate 4, ,
may be found by requiring

O ViaV 5 10) = 1. (2.23)
This yields
d 2 -1
Ol = (1 4 f W —q{nz(qu—) ” )2) . @2.24)

Both the constant 7, , of Eq. (2.24) and the eigen-
value equation for M,, Eq. (2.21), are expressions
which would also result from the usual calculation of
the physical V-particle state [V}, by the solution of

H V), = M,V),. (2.25)

Demanding normalization of |V), above gives the
renormalization constant Z, which is just |/ |2 In-
deed, the usual calculation yields

Vin 10) = [V),.

This result was to be expected, of course, from Eq.
(2.5). Similarly, 6f(p)|0) = |0*(p)), and, as will
appear, Ni |0) = [NT). In what follows M, = my
for convenience.

By taking matrix elements of Eqs. (2.11a) and
(2.11d), it is possible to write the general equations for

(2.26)



1330

the nth terms of L} and L]. These are

"/4.71(171, T, pn N kl" Ty kn—l) = A(wkl +

X [,a(Prs " Prcas krs w0

2 kn——l)f(wp,.) + ll,n(pl ’ e

S. JERNOW AND E. KAZES

e — AT}
oy, — 0, — w,, =+ i€)

s Pn—2> pn ; kls T, k’n—l)f(wp,,_l

4+ OnPes Pss s Pes Ky k) fl@p )] g, sy, 0y, 00, @,
X Owg, + o, | — 0y~ — 0,) (2.27)
and the integral equation
Lin(Prs " s Prets ki s k) = [Af(n — DIIDH (g, + -+ 0, — 0y, — 7+ — wa),,_l)]_l
X [ana(Prs s Pucas Ky oot kn-—z)f(wk,,_l) + o+ Py P ke, kn—l)f(wkl)]
- 12[D+(wkl For 0y, Wy, — 0 — wp,,_l)] -
y f Aqf(o 1P s Paeas @3 ki s Ky ) [0, )+ 41,00, 00, s P s kas k) f(0,)
(0 + @y, + 0 0y, =y, = — 0, — )
1[40+ 050 0 0y Gy = 0y, == 0, = 00 (00,
(2.28)

Here [similar to Eq. (2.18)] +ie was added to M,
because of the future use of Vil to construct the
scattering states. The coefficient C(awy,, ", g, ;
w,, """, o, ) may be set equal to zero. For n =2
Eq. (2.28) reduces to

—lzz%f(wp) f (wk) _ sz(wp)
w,D¥(w, — w,) D (wy, — w,)

% f dqf(w)t1,2(q; k)

(wq - o + 0, — i€)

/1,2(17; k) =

(2.29)

which is exactly that integral equation which arises
(by use of the Lippmann-Schwinger equation) for the
amplitude for V-0 scattering. While Eq. (2.29) has
been solved by several authors,*™2 we shall not now be
concerned with its solution. The present work shall
be restricted to the N-0 sector.

A better understanding of Eq. (2.28) is gained by
observing that, for n = 3, the solution represents that
part of the V-00 scattering amplitude which is inde-
pendent of the V- scattering. The appearance of
scattering amplitudes in the Vi field is not surprising,
for such amplitudes are proportional to

(VrOf - - 05| VE6h, - - - 66 (for V-n6 scattering).
Hence, Vi should intrinsically contain scattering

amplitudes; we expect that the equations for higher-
order coefficients will be just those which would arise
from a consideration of higher-sector scattering.

? R.P.Kenschaft and R. D. Amado, J. Math. Phys. 5, 1340 (1964).
10 A, Pagnamenta, J. Math. Phys. 6, 995 (1965).

11 C, M. Sommerfield, J. Math. Phys. 6, 1170 (1965).

12 E, Kazes, J. Math. Phys. 6, 1772 (1965).

In solving for Vi and for N, the symmetry
L-li_= _Lz’ P-ll_= _P-2‘_a
Ly = —Lf, P{=—Pf (2.30)
is required to all sectors. A detailed proof will be given
in the Appendix. The N} field may be solved for in
exactly the same manner as V. Here, again, relevant

scattering amplitudes appear.
All the in-fields can now be written:

+ Mo )VIN | 2¥f(w,)
o = P.
m(p) = 0%(p) + D) D)
f f ()0 (PIN'N (2.31)
— w, + ie ’ '
Vi = (Z)%=V+ VNN + lff(wﬂl)9+(pl)N+V+V
wﬂl
[ e G 252
Wi — 2 [ L@V iy N N
D +(wk) D+(wk)
2 _S(w)f ()8 (p)O(K)
— {142 e+
(1 DHwg)(, — w, + ie))N i
o S(w))f (wk)9+(P)0(k)
A
* (1 * D¥ (o )y, — w, + le)) ’
(2.33)

where repeated variables are integrated over.
These fields are all known to the N-6 sector;
indeed, because

VTn = LIV* — L{V*NtN — L{N*V*V 4+ L{N*,
=PVt — P+V+N+N PINTVYV 4 PIN®,
(2.34)
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the two central terms of V;} and N are known to
even higher sectors. This form is demanded by the
equations of motion.

One surprising result of Eq. (2.34) is the inability
of these in-fields to create a state with the |[NtV+)
quantum numbers. In fact, from Eq. (2.34),

NLVHL =ViNL =0 (2.35)
And such a state may not be created by the com-
bination 6NN, since NiNj =0. Thus the
operators Nit, Vit, and 67, do not create a complete
set of states.

What has been overlooked is the fact that NtV it-
self is an eigenfield satisfying

[H, N*V+]_ = (my + m)N*V+.  (2.36)

This in-field may, of course, be multiplied by any
suitable quantum-numberless combination of 6 and
6 operators. The resulting in-field

(N+V+),, = RN*V'+ (2.37)

would obey

[H, RN+V+] = MRN*V+, (2.38)

where R is a boson operator with the quantum num-
bers of the vacuum and M is an energy. Investigation
of Eq. (2.38) shows that the equation of motion for
R is independent of A. Thus, similar to the discussion
concerning Eq. (2.14), R may be set equal to 1 for all
A; with this choice, Eq. (2.36) holds.

It may be noted that Eq. (2.35) should follow inde-
pendently of the equations of motion or of the explicit
form either of the Hamiltonian or of ¥V or Nj,. This
is because, regardless of the properties of any other
field, N+¥'+ exists as an in-field [obeying Eq. (2.36)]
for the Lee model. Therefore, the state [NTV*1) is a
physical state with an energy of my + m,. Were
Nitvik (or ViiN{) nonzero, then the state [NVt
(or |ViENE)) would also exist, but with an energy
my + M,. In the limit of A — 0, of course, only the
first state would be present. There seems to be no
physical reason why this state should, upon the
introduction of an interaction, split into two states of
the same quantum numbers but different energies.
The impossibility, then, of having two such states is
reflected in Eq. (2.35). Furthermore, the state [N; Vi
could be expected not to exist, since its energy would
be just the sum of the energies of the two physical
particles which make it up, implying the absence of
an interaction energy.

Now it is possible to express the Lee-model
Hamiltonian in terms of in-fields. Using Eqs. (2.24),
(2.19), (2.31), (2.32), and (2.33), along with the
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dispersion relation for D(z),
2
L _Z_p[ )
D(Z) Z ID (wa)l (wa - Z)

yields exactly

H = [ ko000 + myN s
+ M'UV—x"—nVin + (mN + mv)N+NV+V: (240)
where the last term is the energy of the N*¥+ field.
The scattering states of this Hamiltonian are obvious.
Consider, now, the algebra of the in-fields. Because
these fields are not known to all orders, the commuta-
tion (or anticommutation) relations are not expected to
be known exactly. Nor, in general, will they be known
up to even the N-0 sector. This can be seen, for
example, with the aid of the commutator

[0:n(K), Oa(P)]- = 0u()0E(p) — 05u(P)0in(K). (2.41)
We may insert complete sets of states

[ein(k)’ 6—1*;1(11)]—
= g Oin(K) [m)m| 035(p) — 2, 61u(p) [m)(m] O5x(K).

(2.42)

Considering a matrix element of the commutator,
then, is equivalent to considering a matrix element of
Ot (p) [or 6;,(k)] between [m) and some other state;
if |m) belongs to a higher sector than N-0, the
original matrix element of the commutator cannot be
determined from the solutions given in Eqgs. (2.31),
(2.32), and (2.33). Thus, the choice of commutator
matrix elements which should be correct is narrowed
extremely: only those elements which do not connect
to higher sectors may be considered.

For the commutator of Eq. (2.42) this restriction
allows only the (0/|0) and (N||N) elements to be
known exactly. Using Eqs. (2.31) and (2.39) results in

[Oin(k)7 Hj_n(p)]-
= §(p — k) + (incomplete higher sector terms).

(2.43)
Therefore, to the lowest sector, the 6, (p) field obeys
boson commutation relations.
The commutator of 6 (p) with other in-fields may
be investigated. Consider
INFV*, 65(p)L
= —[F{(p) + Fi(p) + F{(»IN*V* =0 (2.44)
to all orders in the 6-particle operators; this follows
from Eqs. (2.7) and (2.16). And similarly,
[VN, 6f(pL = [F{(p) + Fi(p) + F§(p)IVN =0

(2.45)
to all orders.
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Considering the lowest-order terms for which it is
possible to know the matrix elements, it is found that

[N&, 0h(p)]- =0, (2.46)

[Nin, 605(p)L. = 0, (2.47)
and

[Vin, 65(p))- = 0. (2.48)

[Vit, 6f(p)]_ has no matrix elements which lie in a
low enough sector to be known.
The algebra for the fermion fields is found to be

{Vin, Vi}y = 1 — NLN;, — N*NVYV, (2.49)

{Nim, NL}y =1 — ViVia — N*NV'Y,  (2.50)
and
(VN,N*V*}, =1 = NN — ViV (251)

to the lowest correct orders. These anticommutation
relations are not those of free-fermion fields. The physi-
cal and formal reasons for this algebra will be dis-
cussed in Sec. 3.

3. ASYMPTOTIC FIELD ALGEBRA

In this section we shall consider more closely the
unusual anticommutation relations exhibited by the
fermion asymptotic fields of the Lee model [Egs.
(2.49), (2.50), and (2.51)]. In order to do so, the
general properties of these fields will first be examined.

The fermion in-fields may be said to obey a general
Pauli exclusion principle (GPEP) to all sectors. In the
present context this statement means that any two
creation operators, for the same or different in-fields,
when multiplied together yield zero:

(@  NLNR =0,

(b) ViaVi =0,

() NTVIN*V* =0,

(d) N -if_nV; =0,

@ ViaNg =0,
This result follows from Eqs. (2.2) and (2.34).

The fermion in-fields are also subject to an orthog-
onality condition to all sectors. This will mean that
the state created by any fermion in-field of the Lee
model is orthogonal to a state created by any other

fermion in-field. This condition is expressed by the
equations

(a) VinN—i; = 0’ (d) NiDV-lj;l = 0’
(b) VNVTn = 0’ (e) VinN+V+ = 0,
(©) VNN, =0, (f) NuoNV* =0,

where Egs. (3.2d)-(3.2f) are the Hermitian conjugates
of Eqs. (3.2a)-(3.2c) and have been written here for

() N*V*VE =0,
(&) VLNV =0,
(h) N*V*N%, = 0,
(i) NLNTV*=0.

3.1)

(3.2)
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completeness. The proof of Eqs. (3.2) is given in the
Appendix to all sectors; it will later be shown (in the
proof of Theorem I in this section) that the GPEP
follows as a consequence of orthogonality alone and is
actually independent of Egs. (2.34).

The further consequences of the GPEP and orthog-
onality are

(a) {V:l";l’V-lj;l-l—:O, (d) {V-lj;l’N-i.*;lﬂ-:O’

(b) {N—i’-n’ NTD + = 09 (C) {V-i’-n’ N+V+}+ = 0:
(©) {N*VT,N*V*}, =0, (f) {NL,N'V}, =0,
and (3.3)

{Vin’ NTn}+ = N_il_nVin # 0, (3.4a)
{Vin’ N+V+}+ = N+V+Vin # 0, (34b)
{Nin, NV}, = N'V*N,, 0.  (3.4c)

Using the orthogonality conditions, the anti-
commutation relations, Eqgs. (2.49), (2.50), and (2.51),
may be written, respectively, as

{Vin, Vi}s = (1 = NLN )1 — N*NVTY), (3.5)

{Nin’ N; + = (1 - V;,_an)(l - N+NV+V)) (36)
VN, NP+, = (1= NiN( = VitVi). (37)
And these equations yield

VinVia = NigNf, = VNNV, (3.8)

The fermion-asymptotic fields of the Lee model,
then, because of the GPEP, are fields which create
individual states; no two of them may be combined to
form a third state. These fields, furthermore, can be
used to express the original Hamiltonian in a diagonal
form, Eq. (2.40). And they do not have a free-fermion
field algebra.

Some insight into the origin of these properties may
be gained by considering the general diagonal repre-
sentation for any Hermitian Hamiltonian:

H =3 E,|mXm|,

where the sum is over all orthonormal eigenstates of the
Hamiltonian, E,, being their energies.
It is clear that a solution to the eigenvalue equation

[H, AT]— = EzA;'_s

is the operator

(3.9)

i=1,23""", (3.10)

A = [iX0], A4, =0)il, (3.11)

where |0) is the ground state (zero-energy state) of H.
Other operators exist which satisfy Eq. (3.10) (e.g.,
|i}(m], if we take E; = E; — E,,), but the A7 of Eq.
(3.11) is one which will not destroy |0). 4} can thus be
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called an eigenfield. The set of all A*is complete in that
it can create a complete set of states from the ground
state |0). In what follows i # 0; the zero-state projec-
tion operator |0){0] will be discussed in detail later.

Because the eigenstates are orthonormal, the eigen-
fields obey orthogonality as well as a general Pauli
exclusion principle:

A, A7 = 6,;100] (G.12)
and
AfAT =0, for every i, j. (3.13)
Furthermore, it is apparent that
H=3YE,A}A,. (3.14)

There is a connection between orthogonality and the
general Pauli exclusion principle for ail operators,
such as A7, regardless of their representations. As will
later become apparent, the in-fields Vi, N, and
N+V+ correspond to A4}; the connection between
Egs. (3.2) and (3.1) will be made clear in the proof
of the following theorem.

Theorem 1: If a set of creation operators B+ exists
and is complete in that it can create a complete set of
states of different quantum numbers (from the
ground state |0)), then the existence of a GPEP
between the operators implies orthogonality, and
conversely.

Proof: (a) GPEP implies orthogonality. This state-
ment may be proved by a consideration of the oper-
ator B;B} (i # j). It is obvious, because of the GPEP,
that this operator has no nonzero matrix elements
between any states (k| {m), where [m) = B} |0). The
element (0] B;B; |0) is zero because all operators
create states of different quantum numbers. The set of
states |m) is complete; therefore

BBf =0 forall i,j,i#]j.

(b) Orthogonality implies a GPEP. The proof is
similar to that above. Because of orthogonality and the
fact that (0 Bf = 0, the operator BfB;j has no
nonzero matrix elements except possibly (/| Bf B} |m).
This last matrix element is zero from a consideration
of quantum numbers. Therefore

BB} =0
for every i, j. Q.E.D.

Note that the presence of 6 (p) makes the Lee-
model fermion-asymptotic fields an incomplete set.
The first part of this theorem, then, does not apply,
but the second part can be used, and the statement
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made previously is proved: orthogonality does imply
the GPEP for the fermion-asymptotic fields of the
Lee model.

It is possible to show the connection between the
GPEP (and orthogonality) and the algebra of the
operators B,

Theorem 2: If a set of creation operators B+ exists
and is complete in that it can create a complete set of
orthonormal states of different quantum numbers
(from |0)) and obeys a GPEP (or, equivalently, orthog-
onality), then it has the algebra

{B., B}, =1— 3 BiB, = [T (1 — B}:B,).
m*n m#En
(3.15)
(No summation is intended on left-hand side.)’

Proof: This theorem may be proved by expanding
the operator B, B} in a complete set of states. A shorter
method consists of simply noticing that, because of
the GPEP, the only nonzero element in the matrix
representation of B, B is

(0| BB, |0).

If the set Bt creates orthonormal states, then

(a) (0| B,B}10y=1 for any n.

There is another operator with this matrix representa-
tion and that is [0)(0|. Thus the two operators are
identical. Now

() 10)0]=1— 3 [m)m]=1—~ 3 B.|0)0| B,

where the sum is over all states but |0). The equation
above is an integral equation for |0){0|, the first
iteration of which yields a solution:

© |0><01=1—23:(1—2|n><n|)3m

m

by the GPEP. Therefore,
(d) B,B,=1-2B.B,=T]01~ B}B,),

m

where the second equality results from orthogonality.
Thus

(e {Bn3B-'|r-L}+ =1- z B1+an = H(l - BrTzBm)
m#n m#n
Q.E.D.
It is now possible to show that any set of operators

B+ which creates a complete set of states (B [0) =
|i)) and which obeys a GPEP (BB, = 0) is identical



1334

to the set AT. Consider
=B Z |n)(n| =

where the sum is over all states including the ground
state.

Similarly, one can show that any set of operators
B* which obeys orthogonality and which creates
orthonormal states is identical to the set 4*. Consider

Bf = 3 |n)n| Bf = 3 |n){0| B, By =|i)0| BB,
n=0

n=0

B |0)0] = i)}0] = A7,

where the sum is over all states including the ground
state. Therefore, by Theorem 2,

B = |i)0] (1 -3 B;,tB,,.) = |i)0] =

Thus the operators A} obey the field algebra of
Theorem 2 (and of the Lee model). This, of course,
can be proved by direct computation using Eq. (3.11).
Note that everything which has been said about A
applies for any Hermitian Hamiltonian, irrespective of
the question of second quantization (it can apply to
the hydrogen atom, for example). Operators have
been found which have a definite asymptotic field
algebra and which diagonalize the Hamiltonian.

To relate the eigenfields to field-theoretical concepts,
consider the harmonic oscillator

H = hwata, (3.16)
where
[a, a]_ = 1. 3.17)
Now
+ (a ) —
A; = ')% [0X0] = [i)0]. (3.18)

The operator [0)(0], which destroys every state but
{0, may be expressed in terms of a* and a. The result,
which is proved in the Appendix, is

[0X0] = 1 + 3 (=1 (a*)(a)'/j!.
=1
And, therefore,

@) ;
A= (“,)%(1+2( Di@yay]t).  620)

Conversely, the operator a* may be expressed in
terms of 47 Since

(3.19)

=3 In+ Dinl(n + DY,

n=0

(3.21)
then

= AF + ZAn+1A,,(n +nt (22
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The two expressions, Eqgs. (3.20) and (3.22), can be
shown to each obey the correct field algebra [Egs.
(3.15) and (3.17)]. It is apparent, then, that boson
operators as well as fermion can have the anticom-
mutator algebra of Eq. (3.15). The Hamiltonian of
Eq. (3.16) can be recast into either of the two diagonal
forms:

H =3 nhoAd}A, = hoata. (3.23)
n=1
Thus there are clearly two types of eigenfields:
[H, (a")"]_ = nhio(a™)" (3.24)
and
[H, ATl = nhwA?. (3.25)

Before presenting the analogous problems in the
Lee model, a discussion of the simpler considerations
arising for a model Hamiltonian with two bosons
seems appropriate. Consider the Hamiltonian

H = mata + mybtb, (3.26)
where
[a,at]. =1=[b, b,
[a, bt = [b, at]_ = 0. 3.27)

The results are

0 = (1 + S

O 1\ KM R\
X (1 +m§=1(——£r:‘)(i) (3.28)

and
+Y7! b+ s
4, = oy, (329)
(r1)*ishH
where r and s are not both zero. Also
= 3 A+ i, (3.30)

=0

where, for the r = s = 0 term, 4, is meant, and

= Z‘)A;“ts+1Ar.s(s + 1)%a (331)

s=0
where, for the r = s = 0 term, A}, is meant. The
Hamiltonian may be written in the diagonal form

H = z (rml + st)A:sAr ]
r=0,5=0
(r=s#0)

Carrying out this program for the Lee-model
Hamiltonian in the absence of interactions and for a
static boson

(3.32)

H = myN*N + m,V*V + hwata, (3.33)

with the usual commutation and anticommutation
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rules, results in
+37 J
0)0] = (1 — N*N)(1 — V+V)(1 n 2(_1)%2@)

(3.34)

Labeling the eigenfields A in accordance with their
quantum numbers and indicating the numbers of
bosons in a field by the subscript n, we have

Vi, = E‘% v+ 10)0)
n .

((‘:1';% (V+ — V*N*N)
« (14 5 (Ja'+) (a)’)
Ninn = f“ ;} N*10)0)
((‘;';%(NJf NTVHY)
Py
( ,21( 1)(101)(0))

NV = EL N+ 0)0)
(D)

G iy 4 3D @
(n ( +§1 j! )

B = & il
@, g (=D
(n!)*( 2, j! )

x (1 — N*NY(1L — VD), (3.35)
from Eqs. (3.34) and (2.2). We may express the bare

particle operators in terms of the above eigenfields;
for example, similar to Eq. (3.21),

N EN;tlnolnn+Z(N+V+)mn in.n

n=0

(3.36)

or, rewriting the term at n = 0,
= N-ii_n + (N+V+)inVin + z N-il_n.noin,n
n=1

+ 2 (N+V+)in.nVin,n’ (337)
etc. n=l1
It is possible to consider the case of nonstatic bosons
for the Lee model without interaction. In that case
the result, which is proved in the Appendix, is

[0X0] = (1 — N*N)(1 — V*V)

[143 2 apar

=1 j!

X 0%(py) -+ 6% (p)b(py) - - - 0(1’;-)}- (3.38)
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Note that this equation is expected to hold even in the
presence of interactions, for the state |0) is both the
physical and the bare vacuum state.

We now have the explanation for the algebra of the
fermion-asymptotic fields of the Lee model. In the
absence of the interaction there are two eigenfields:
the elementary particle field operators and the fields
corresponding to A}. If either orthogonality or a
general Pauli exclusion principle is to be satisfied by
the in-fields, only 47 will do; then an algebra such as
the one found for the full Lee model results.

For the full Lee model with interaction, the double
choice is not present: the fermion in-fields can
correspond only to 47 and not to the bare particle
operators. To see this better, consider A — 0 in Eqgs.
(2.32), (2.33), and N*V*:

lim Vi = V*+ — VNN = V(1 — N*N)(1 = V*P),

e (3.39)
lim N, = N+ — N*V+V = N*(1 — N*N)(1 = V*V),

0 (3.40)
lim N¥V* = N*V* = N*VH(1 = NN = V).

(3.41)

The right-hand sides of these equations contain the
fermion part of the |0)(0| operator; thus, aside from
boson terms, the in-fields above are the 4} of Eq.
(3.11).

The fact that the asymptotic fields do not go to the
free-particle operators in the limit of 2 — 0 is perhaps
surprising, but it is not a condition unique to the Lee
model. Consider, for instance, the model Hamiltonian

H=H, + H,, (342)
Hy = mUtU + mW+W, (3.43)
Hy = MUW + WZWHU + L,WWUHU, (3.44)

where Ut and W+ are fermion fields of the same
quantum number, obeying

(U, U}, = {W, W}, = +1 (3.45)
and
{Ur, Uty = {(WH, W+}, =0
= {U+, Wt} = {U, W*},. (3.46)

The eigenfields for this model, (2}, may be found by
considering

H, Q] =M,Q%, n=1,23. (347

If the Q} are constructed in the same manner as the
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Lee-model in-fields,
Qf = Rf, Ut + RE UTWHW
+ R{,WHUYU + Rf W,
n = 1,2 (R}, are ¢ numbers), (3.48a)
Qf = UtWH, (3.48b)
then
QF = (Ut = UtWW — WHUU + W),
(3.49a)
Qf = Ut — UtWW + WHUTU — W)
(3.49b)

results. The eigenfields of Eq. (3.48a) have single-
fermion quantum numbers, while Q7 can create the
two-fermion state. The eigenstates of H are (2)~%
x (Ut & W) |0) and UtW+ |0). It is apparent, since
|0)0] = (1 — UtU)(1 — W*W), that

Qf =@t + w00,
Qf = @ Ut — W |0)0l,  (3.40b)
QFf = UTWT[0)0], (3.50c)

where the (2)? is from normalization. The eigenvalues
are

(3.50a)

M,=m+ 4, (3.51a)
My=m— )y, (3.51b)
M3 = 2m + ]bz. (3.510)

The QF obey orthogonality and a GPEP. They have
the algebra of the Lee-model asymptotic fermion
fields. And the Hamiltonian of Eq. (3.42) can be
written in the diagonal form

n=3
H=YM,QQ,. (3.52)
n=1

In the limit of 4, — 0, A, — 0 the free-particle fields
are not retrieved; the fields QF remain the same. Only
the eigenvalues change; all the algebraic conditions
are unaltered. Therefore, this simple model, Eq.
(3.42), repeats what had been found for the Lee
model; the eigenfields ) are the A} of Eq. (3.11).

It must be noted that the fields N, Vi, and NtV
of Sec. 2 are not exactly equivalent to A7, except in the
fermion subspace. There are several reasons for this.
One is that, in solving the equations of motion, Eqs.
(2.11), for L} or P}, only those solutions which had
no & functions of energy were sought [see the discus-
sion of Eqs. (2.27) and (2.28)]. Since the boson terms
of Eq. (3.38) correspond to such ¢ function terms,
this would remove the boson subspace from the
[0)(0] part of Vi and Nj;. Another reason is that
boson expressions were definitely disregarded in
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setting the initial conditions for the N*¥+ asymptotic
field [see the discussion after Eq. (2.38)]. Thus, the
fermion in-fields are independent of the boson terms
of [0){0].

Similar reasons account for the failure of 6§ (p) to
exhibit orthogonality or a GPEP with the other
asymptotic fields. The initial conditions for 63(p)
[Eqgs. (2.14) and (2.16)] were specified in such a way
as to leave off the boson summation term in the
expression for |0)(0|. This automatically removes the
boson subspace. The fermion subspace was deleted by
dropping ¢ functions of energy in the solution for
/s(p; py), the coefficient of N*N [see the discussion
concerning Egs. (2.18) and (2.20)]. Hence, that fer-
mion part of |0)(0] which lies within the N-0 sector
is missing from 6 (p). The conditions chosen were,
therefore, just those necessary to make the boson
field operator behave as an elementary-particle
operator.

4. CONCLUSIONS

The Lee-model asymptotic fields were constructed
by an expansion in terms of bare particle operators.
This expansion led to equations of motion [Egs.
(2.10) and (2.11)] which have certain novel features:
the eigenvalue equation, Eq. (2.21), appears imme-
diately as do the integral equations for scattering
processes. These result without considering the
Lippmann—-Schwinger or Low equations and therefore
represent new derivations of the scattering ampli-
tudes. Also, the Vi and N fields contain terms
(V*tN*N and NtV*V) which have no matrix elements
in the N-0 sector, but which nevertheless can be solved
for. The Vi field thus agrees with that found by Ezawa?
(except for normalization) in the N-0 sector; Ezawa
did not find the V*N*N or NtV+V, terms which are
vital.

Perhaps the most interesting result of this study was
the discovery that the fermion in-fields of the Lee
model do not obey a free-fermion algebra. These
in-fields represent operators which create states, not
particles, and they obey a general Pauli exclusion
principle and orthogonality. As such, they correspond
to the operator A} of Eq. (3.11). Therefore, they have
the algebra of Eq. (3.15) and, in the limit of 4 — 0,
they do not go into the free-particle operators. These
eigenfields do diagonalize the Lee-model Hamiltonian,
however, as shown by Egs. (2.40) and (3.14). For
the Lee model this diagonalization is complete, and
Eq. (2.40) is exactly equal to the Hamiltonian of
Eq. (2.1), even though the in-fields are known only
up to the N-0 sector. The discussion and examples of
Sec. 3 shows that these results are not peculiar to the
Lee model.
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It was found that the 6§,(p) fields of the Lee model
exhibit a freedom which the fermion fields do not
have. It was possible to choose initial conditions such
that the boson in-field has neither the fermion nor the
boson terms of |0)(0]. The 6{;(p) is thus not the 4}
of Eq. (3.11); it obeys canonical commutation rules
and is not subject to a general Pauli exclusion principle.
The states

|65.(p0), 01a(P2)), 16%(p0), 65(p2), B1ulpe))s -~

|6-ii;1(p1)’ eni';l(pz)a V?-n »

|6§1(P1), 0;1(1’2), e.itl(Pa), V.ii-n>’ T
etc., may therefore be created by successive application
of the one asymptotic field. A similar freedom was
found for the boson terms of the [0)(0| part of the
fermion in-fields: they may be set equal to the ¢
number 1.

The equations of motion demand that the fermion
part of the |0)(0| operator be present for Vi, Nf,
and NTV+, however. The fundamental cause for this
restriction on the form of the fermion in-fields for
both the Lee model and the Hamiltonian of Eq. (3.42)
remains unknown. It is certainly an object for future
study. However, the mere presence of such a restriction
indicates that additional conditions must be satisfied
when constructing asymptotic fields by the use of the
Yang-Feldman equation. Furthermore, a field-theo-
retic model may have to obey special conditions in
order to escape having asymptotic fields of the form
found here, for the dyadic |i){0| is one that can exist
for any model which has both eigenstates and a
ground state.
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APPENDIX: PROOF OF SYMMETRY TO ALL
SECTORS, EQ. (2.30)

A proof Eq. (2.30) for the lowest sectors for L} can
be obtained by considering those equations which
result from adding Eq. (2.11a) to Eq. (2.11b) and
Eq. (2.11¢) to Eq. (2.11d):

(Mu - rn'a:)(L-:{~ + L;)

= [Hy, LT + L{] + L3 + LG,
(M, — my)(L§ + LY)

= [Ho, Lg + L{]. + AL] + L))G*. (Alb)

(Ala)
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Expanding the operators A} = Lt + L} and B} =
L} + L} in the most general combination of boson
operators gives

A = o + f a0, KO ()O(K) + - -,
B = f 8P (p)

+ f Buprs pa s k)B* (B (p)B(k) + -+ -
(A2)

Substituting Eq. (A2) into Eq. (Al) and taking
appropriate matrix elements yields

o, =0,
ag(p, k) = 0, (A3)
B1(p) = 0.

Therefore, to the lowest sector, Eq. (2.30) is true.
In order to prove symmetry to all sectors, write
Eqs. (2.11) in the following form:

1 A
Lt = ——[H,, L{l_.+ ———-GL},
' (M'v_m'n)[ ? 1] +(M1)_mv) !
(Ada)
+ 1 — [H,. Lt
2 (Mv—mv)[ 0> 2]—-
1
—— (=[G, L{]_ + ALG), Adb
F o (G L+ AL, (adb)
1
LY = — [H,, L.
= o, e 1]
1
———— (=[G, LT]_ + AL{G"), (A4
(Mv“mN)( [ 1= + AL3G™), (Adc)
Lz-:.__l_[Ha’Lz-] +___i__G+L+.
(Mv - mN) - (Mv - mN) !
(A4d)

Each of these equations is characterized by having the
commutator of the unknown boson term with H, on
the right-hand side plus an inhomogeneous term which
is an algebraic combination of other boson operators.
We may iterate Eqs. (A4), using the inhomogeneous
terms which appear. Define, for any operator Q,
WHP, Q=3 ——1

n=0 (M.v - mN)"+1

X [H07 e ’[HGQQ]—' ' ']n’

where the symbol N on the left-hand side stands for

(AS)



1338

the bare mass of the N particle, my. Thus we get
L = =1 p(H?,[G, L{]) + A(HF, L{G),  (A6b)
L; = -1 N(H;o’ [G+9 L—l‘h]—) + 2 N(HSO’ L;G+)’ (A6C)
L = A y(HP, G'LY). (A6d)
It is possible to substitute Eq. (A6d) into Eq.
(A6a) for L} and to get
L = 2 p(Hp, Gy (HF, G'L). (A7)

Substitution of Eq. (A6d) into Eq. (A6b) for L} and of
the resulting equation into (A6c) for L} leads to

L; = —1 N(Hsoa [G+, Li*—]—-)
+4* MHT, p(H, L{G)GY)
-1 MH, p(HT, (G, M(HF, GTL])])GH).
(A8)
Now use of Eq. (A7) to reexpress the last term in
Eq. (A8) as
-4 N(H;o7 L-IFG-*—) +)‘3N(H305 V(H;O’ N(Hgor G+L—1+)G)G+)

and rearrangement of terms results in

Ly = 22 ~(Hg's p(HE, L$G)GY)
+ N(H;o$ {_}'G_FLT + }”3 V(Hgoa N(H;09 G+L—1|—)G)G+})
(A9)
The second term on the right-hand side of Eq. (A9)
may be defined as €2, and thus
LE = y(HE, hy (HP, ILIG)GY) + Q. (A10)
It is now possible to iterate this equation using Q;
this procedure results in

Ly n
Lt =3 [wz. 117, 190060) + 0, (A1)
n=1
where an obvious notation has been used for the
iterative series. Rewriting £ in terms of its original
definition and realizing that the iterative process is
distributive allows one to cancel terms. This yields

L = —4 y(H?, GLY).

(A12)
A comparison with Eq. (A6d) shows
L{ = —Li, (A13)

to all sectors. If Eq. (A13) is substituted into Eq.

(A6b) for L,

results. A comparison with Eq. (A6a) then shows that
L} = —Lt.

Thus Eq. (2.30) is proved to all sectors for the Lt.

S. JERNOW AND E. KASES

The equations for the boson terms of the N{, field,
P}, have the same structure as those for L}, and
therefore can be treated in exactly the same manner.
The fact that the physical N mass is equal to the bare
N+ mass my does not lead to difficulty; we may con-
sider a Lee-model interaction Hamiltonian with an
extra term ONTN. The physical mass would then be
my + 0 and the structure of the equations of motion
would remain unchanged. It would then be possible
to carry out the proof of Pf = —Pf, P} = —P} with
the limit 8 — 0 being taken in the end.

Proof of Orthogonality to All Sectors,
Eq. (3.2)

Most of the equations of orthogonality [Eqs. (3.2b),
(3.2¢), (3.2¢), and (3.2f)] can be shown to all.sectors
merely by substituting the proper Eq. (2.34) into the
corresponding field and using the bare fermion algebra
of Eq. (2.2). Equations (3.2a) and (3.2d) may not be
proved this way, however, and must be looked at in
greater detail.

Consider the term in Eq. (3.2a), V;,N{};; substituting
Eq. (2.34) and the proper Hermitian conjugate
equation into it leads to

ViaNh = ® — ONTN — OV+V + ON*NVHY,
(A14)
where
® = L,Pf + L,P{. (A15)
The boson operator ® may be investigated by proper
manipulation of the equations of motion, Egs. (2.11).
One obtains
(mN - W)LIP-IF
bl [Ho, Llpi},] - }.L4G+P;— + ALIGPj,
(mN - M’v)L4PI
= [Hy, L,P{] + AL,G*PT — AL,GP}. (A16)
Referring to the manner in which Eqs. (A4) were
treated shows that an iterative solution of Eqs. (A16)
leads to
LP{ = —L,Pj,
and thus
ViaNfa =0
is proved to all sectors. The final equation of orthog-
onality, Eq. (3.2d), is just the Hermitian conjugate

of the above.
Proof of Eq. (3.19)

In order to prove this equation, realize that the
desired operator |0){0| obeys

10){0] |n) =0,
[0)0} 10) = 10,

(A17)
(A18)
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where [n) is the n-boson state (n > 0). Thus [0)(0]
must be of the form

00 =1+3 @)@, (A19)

where
2 pi(@)’(ay’ In) = — |n). (A20)

The coefficient ; must now be determined.

If we consider
( 10>) (A21)
(1

< A/ PAY a+ 0>

2 pe @ (5 0) =
where the quantity in parenthesis is the [1) state, then
all terms in the summation, except the first, yield zero.

This foltows from
(a*)(a)(a*)" |0) = O, ji>mn,

(@)"10), j<n,

(- )'
(A22)
which is a result of Eq. (3.17).

Thus we see that f; = —1. It is now possible to
reason by induction and to assume

_ (_l)N—l
Py1= (N -1

Demanding that Eq. (A20) be true for n = N, using
Eq. (A22), and taking matrix elements yields

(=1
SN =
The summation on the right-hand side of this equation

may be evaluated by using a well-known series for
binomial coefficients'®:

1 j=N—-1
By=——"—-—

(A23)

N! N!
_1!(N-—1)!+2!(N—2)!
g (=DYNY
+N!(N_N)!_o. (A24)
Thus
By = (—DY/NY, (A25)

and Eq. (3.19) is proved.

13 L. B. W. Jolley, Summation of Series (Dover Publications, Inc.,
New York, 1961), p. 210 (no. 1102).
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One should also note that Eq. (3.19) is an explicit
solution of the integral equation

0

[0)0] = 1 — 3 B} [0)X0| B,,,  (A26)
m=1
where
B}, [0) = [(a")™/(m!)F] [0). (A27)

This fact is readily seen by the substitution of Eq.
(3.19) into Eq. (A26) and the use of Eq. (A24).

Proof of Eq. (3.38)

Here we are interested only in the boson terms of
Eq. (3.38). The fermion terms are obvious and shall
be suppressed in the work following. The proof is
similar to that of Eq. (3.19); we may construct
[05¢0] of the form

00] = 1 +a,
j=

% [ap-- dppr o) 070080 - 00

(A28)

The series on the right-hand side of this equation must
be an operator which has the eigenvalue —1 when

applied to a state containing any number (not zero)
of 0 particles of any momenta. We realize that, because

[6(k), 07(p)). = 6(p — k), (A29)

the only terms in the series which will survive when
applied to a state containing nfl particles are those for
which j < n. The term with j = 7 can be seen to obey
the eigenvalue equation

“ f dpy -+ dp.B*(p) -+ 6¥(py)

X 0(py) -+ 0(p,) 161 (q0) - - - 07(q.))

= nla, [6%(a) + 0%(q,).  (A30)

Using Eq. (A29), each term with j < n can be shown
to obey an equation similar to that above, but with

eigenvalue [n!/(n — j)!]e,. Thus we wish the «; to
obey

5o,

=1

-1 A3l
(n— J)‘ (A3D)
We may use Eq. (A24) to determine that o; = (—1)7/j.
Thus Eq. (3.38) is proved.
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The problem of diffraction of a plane-polarized electromagnetic wave incident on a right-angle
dielectric wedge is formulated as a singular integral equation in k space. A solution of the singular integral
equation is constructed as a power series in the index of refraction. This series converges when the index
of refraction is near unity. Using this solution, the electric-field amplitude at the tip of the wedge is
examined. We also prove as incorrect a closed-form analytic expression claimed in the literature to be a

global solution of the problem considered here.

1. FORMULATION

As shown in Fig. 1,we consider a piecewise-homo-
geneous, isotropic, conducting, dielectric medium of
infinite extent referred to rectangular Cartesian
coordinates (x;, x,, x3). The 90° wedge occupying
the region x, > 0, x; > 0, |x;3] < o0 is characterized
by a constant electrical conductivity o;, a constant
magnetic inductive capacity u;, and a constant
electric inductive capacity ¢;. The medium external
to the 90° wedge is similarly characterized by different
constant parameters o,, u,, €,. It will be further
assumed that both regions have the magnetic inductive
capacity of free space, that is, u; = 4, = y, and
that the relative dielectric constant of the 90° wedge
is unity or greater so that ¢;/e, > 1.

Our starting point is to derive an integral equation
from Maxwell’s equations relating the electric- and
magnetic-field intensities E(r, t) and H(r, ¢) with the
electric displacement D(r, ) and magnetic induction
B(r, t) at the point r and time 7. Maxwell’s equations
in the MKS system are

VxE+-aai:=0, V:-B=0,

dD

VxH-S"=J, V-D=p, (1.1

with a continuity equation relating the charge density
p and the current density J given by

V-J+a—p=0.
ot

We define piecewise-constant electrical inductive
capacity and conductivity functions by

e(r) =¢;, %, 20N x; >0 N |x3| < o0,

(1.2)

=€v,xISOUX2SOnlx$| s w, (1.3)
o(r) =06,,% 20 Nx, 20N [x5] < 00,
=0, %< 0Ux,<0N|x;3) < 0. (1.4)

In terms of (1.4) the constitutive equations of the
medium are

D(r, #) = e(DE(r, 1), (1.5)
I(r, 1) = o(ME(r, 1), (1.6)
B(l', t) = ;uOH(r! t)' (17)
For a harmonic time dependence of the form
E(r, t) = E(r) exp (—iwt)
and
H(r, t) = H(r) exp (—iwt),
Maxwell’s equations yield
V x H + iwé&(r)E = 0, (1.8)
V xE — iwyH =0, (1.9)
where
&(r) = €(r) + io(Mw™. (1.10)

Now taking the curl of (1.9) and using (1.8) yields
{V2 4+ 0, JE = VV . E — w?uyé,[(¢/¢,) — 1]E,
1.11)

Xz

kg

F1G. 1. Planewave incident on a dielectric wedge.
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where
(1.12)

g, =c¢, + io,0™
With the aid of the divergence of (1.8) we can express
VV . E as

VVv. (1.13)

= —VV. [(é1)/¢,) — 1]E,

and using this in (1.11) gives
(V2 + 02,2 JE = —{VV - +02u,8,}[(E®)/2) — LIE.
(1.14)

We shall restrict our considerations to electric fields
which are polarized parallel to the vertex of the wedge,
i.e., along the x; axis, and which do not depend on
the x, coordinate. For such fields given by
E(xla x2) = [O> 0’ E(xl ’ x2)]3 (1‘15)
Eq. (1.14) reduces to the scalar two-dimensional form
{V2 + wzluoé'u}E(xl ’ x2)
= _(‘02“‘0211[(2(1')/21:) - 1]E‘(xl, xz)-
It is convenient to define complex wave vectors k(r),
k,, and k, by
k() = ouek(r)
=k5, X 20N x, >0N x| < oo,
=ky, x; L0UX, 0N ixy| < 00, (1.17)
in terms of which (1.16) becomes
(V2 4 KDE(xy, x9) = —{k*(r) — kJ}E(x1, X5).  (1.18)
Equation (1.18) immediately yields the basic integral

equation for E(x,, x,):

E(xy, x5) = Eo(x1, %5) + i(kﬁ — k3

(1.16)

x j ” f THOCk [y — XD + (6 — )T
0 1]

x E(x}, x}) dx, dx}. (1.19)

Here Ey(x; , x,) represents the electric field incident on
the wedge %, 20Nx,20N|x3) <0 and E,
satisfies the equation

(V2 4 kBDE(x;, x5) = 0. (1.20)
The kernel in (1.19) is a Hankel function of the first

kind of order zero, and %, and k,; are chosen to have
positive imaginary parts

Im (k) >0, Im(k,)> 0.

Our problem now is to solve the singular integral
equation (1.19). In order to do this we shall first
convert (1.19) into a singular integral equation for
the Fourier transform of E(x,, x,).

(1.21)
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2. SINGULAR INTEGRAL EQUATION FOR THE
FOURIER TRANSFORM OF THE
ELECTRIC FIELD

Let (1.19) be multiplied by exp (ikyx;) and the
integral {*,- - - dx, taken. With the aid of the relation

7 B = 0% + G = )

X exp [iky(x; — x1)] dx,

— exp [—y |x2 - xéi] (2.1)
2y ’

where

y =2 — k), Re(y) >0, (2.2)

Eq. (1.19) yields, on interchanging orders of integra-
tion, the result
E (ky, xg) + R_(k;, X5)
= EP(ky, x9) + (ki — ki)
x f a2 lmv e —xllp g o)
0 2y

The functions E, (ky, X5), R_(ky, Xp), and E®(k,, x,)
are defined by

E (ky, x3) =J; E(xy, x5) exp (ikyx,) dxy, (2.4)

Rz = " exp (ilxy)
X {E(xy, x5) — Eg(%y, X9)} dx;, (2.5)

Bk x) = [ En ) ep (k) dr. 26

Each of the integrals (2.4)-(2.6) will converge
uniformly for k, restricted to a certain half plane
determined by asymptotic behavior assumed for
E(xy, x;) and Eo(xy, xz) when |x;| — co. Recalling
that the time dependence is exp (—iwt), the reflected
field {E(x,, x5) — E4(x,, x;)} is assumed to have the
asymptotic form

{E(x1, x2) — Ey(x1, Xp)} = Olexp (—ibyx; — ibyx,)},
2.7

for x; - — o or x, - — o, Similarly, it is assumed
that the incident field has the asymptotic form

Eo(xy, x3) = Ofexp (iayx; + iazx,)}, (2.8

for x, > 4+ or x, - + o0, and that the transmitted
field decays for large positive x; or x, more rapidly
than does the incident field, i.e.,

E(xy, x5) = O{CXP (iayx, + iayx,)}, 29
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for x; > 4+ or x, = +0c0. It now follows from
(2.4)-(2.9) that E, (k,, x;) and E'”(k,, x,) are analytic
in the half plane Im(k;) > —Im(q) and that
R_(k,, x,) is analytic in the half plane Im (ky) <
Im (b,). These three functions (2.4)-(2.6) share the
common strip of analyticity

~Im (a;) < Im (k) < Im (by). (2.10)
Multiplying (2.3) by exp (ik,x,) and calculating
§ 20+ + dx, with the aid of (2.11),
fwexp [iko(xy — x22) — pxy — xg/] d,
—00 Vv

1

= — (2,11
dra—r 0

yields

E, (ky, ko) + R_(ky, ko) + R__(ky, ky) + Ry _(ky, k)
] k2 . kZ)

= E9%,, k —-(—"———-”—-—E ki, k), (212

(A 2)+(k¥+k§-—k§) ke, kg, (212)

where

E,,(ky, ky) = L ) L “E(ers xp)
X exp [ik,x; + ikyXg) dx; dx,y,
R_ (ky, ko) -—--wa_om{E(xl, Xg) — Eo(xy, X5)}
X exp [ikyxy + ikyxo] dxy dx,,
R__(ky, k) = f 3 f_ow{E(xl, x5) — Eg{x1, X2)}

(2.13)

(2.14)

X exp [ikyxy + ikoxo] dx, dxy, (2.15)
R, (ks ky) = fw L "{E(x1) %) — Eo(x1, %)}

x exp [ik,x; + ikox,] dxy dx,, (2.16)
EQ(ky , ky) = fo ) L " Eo(x1s %)

X exp [ikyxy + ikgXy] dx; dx,.  (2.17)

Arguments based on the assumed asymptotic forms
(2.7)~(2.9) show that the four functions (2.13)-(2.16)
are analytic, respectively, in the four pairs of half
planes

(++):Im (k) > —Im (@), Im (ky) > —Im (ay),

(2.18)
(=+):Im (k) < Im (), Im (k) > —Im (ay),
(2.19)
(==):Im (k) < Im(dy), Im(ky) < Im(dy),
(2.20)
(+=):Im (k) > —Im (), Im (k) < Im (By).

2.21)

E. A. KRAUT AND G. W. LEHMAN

The intersection of these four pairs of half planes it
the tube or pair of strips 7(4) specified by

Now consider the function
Hky, ky) = 1/(k} + ki — k3), (2.23)

multiplying E, (k,, k;) on the right side of (2.12).
This function is analytic and uniformly bounded in
the tube (pair of strips) defined by

iIm (kJ)‘ < BJ’ J = 13 2, (2.24)
(B! + BY < |Im (k), (2.25)

where
IRe (k)| < 0. (2.26)

As a result of (1.20) and (2.8), the numbers a; and a,
appearing in (2.8) and (2.22) must satisfy

a, =k,cos b, a,=~k,sin6; 2.27)
consequently
Hm (ay)| < Im (k,), (2.28)
[m (ay)] <Im (k,), (2.29)
when

0<0<mf2

Since the incident field EL‘Q(kl » ky) specified by (2.17)
is also analytic in the pair of half planes (2.18), it is
possible to make (2.22) a common tube of analyticity
for each term in (2.12) by choosing b; = B; where
B; satisfies (2.25).

We see that (2.12) is an equation of the Wiener-
Hopf type in two complex variables, valid in the
common pair of strips (2.22) and requiring for its
solution the determination of four unknown analytic
functions £, , E_,, R._, R, _, in terms of the kernel
H(ky, k) and the given incident field E{(k;, k,).
Our approach to solving (2.12) will be to convert it to
a singular integral equation in two complex variables
which can be solved by a Neumann series. To do this,
we shall assume and justify a posteriorithat E,_ (k, , k;)
has a bounded L, norm in the tube (2.22); in other
words,

1B ude = | [ [, ko an, dkz}% <o
(2.30)

when Im (k;) and Im (k,) lie in the tube (2.22). It
follows from (2.26)-(2.29) that H(k,, k,) is both
analytic and bounded in the tube (2.22) provided

b1 ='B1_, bz == Bz. (2.31)

Therefore, the product H(k,, k,)E, (ky, k;) must
also be in L, because of (2.30) and we have

IHE, lls < co. (2.32)
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Now, by a slight modification! of a remark due to
Bochner,? we can assert that the function H(k,, k,) %
E, (ky, k), which is analytic and of bounded L,
norm in the tube (2.22), has a unique additive decom-
position into the sum of four functions analytic and
bounded, respectively, in the four pairs of half planes
(2.18)~(2.21) intersecting to form the tube (2.22).
These four functions are uniquely determined and
are representable by Cauchy integrals.

On decomposing the last term in (2.12) by
Bochner’s theorem and equating the (4 +) parts on
both sides of (2.12) (because of uniqueness), we
immediately obtain the required singular integral
equation for E, ,:

E, (ki, ko)
k3 — K2
= B0y, k) + T =) . )2)

f f E (21, 25) dz, dz,
—0 o~ (Zl + Zz - kﬁ)(zl ki) (ze — k) ’
(2.33)

where Im (k) 2> 0 and Im (k,) > 0. If we can obtain
a solution of (2.33) which belongs to L,, then
additively decomposing H(k,, k,)E,  (k,, k,) by means
of Cauchy integrals yields unique expressions for the
remaining unknowns R_,.(ky,k,), R__(ky,k,), and
R, _(k,, k,) by virtue of Bochner’s theorem. In other
words, we need only compute E_ (k,, k;) to com-
pletely solve the two variable Wiener-Hopf problem
(2.12).

3. SOLUTION OF THE SINGULAR
INTEGRAL EQUATION

We begin our discussion of (2.33) by allowing
Im (k) — 0+ and Im (k;) — O* to obtain
E, (ks ko)

= E(ks, k) +

+ _I;J\wH(Zl, kz)E++(21a kz)d
i Zl —_— kl)

+ LJ:J”)OH(kls 22)E+§-(k15 Zz)d
E(" _dn_P
—w (27 — ky) i

f H(le Za)E++(21a Zy) dzz},

— ky)
1 E. Kraut, S. Busenberg, and W. Hall, Bull. Am. Math. Soc. 74,

372 (1968).
* §. Bochner, Am. J. Math. §9, 732 (1937).

k2 2
( BN ik, kE, ks, e

1

Zy

3.1
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which is the singular integral equation we shall solv¢
Equation (3.1) can be written in a more compac
operator form by introducing the singular commutin
operators® §; defined by

P (® dz

S, =— —_— j=1,2,
~w (z; — k)

in terms of which (3.1) becomes
E., = EQ + 3 + S)U + S)HE,,), (3.3

where [ is the identity operator and 1 = (k2 — k%).

In deriving (2.33) it was assumed in (2.30) that th
L, norm of E, , is bounded. It will be shown next that
when the L, norm of the incident field E{% is bounded
then, because H(k,, k,) is bounded in the tube (2.22)
it is possible to choose (k3 — k2) such that (2.30) i
satisfied.

Theorem I: Suppose that

IE ), < oo, (34

and that
0 < max [H(k,, k,)] = max |H| < oo;

Im (k)=0

(3.5

then there exist values of 1 with 0 < {A] < o0, sucl
that the function E,,(ky, k;) satisfying (3.3) has
bounded L, norm

Esillz < 0. (3.6

Proof: Application of Minkowski’s inequality tc
(3.3) yields

IErile S NESUs + 314 {IHE 0l + [S:HE |,
+ 1S HE (; + ISiSoHE, |}, (3.7

Observe now that the principal-value operator S,
gives the Hilbert transform of the function on which
it operates and that the Hilbert transform is a bounded
linear operator in L, satisfying*

IS;:HE, e = |HE, [l;, i=1,2. (3.8)

The double principal-value integral appearing in the
last term in (3.7) is taken with respect to two different
variables; hence

”SIS2HE++”2 = HSZ'HE++H2 = ”HE++"2» (3.9
Because of (3.5),
VHE, |l < max |H||E_|,, (3.10)

3 F. D. Gakhov, Boandary Value Problems (Pergamon Press, Inc.,
New York, 1966), pp. 70-72.

* E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals
(Clarendon Press, Oxford, England, 1948), 2nd ed., p. 122.
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and combining (3.8), (3.9), and (3.10) with (3.7) yields

I o< — MBSl gy
TS (= (2 max H]) '
The choice
|A] € {max |H|} (3.12)

establishes (3.6) and proves the theorem.

Arguments similar to those used to prove Theorem
1 will now be employed to show that A may be chosen
small enough so that the integral equation (3.3) is a
contraction mapping with respect to the L, norm.
Consequently, (3.3) has a unique solution E,, in L,
which can be obtained as a limit of successive approxi-
mations converging in the L, norm to £, .

Theorem 2: For 0 < |A} < {max |H|}"* and E, in
the complete normed linear space L,,

T(Eyy) = E. + (I + S)UI + S)(HE,,) (3.13)

is a contraction mapping with respect to the L, norm.
Hence, the integral equation

T(E.;) = E,, (3.14)

has one and only one fixed point belonging to L,.
This fixed point is the limit of a sequence of successive
approximations converging in L, norm to E. .

Proof: Let E» and E{}) be members of the L,
function space; we have

ITER) — T(ELD,
=} lll_ I+ SYUT + SHHER — EMNNly. (3.15)

Expanding the operators (I + S))(I + S;) on the
right side of (3.15) and using Minkowski’s inequality
and (3.8)—(3.10) yields

ITER) — T(EM)N, < 12| max |H| |ER — EX,.
(3.16)

This shows that T(E_, ) is a contraction mapping with
respect to the L, norm, provided |4] is restricted as in
(3.12). The remainder of the theorem is then a con-
sequence of Banach’s fixed-point theorem® and the
observation that the normed function space L, is
complete.

The results we have just obtained apply immediately
to (3.1) with

A= (k& — K% (3.17)

5 W. Pogorzelski, Integral Eguations and Their Applications
{Pergamon Press, Inc., New York, 1966}, Vol. I, p. 197.
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and
1

2Im(k,) Re (k,)| (3.18)

max [H| =

from (2.23). In other words, the convergence criterion
(3.12) shows that the iterative solution of (3.1)
converges for

ki — kil < 2|Im (k) Re (k,)I. (3.19)

Let p be a complex relative index of refraction defined

by

p = kk,. (3.20)

In terms of p, Eq. (3.19) becomes
Ip? — 1} < 2 |Im (k,/Ik,}) Re (k,/Ik, D] (3.21)

A maximum value on the right side of (3.21) is taken
on when k, = |k,} exp (im/4) and the iterative solution
of (3.1) will converge in this case for wedges whose
complex relative dielectric constant satisfies

0<ip—1<1 (3.22)

or

1<|pl<V2, (3.23)

The successive approximations to the solution
E-:—q{-)-(kl’ k2)9 E-(lﬂ(kl ’ kz), T, E-(:f).(kl s kz)
take the form

ELiV(ky, ko) = EX(kys ko)
+ (ki — KT + S + SHED)),
(3.24)
where n=0,1,2,---, Im{k) =0, Im(ky) =0,
and (k% — k2) satisfies (3.19). The solution of (3.1)
for real k; and k, is the limit of the sequence (3.24):

E, (ky, ky) =1lim E{")(k,, k). (3.25)
[i3md )
4. ELECTRIC FIELD AT THE VERTEX
OF THE WEDGE

The electric-field amplitude at the vertex of the
wedge is given by

E(0, 0) =1im E™(0, 0), 4.1
where
{n) 1 1 @ @ )
E (Os 0) _xil_,n;’li (27)2 " _wEH(kl’ kz)
2a-0
X exp (—ikyx; — ikyxy) dky dky. (4.2)
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In performing the Fourier inversion (4.2), it is con-
venient to use the relation

s 1 b (n)
1 El(ky, k
a:ll—l:l(:i (Zﬂi)z J—m J—-oo (e, ko)
a0
X eXp (_iklxl - ikzxz) dk]_ dkz

1 [ Wklszizg’,(zl, 2,) dz, dz,

—wo (2 — k)25 — ka)
(4.3)

= lim

Tm (g »+oo (2770)°
Im (kg) -+

obtained with the aid of

klkz
(z: — k)(zs — ki)

Z Zy
= | —1 -1 ) 4.4
( +Z1—k1)( +Za‘—k2 44

Equations (4.2) and (4.3) now give

E™(0,0) = —lim kk,E"(ky, ks),
Tra (ky) o0
Tm {ka) -

(4.5)
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and, from (4.5),
() (ki — k)
EY(0,0) = Ey(0,0) — 7;)2—
© E%(z,, z,) dz, dz,
f fﬂ? (BB + 25~ kD ’
When the incident field Eq(x;, x,) is a plane wave of
the form

Ey(x1, x3) = Eqexp [i(a1x1 + a;%5)],

%))

4.8)
where
a, =k,cos6, a,=k,sinf, (4.9)
then
Eif’l(zx, zy) = —~Eo/(z; + a))(z2 + a3) (4.10)

and (4.7) becomes

2 2
E™(0,0) = 50{1 + (k( -~ l)f")
© © dzl d22
X f-oo Lm (Z3 + 23— k2(zy + a)(zg + 63)}
(4.11)

A short calculation yields

for the nth-order approximation to the electric field ’ 0 27k% Jo (1 + &)
at the vertex of the wedge. To first order in (k; — k), sin 0 cos 6
using (3.24) and (2.33), ( @ + cos® 6)* @ + sin? 6)*) l,
ER (ks k) , (4.12)
(k3 — K3 for the first-order field at the wedge tip. For the case
= EQ(ky, k) + 22— > of grazing incidence where 6 = 0 or 6 = /2, Eq.
(2mi) (4.12) becomes
« f f EQN(z1, 25) dzy dz, EW(0,0) = Efl —}(p* — 1},  (4.13)
—w J-w (21 + 23 — kD)(zZ1 ~ k1)(za — ks)  where p = k,/k,. To second order in (k2 — k?), the
(4.6) field at the wedge tip is given by
. K3 kz)2 dz, dz
E(0,0) = EV(0, 0) + ke f J ErE—
(2mi)t —© (73 + 28 — k)
di, di,
o[ 6
~w J—o ({1 + 5 — k)& + a)(a + a)(ly — 2)(Le — 2z2)

5. COMPARISON WITH OTHER INVESTIGATIONS

The dielectric-wedge problem has also been investigated by Radlow® and by Kuo and Plonus.” Radlow®
gives what he claims is a closed-form global analytic solution of the problem. His solution, given in Eqgs. (5.1)

and (5.3) of his paper,® becomes in our notation
__Eo

1

E,(kys ky) =
where?

R 5.1
(ky + ap(ks + az) K (ky, k)K_ (—a,y, k)K__(~a,, —ag)K, (k;, ~ay) ( )
| © fo dz, dz ki — (22 + 2D
K, (ki k ==ex——-ff 14z [d 1 2], .
k= G ) e — Kz — k) LKA (2 4 2D (5.2

¢ J. Radlow, Intern. J. Eng. Sci. 2, 275 (1964).
?N. H.Kuo and M. A, Plonus, J. Math. & Phys. 46, 394 (1967).
8 E. A. Kraut, J. Math. Phys. 9, 1481 (1968).
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with
Im (k) >0, Im (k;) > 0. (5.3)

The other three factors K_, , K__, and K are defined
exactly as in (5.2) except that, instead of (5.3), one
hasIm (ky) < 0,Im (k) > 0; Im (ky) < 0,1m (ky) <
0; and Im (k,) > 0, Im (k) < 0, respectively. It is
asserted in Ref. 6 that (5.1) is the unique solution of
the singular integral equation (2.33). One of us has
pointed out® that an expression of the form (5.1)
satisfies (2.33) only if the branch line integrals associ-
ated with the branch cutsin X, , K_, , K, _ cancel one
another out when the double integral in (2.33) is
evaluated. We shall show, by directly substituting
(5.1) into (2.33) and explicitly evaluating the double
integral, that (5.1) does not satisfy (2.33) and is there-
fore not a solution of the problem. Contrary to our
results, Kuo and Plonus indicate’ that they believe
that (5.1) is the correct solution of (2.33). However,
they claim that (5.1) is too complicated to be inverse
Fourier-transformed and therefore they suggest the
use of approximate methods to solve (2.33). In Egs.
(6.4) and (6.5) of Ref. 7, the determination of approxi-
mate expressions for E,  (k;, k,) and E(x;, x;) (when
the dielectric constant is near unity) is reduced to
single quadratures. These quadratures, however,
were not carried out, nor was the validity of the
approximate decoupling scheme used to obtain them
critically examined.

After showing that (5.1) does not satisfy (2.33),

E. A, KRAUT AND G. W. LEHMAN

we shall compute the inverse Fourier transform of
(5.1) at the wedge tip and compare the result with
(4.12)-(4.14).

We begin by observing that (2.33) can be written
in the form

1 J‘“’ f"’ (Zf + z2 — kg)EH(Zn 2p) dz; dz,
2o o L e — e -
= EQ(ky, ko), (5.4)

where the kernel

K(zy,2) = (2} + z3 — kD3 + z3 — k3) (5.5)
can be factorized in the form?®
K(Zl ’ 22)
= K, (21, 2)K_ (21, 2)K__(21, 2)K, (21, 2,),
(5.6)
with the K’s determined as mentioned in connection
with (5.2). It is possible, for example, to write down
pairwise products of factors in (5.6) algebraically by
inspection:
zZ + i(z;“: - g)é
z + i(zE— kDY
This observation permits us to write KE,  in (5.4)
with E,, given by (5.1) as the product of a function
analytic in Im (k,) < 0, Im (k,) < 0, and a function

having explicit algebraic singularities in Im (k,) < 0,
Im (k,) < 0. Thus (5.4) becomes

(5.7

Kiilz1, 29K (21, 29) =

(2mi)®

1 fw ® [z, — (k3 — 2)llzs — (k% — 29}la, + (K3 — 2DHlas + (K2 = 2P
o S [z — (k2 — 2D)[z5 — (K2 — 2D)P]lay + (kS — zD)P]lay + (K2 — 2D}
¥{(z,, zo) dzy dz, 1

X = , (5.8)
b (z1 + a)(zz + a2)(z1 — k(2 — k) (kg + ap)(ky + a2)
where
K__(—a1, z9)K__(z1, —ay)
W(z,, z4) = . 5.9
(22, 20 K__(—ay, —apK__(zy, z5) (59)
It is convenient to rewrite (5.8) in the form
I(kd, k‘l)) = 1' 2f f {f(zl’ ZZ)IP.(ZI’ 22) - 1} = 0’ (5.10)
2mi)* Jew Joo (2, + ap(zy + a)(z; — k)(zg — k3)
where
EPTE N X ST e R 2 2 _ .ok
f(zn 25) = [z (ka; 22)5»]{22 (kz Z;)é][al + (k: z;)é]{az + (k;; Z;)%] ) (5.11)
[z1 — (ky — 29)*][zq — (ky — z)° ey + (kz — z3)*lla; + (ki — 2]
Our procedure now is to expand f(k;, k,) in a Taylor series of the form
2
I(ky, ) = I(kyy ) + (kg — ) (2 + 3k, — kv)z(-% 4o=0. (5.12)
0 ka=ky Okz/egt,

If (5.12) vanishes identically for arbitrary k; and k,, then each and every coefficient in the Taylor series

* E. A. Kraut, Bull. Seism, Soc. Am. 58, 1083 (1968).
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expansion (5.12) must vanish. We shall show that
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Since (9¥/0k,),,_,, is anmalytic in Im (k) <O,
Im (k) < 0, the contribution from this term arises

Itky, k) = 0, (513 from the residues at the poles z; = —a,, z, = —a,,

oI =0 provided Im () > 0 and Im (a;) > 0. However,

(akd)k - =" (5-14) ince the constant term in the Taylor series expansion
but that o of W(z,, 2y, k4, k,) about z; = —ay, zy= —a, is

921 unity, independent of the choice of k,; and k,,,

(—) =0, (5.15)

s M o (5.17)
and consequently (5.1) does not satisfy (5.4) or (2.33). (ak d)z1=—a1 ’ ’
Equation (5.13) follows immediately on noting that e
f(z1,z) =1 and ¥(z,,2) =1 when k;=k,. To and therefore
obtain (5.14) we observe that (21;) 1 fw J-oo (i
(31) f f {( ) (a_g) } Ok hoper, (2mi)% S0 S\ Ok,

Ok oy pr, (277' i)t Oka/rir,  \OKakor, dz, dz,
dz, dz, (Zl + a)(zs + a)(z, — ko(z5 — kz)
(Zl + a)(zs + a)(z, — k)2 — ko) (5.18)
(5.16) From (5.11),
of =k, { 1 1 } ok { 1 " 1
(akd)k,,=k,,_ -z — (-2 e+ @ -DY K- -k -+ - DY

(5.19)

where the first term in brackets in (5.19) is analytic for Im (z,) < 0 when Im [(k2 — 2z2)}] > 0 and the second
term in brackets is analytic for Im (z;) < 0 when Im [(k2 — zg)%] > 0. The integral (5.18) may now be
performed by closing the first term of (5.19) in the lower z, half plane and the second term of (5.19) in
the lower z; half plane. The residues at z; = —a, and z; = —aq, are zero and (5.14) follows.

To establish (5.15), we note that

G- L ) ety o
ak; ka=ko (2”7’1)2 ——l ak2 ok, 0k, ka=ko (z1 + a))(zg + a5)(z1 — k(25 — ky) . '
The last two terms in (5.20) separately integrate to zero because of (5.17) and (5.19), and one has

1 d

(———2) - f f ( ) 24z (5.21)

ok q=Fy (27”) akd Ka=ty (z1 4+ a)(zs + a5)(zy — k(25 — kz)

Using (5.11) gives for (5.21), after some algebra and analytic continuation to the imaginary axes,

(8.,
ak2 kg=ky

(F(zy, 25) = {(z1 — k)(za — k)(K2 — 2P (2 — 2D [z, —

(Zm) 5 J'_mdzl dz,2k2F (2, , 25),

(K2 ~ 21z, — (K3 — 2DPa, + (k2 — 22
x [a, + (K3 — 2t

where 0 <arg(k) < w/2 and 0<arg(a) < w2, i=12 (522

Next, we compute that

2
lim klkz(a £>
|| =0 akd Teg=Fky

[Tg| >0

2k2 f f dz, dz,
(@2 i (23 + 2§~ KDPlay + (K2 — z)][as + (I3 — 2DY)

(5.23)
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Now let z; = ir; and z, = ity in (5.23) to obtain

2
lim klkz(a I ) f f dry dry S#0. (524)
[%1| -0 ka=Fo —o J-© ("'1 + “'2 + kazz)z[al + 1+ "'2) Illas + (1 + ) |

d
|kaj—oc
It now follows, from the fact that (5.24) does not vanish identically, that
321)
— # 0. (5.25)
(ak; kg=ky

This proves (5.15) and establishes that (5.1) is not a solution of (5.4) or (2.33).
We conclude our paper with the computation of the inverse Fourier transform of (5.1) at the vertex of the

wedge. It follows from (4.2)-(4.5) and (5.1) and (5.2) that
E0,0)= —————
0,0 X

& _ (2 %
= E, exp{ . f f dz1dzy o, ["; (Z;J”:)]}. (5.26)
—a;, —ay) (27i) o (2 + a1}z + a2) ky — (z1 + z3)
Analytically continuing (5.26) to the imaginary axes and transforming to polar coordinates noting (4.9)
reduces (5.26) to

1(® EdE £ 4 p* sin 0 cos 6
E(0, 0 E 1 s 5.27
©0.0) = Epexp {7 o (18T (52 + 1)((52 oot OF | (& + sin® 6)*) } e

Eo

where p = kjk,.

We now wish to compare the field at the vertex of wedge as computed correctly to second order in
(k% — k%) in (4.14) with the corresponding terms obtained from (5.26). Power-series expanding the
exponential in (5.26) yields

w oo 2 _ .2 2
E®0,0) = Eo{l - 1' 2f f dz; dzy log (kd (Z; + zz))
(27mi)* J-w0 J-w (21 + a1)(z5 + as) k2 — (2% + z3)

ir 1 f‘” J“” dz, dz, ) (kf, — (224 z§))]2 }
— — . s , 5'28
2[(2m’)2 o o (2 4 @)z + @) D\ — (22 + D) (5.28)

and power-series expanding the logarithm for k; sufficiently near k, gives

K3 — (2% + 22) (k2 — k% 1/ (K2—k%H
10 d 1 2 ) = d V. _ _( d D, ) cee 529
® (kﬁ @) TGl e-GE+) T (529

When (5.29) and (5.28) are combined and compared with (4.11) and (4.14), the first-order terms in (k2 — k?)
are seen to be identical, but the second-order terms in (k% — k2) differ. In particular, to second order, (5.29)
and (5.28) yield

2\2 2 2,2
E(2)(0, 0) = E(l)(o, 0) + (kd k ) f f dzl dzz + (kd — kv) E

2@y o (21 + @)z + a)lkd — (3 + 2P 2(2mi)*
dz,dz, 2
{2771 f f (z, + a)(z, + a,)[k2 — (2 + 22)] ,  (5.30)

which should be compared with (4.14). This constitutes an independent proof that Radlow’s result (5.1) is
incorrect. Finally, we remark that for grazing incidence, 6 = 0 or 6 = 7/2, Eq. (5.27) can be evaluated
exactly and yields

0

E0,0) = {2k,/(k, + k)3 (5.31)

This the reader will recognize as the square root of the transmission coefficient for a planewave normally
incident on a dielectric half space.
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The possibility of formally translating the interaction of charges from charge « field « charge to
charge < charge, where the orbits satisfy Newtonian (second order in ¢), yet coyarlant, equations of
motion, is exploited for the Wheeler-Feynman interaction. A method for computing the forces on the
charges correct to second order in the coupling constant e* is presented, and ten constants of the motion
correct to e? are found. The integration is effected via the Noether theorem with the inhomogeneous
Lorentz group as symmetry transformations. An important result is that a well-known correction to the
Coulomb interaction which accounts for the uniform motion of charges is revealed to be, to first order
in e, a frame-invariant expression. The consequent corrected Coulomb dynamics admits first-order
integrals identical to those of the Wheeler-Feynman dynamics.

I. INTRODUCTION

Recent interest in the two-body problem of electro-
dynamics, which after almost eighty years' continues
to defy solution, has prompted a critical reexamination
of the objections against a purely Newtonian de-
scription of the interaction, that is, an instantaneous
action-at-a-distance formulation. The objections have
been found to be invalid.

Close inspection discloses that the relativistic
proscription of instantaneous causal connections in
nature does not logically debar equations correlating,
with respect to some Lorentz frame, the state of a
system of particles and the coincident acceleration of a
member. Further, though Lorentz transformations
properly describe the transformation of world points,
the same set of world points would not be used in
phrasing such correlations in different Lorentz frames.
If, in addition to the Lorentz transformations, in-
variance of world lines of particles is demanded, the
result is a transformation, not of particle variables at
a fixed set of world points, but between the simulta-
neous particle variables of one frame and those of
another. If one then enforces the requirement that
dynamical equations be form invariant under such
transformations, an explicit condition on the func-
tional form of the forces results. For the case of two
particles, the condition has been deduced independ-
ently by both Hill® and Currie.?

* This work forms part of a dissertation presented for the Ph.D.
at the University of Delaware in 1967.

+ Present address: Theoretical Physics Institute, The University
of Alberta, Edmonton, Alberta, Canada.

! The problem’s importance goes back to Heaviside’s introduction
in 1889 of the Lorentz force law, subsequently appended to Max-
well’s equations by Lorentz to provide a theory in which electro-
magnetic effects derived from the dynamics of moving charges. For
a compendious history of action-at-a-distance theories in physics,
see M. B. Hesse, Forces and Fields (Philosophical Library, New York,
1962). For the immediate background to this present work, plus
further documentation, see Footnotes 2-8 below.

2 R. N. Hill, J. Math. Phys. 8, 201 (1967).

3 D. G. Currie, Phys. Rev. 142, 817 (1966).

Special relativity, in uther words, far from legislating
against instantaneous action-at-a-distance formula-
tions, rather provides the guidelines within which such
formulations are viable.

For two particles interacting in any way, electro-
dynamically, mesonically, etc., the import of this
revelation is that it is not, in principle, vain to seek a
description of the interaction via Newtonian-order
equations of motion (in the single independent
variable t) whose solutions are twelve-parameter
families of world lines. A Hamiltonian formulation,
canonical in all Lorentz frames, may then be sought.
Previously, the existence of such a Hamiltonian was
thought to be denied by the zero-interaction theorem,?
but it has since been found® that, if one does not insist
that physical position variables be canonical, an
essentially unique Hamiltonian formulation ensues
with the inhomogeneous Lorentz group® canonically
represented. Finally, quantization could perhaps be
approached in the usual manner. The problems here,
not yet fully appreciated as this is only a prospectus,

¢ D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod.
Phys. 35, 350 (1963); D. G. Currie, J. Math. Phys. 4, 1470 (1963);
J. T. Cannon and T. F. Jordan, J. Math. Phys. §, 299 (1964); H.
Leutwyler, Nuovo Cimento 37, 556 (1965).

5 R. N. Hill and E. H. Kerner, Phys. Rev. Letters 17, 1156 (1966).
See also E. H. Kerner, J. Math. Phys. 6, 1218 (1965). Note that one is
not prevented from finding Hamiltonian formulations with physical
positions canonical; it is necessary only to relinquish the demand
that the formulation be (canonically) equivalent in different Lorentz
frames in order to do so. The difficulty is that the resulting quantum
theory is thereby vitiated. The nonrelativistic version of this situation
is graphically illustrated by considering a single particle moving in
one dimension in the potential ¢(x). Multitudes of canonically
inequivalent Hamiltonians can be found, but the only one admitting
a consistent quantum theory is that for which the Galilei trans-
formations are canonical. For remarks about such classical-valid,
quantum-invalid Hamiltonians, see P. Havas, Bull. Am. Phys. Soc.
1, 337 (1956); F. J. Kennedy and E. H. Kerner, Am. J. Phys. 33,
463 (1965); 34, 271 (1966).

¢ “Inhomogencous Lorentz group” throughout this paper means
the usual group of space rotations and space and time translations,
plus pure Lorentz transformations in the sense of Hill and Currie—
ordinary Lorentz transformations plus world-point shifts along in-
variant world lines (just compensating for the noncovariance of
simultaneity). See Sec. III, Eqs. (17d).
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would probably entail methodological difficulties, as,
for instance, how to Hermitize uniquely the Hamil-
tonian. But the conceptual framework would remain
Newtonian; the procedure, presumably, would be
basically on the same ground as that of quantizing a
nonrelativistic two-body problem, but the issue would
be the relativistic quantum theory of the interaction.
In short, the different behavior of relativistic and
nonrelativistic particles at both classical and quantal
levels might possibly be accounted for at the classical
outset, not by different formalisms, but by only one—
the Newtonian.

This present work, confined to the classical rudi-
ments of the program just outlined, focuses on the
force law and constants of the motion for a particular
two-body problem. Because of its utility and mathe-
matical tractability, the Wheeler-Feynman inter-
action” of electrodynamics has been chosen for
investigation. This half-advanced + half-retarded in-
teraction, the time-symmetric character of which
readily admits an action principle, is equivalent, under
certain well-defined conditions, to the ordinary
damped and retarded interaction of charges. Its
investigation is therefore bound to reveal important
characteristics of the forces, energies, etc., of high-
energy charges interacting in the customary purely
retarded way.

The first stage of this problem has already been
attacked. Kerner® has invented a formal scheme for
educing Newtonian equations of motion compre-
hending the full Wheeler-Feynman orbits from the
field-particle dynamics. The method, briefly, is this:

A Lagrangian for one charge is assembled in the
usual way, the potentials being expressed in terms of
the other charge’s kinematical behavior at times
advanced and retarded with respect to time ¢ reckoned
at the first charge. Expansion of the second charge’s
motion about 7 yields a single-time Lagrangian which,
however, because of the expansion, involves all orders
of time derivatives of that charge’s motion. When the
steps are repeated with the charges exchanged, the
final result is a pair of equations of motion which are
themselves of infinite order. Further, it turns out that
the interaction term of each of the one-charge
Lagrangians can be symmetrized, thus providing a
single two-charge Lagrangian and casting the infinite-
order dynamics into formal canonical form.

The hypothesis is then made that all solutions of the
dynamical equations are spurious, save those con-
tinuous with free-particle motions in the zero-inter-
action limit. There results an algorithm for extracting

7 J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157
(1945); 21, 425 (1949).
8 E. H. Kerner, J. Math. Phys. 3, 35 (1962); 6, 1218 (1965).
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from the infinite-order equations of motion a second-
order Newtonian set. The equations of motion finally
emerge as infinite series in the coupling constant e or,
alternatively, in ¢~2, the first of which is the more
interesting because of the appearance of that param-
eter in the perturbative calculations of quantum
electrodynamics.

In the first part of this paper the mathematical
details of Kerner’s method are recalled and departed
from slightly. The departure is only one of procedure:
If the basic (infinite-order) equations of motion are
rewritten so that the forces appear as complex inte-
grations about certain time singularities, some of the
combinatorial frustrations, which otherwise haunt the
method, disappear and terms beyond the opening
(simple) e* term can be found in closed form. The
computation is alternative, but equivalent, to the
iteration of Hill’s integrodifferential equation for
the determination of the forces.?

The principal part of this discussion begins in the
third section. Here the Noether theorem® for an
infinite-degree-of-freedom dynamics is developed.
After establishing that the inhomogeneous Lorentz
group is canonically represented with respect to the
two-charge Lagrangian assembled in Sec. I, applica-
tion of the theorem produces three three-vector and
one three-scalar constants of the motion. These are,
of course, the momentum and energy—corresponding
to the form invariance of the dynamical equations
under space and time translation, the angular momen-
tum—under space rotation, and the center-of-mass
constant—under pure Lorentz transformation. Order
reduction of these integrals by the method applied to
the forces gives-the integrals to first order in e of the
Newtonian equations of motion. It is then shown that
these constants have the expected transformation
character in shifting from one Lorentz framé to
another.

Following this, in the fourth section, the connection
between the results of the present investigation and the
classical dynamics of charges interacting in the con-
ventional retarded manner is examined. It develops
that, since the equations of motion are identical to
first order in the coupling constant for both the time-
symmetric and purely retarded interactions, all first-
order results derived for the former are just as valid
for the latter. As a consequence, some new light is
shed on an old result of classical electrodynamics.

II. EQUATIONS OF MOTION

Order Reduction

These opening remarks are a brief recapitulation
of Kerner’s scheme.®

? E. L. Hill, Rev. Mod. Phys. 23, 253 (1951).
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Imagine that two charges interact by half the sum of
advanced and retarded fields. The Lagrangian for one
of these, e, say, can be written as

L, = —m*(1 — vz/cz);‘f
7K Vz) (a1 (1)

219
e »(2p)! c%( ¢
by expanding about ¢ the advanced and retarded
Lienard-Wiechert potentials at the location of e; due
to the motion of e,. D, is the time derivative of e,’s
variables only and r is the distance between the
charges.
The equations of motion of e; are given by the
Euler-Lagrange derivative of (1):

D mvy ____2(_a__Da)
i Dé"(l vy Vo)rP !
" & 2p)! e

where, of course, D means total time derivative
D, + D,; e? is e,e,, and the speed of light has been
set equal to unity. The left-hand side may be written

(1 = o) = oDl + vl - i,
and the dyadic inverted to yield the system

myv, = 92(1 - U?)%(I — Vivy)

a a 2, Dgp 2p—1
(pZL 2L 1 — v v (2
( ov, arl) pzo 2p)! ( ViV (22)
MV, = €1 — Ug)%(l — Vy¥5)
0 0\ DY 2p1
(p L -2 — v vl (2b
( s arz) By T @)

This result is merely a rewrite of the field-particle
dynamics. In the same way one derives the corre-
sponding system of equations for the completely
retarded interaction. The distinction between the two
is marked by the appearance of even-order derivatives
only in the Wheeler-Feynman case, a consequence of
its time-symmetric nature.

A further consequence of the time symmetry is that
the individual (one-charge) Lagrangians may give way
to a joint (two-charge) Lagrangian. This is easily seen
by writing D3* = D}(D — D,)® in L,, for instance.
Then D% = (— D, D,)? + exact derivatives. As usual,
the latter may be neglected, thereby symmetrizing the
interaction term. The joint Lagrangian is

L= —myl ~ o)} —my1 ~ oD}

—e3 S e )

It is easily established that the equations of motion (2)
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will now follow by application of the generalized
Euler-Lagrange, or “Ostrogradsky,” operator to L.
The ambiguities associated with the infinite degrees
of freedom of the interaction become quite manifest
in its mechanical formulation. It would seem, for
example, that the initial data r,;(0), v,(0), ¥,(0) - - - for
the problem amount to nothing less than the solution
itself, so that the system (2), rather than being equa-
tions of motion, is merely a constraint on the motion.
To deal with this extravagance it is hypothesized that
admissible orbits continue to be determined by the
specification of twelve parameters and tend smoothly
towards straight lines as the interaction is shut off.
[Or, in other words, the admissible solutions of
(2) satisfy a pair of Newtonian-order equations with
the forces expansible as a power series in e%.] Such a
system may be extracted from (2) by arranging its
right-hand side as a multinomial expansion in time
derivatives of the velocities as, for instance,

mity = {43 fotk? + 3 el + ).
.k

4)

The v{ (the ith derivative of v,) are then computed in
terms of all the other derivatives via (2) itself, sub-
stituted in (4), and the result again arranged in the
form of (4). The upshot of this process, when continued
ad infinitum, is that the right-hand side of (2) is
replaced with an infinite series in e whose coefficients
are functions of positions and velocities; the solutions
of this reduced system are among those of (2) but
analytic at e® = 0.

Although criteria of convergence, if any, have yet
to be elaborated, it will be seen that the validity of the
calculations to come do not hang upon the converg-
ence of the e* expansions; they are meaningful even if
these expansions are asymptotic.

The Forces to Order ¢!

One of the difficulties in effecting the reduction has
been the summation of the infinite number of pieces
going into a given multinomial term. Thus, the only
easily obtained term has been the opening one, giving
the equations of motion

2] —
V3( \AZ)
.(1_02)i“—le(i"xv2) 4

myv, =e¥(1 —v

HmﬁnmﬁH“”6®
my¥y = —e(1 — u%)*(l — Va¥y)
(1 — UE) vy X (£ % vq) (5b)

2[1—(r><v)2]%+ o

a familiar result (to be discussed in Sec. IV). These
first terms are just what the forces on each charge
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would be if the other were constrained to move
uniformly, whence the name “straight-line approxi-
mation” for the opening terms alone.

Here we develop a formal summation of the forces
from which the individual e* terms can be recovered
systematically, at least in low orders. The calculations,
which will be illustrated to e* order, are equivalent to
the iteration of Hill’s integrodifferential equation.?
This latter equation, satisfied by the forces, derives
from the fact that the entire force can be induced from
a knowledge of the opening €* (or c?) term by
the strictures of Lorentz covariance alone, whereas the
idea to be presented now comes straight from the
Lienard-Wiechert potentials.

The primitive dynamics (2) is first re-expressed
(working with just the first charge) as

my¥; = 32(1 - Ui)&(l - V1V1)

p_o 27 § (z — )2"+1

X {[var vz + v, X (r X vy) — 1]

X 2p — D7 — vy dz, (6)
where charge-2 variables in the integrand are functions
of z. This comes about by carrying out the Euler-
Lagrange operation in (2), and representing the D,’s
by the Cauchy integral formula

! -
Dgl_)f(l', Vi, vz) — (2p) f(rl rz(z), Y15 Vz(z)) dZ
27i (z — p)**t
If it is assumed that the order of integration and sum-

mation may be switched, the series in (6) may be
summed with the result

mv, = (1 — )1 — vv)

A [GE=0@"=(=—1%)
21Ti|:f£ r*l(z — ) — P

X (VoL Vo + v, X (T X Vo) — 1) dz
— § _ (=% dz:|.
iz — f — '
Next, with the change of variable s = z — ¢, charge-
2’s argument is shifted; the finite-shift operator is then

introduced, and the equations of motion of the first
charge become finally

myv, = 32(1 - Ui)é(l — ViVy) i
2mi

) s(3r® — %)
:fﬁ P (SDZ)[rs(sz — )
X (Vorevy + vy X (rxvy) —r)| ds

~fewpyTsal @
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Thus, once again, all charge variables are functions
of .

The problem of summing the individual muiti-
nomial terms of (2) is now replaced with the more
tractable one of summing such terms in the finite-
shift operator. The ordering, or “disentangling,” of
such operators has already been investigated by
Feynman,'® whose operator calculus may be applied
here with the result that

exp (s Dy)

0 KA
=P |:s (V arz Y avz avz + )]

=|:exp (sv2 ”[1 +f_ f_vz(t+5)

0
-—d&d Vot Ly
o, 3 77+J;=0V2( + ) ov, &
. 0 . 0
t o — — V() —
049 = 4o
-+ ¢ type terms . . . etc. (8)

The details of this éxpansion are found in Appendix A.
Here, linear terms giving no contribution in (7) have
already been discarded.

The recovery of the e? forces of (5) from (7) pro-
vides a simple illustration of the computations. To
this order the accelerations in (7) and (8) are put to
zero and (7) becomes simply

my v, = e*(1 — Ui)é(l — vivy) L
27

s[3(r — vy8)? — 7]
Ir — o5 [s* — (r — vys)*]?
X [¥VF « Vg + vy X (r X ¥y) — T + vp5(1 — v3)] ds.

The integration encircles both roots of [s2 — (r — v,s)?],
that is, s, and s, where

r-vy

(& x v,

®)

Sl=—
2 1—v3 1 —

Then the integral may be written

1 0* § s[3(r — vy8)% — %]
(1- Ug) 05,1055 J Ir — os[* (s — 5,)(s — Sa)

X [Vor « vy + v X (r X V) — 1 + vo5(1 — v3)] ds

and rapidly evaluated. (Note thats, , = & [r — v,5, 4,
and that these relations are used after the differentia-
tion with respect to s, ,.) The equations of motion of

10 R. P. Feynman, Phys. Rev. 84, 108 (1951); W. L. Miranker and
B. Weiss, SIAM Review 8, 224 (1966).
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the first charge emerge as

P
(1 — v3))(s1 — 89)°
< {2[ver vy + vy X (r % Vy) — 1]
+ vo(1 — v3)(s; + 59}
which upon substitution of the roots (9) is found to be

identically (5a). This is the gist of the method.
The second-order term is given by

=i o (-2

x U f vz(t+5)-id5dn+f' vz(t+5)~ids]
n=0J =0 or, £=0

r vy

ml"'l = - (I - vlvl)

s(3r% — s%)
(s® — ri)?

- § exp (svz . _3_) sVt + 5) ds}.
ory) r(s* — %)

The calculation is not essentially different from that of
the first order, but there are a few cautionary points
that it would be well to emphasize. The sequence of
operations is: (a) derivatives with respect to r, and
vy, excepting the finite shift; (b) then the finite shift;
(c) ¥, is evaluated at ¢ + &, but since it is of order e?
itself and the calculation is to be of order e?, this
amounts to replacing r with r 4 v£ in the first-order
equations (5). Note that ¥,(¢ + £) is not an operand
in steps (a) or (b). At this point there remains no
ambiguity; there is just the indicated single and
double integrals of ¥,(r + £) and evaluation of the
complex integrals. The poles turn out to be the same
as those in the example above but of higher order.

[vor e va + v; %X (r X v5) — 1] ds

III. CONSTANTS OF THE MOTION

The infinite-order equations of motion (2) can be
integrated to yield constants interpretable as energy,
momentum, and so on, even though such a step seems
purely formal. The order of the system is not reduced
as with a pair of finite-order equations; one merely has
a new relation among, again, an infinitude of time
derivatives. Nevertheless the integrals of (2) are
important, for they contain the integrals of the order-
reduced Newtonian equations determining the ad-
missible solutions of (2). The latter integrals are just
those of (2) delimited by the relations among the
time derivatives implied by the Newtonian equations
themselves.

Two ways thus appear for integrating the Newtonian
dynamics: Work out the forces term by term, as in
Sec. II, and integrate directly; or integrate the ante-
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cedent infinite-order dynamics and extract the New-
tonian constants as special cases. The second way seems
the more circuitous at first sight, but, since it happens
that the delimitation of the infinite-order integrals
may be effected by order reduction, the Newtonian
constants may be secured without prior determination
of the force law. Moreover, unlike the case for the
second-order equations of motion, a Lagrangian (3)
is already in hand for the infinite-order system, and
this alone makes available the most efficacious of
integration schemes, namely Noether’s theorem.?

In what follows, Noether’s theorem is developed
for an infinite-degree-of-freedom dynamics and is
applied to the system (2). There results ten constants
of the motion, corresponding to the ten parameters of
the inhomogeneous Lorentz group, which order
reduction then renders Newtonian. This last stép is
carried out only to terms of order €? so that the final
products are constants (to e?) of the equations of
motion in straight-line approximation.

Noether’s Theorem

Let there be equations of motion

o 0L(D’'r})
—DY'————*+ =0, i=1,2, 9’
20 G ’ @)
following from the action principle
b
6f L(D'rp)dt' =0 (10)

in which the Lagrangian is explicitly independent of

the time. If the equations of motion are form invariant

under the infinitesimal transformations
r=r+ ef(r;, v, 0,
t'=1t+ eg(r;, vy, 1), 11

then the equations of motion in unprimed coordinates
are just (9) without primes, which means that (10)
written without primes necessarily holds.

Now, the transformation rule for time derivatives
is quickly induced from (11):

D’"r, = D"r; 4+ [ D"(f; — v;g) + gD"v,].

Introducing this in (10) and expanding to first order in
€, one finds

5 f d(L(D”ri) + e{L(D"r,-)Dg

+3 3%

a=0 i=10(D"r;)

- [D"(f, — vig) + gD"v.J}) dt =0,
(12)
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where ¢ and d are the transformed, but still fixed,
limits. As pointed out above, the lowest-order piece
vanishes owing to the form invariance of (9). Further-
more, the first and last terms in the e piece go together
to make the exact time derivative D(Lg), the variation
of which is identically zero. Result: A necessary and
sufficient condition that (11) are symmetry transforma-
tions of the equations of motion is

D, — v,g)dt =0.  (13)

memg

The Lagrangian and the transformations cooperate
in deciding how this happens. When the integrand of
(13) is an exact derivative, (13) is an identity, and the
transformations are, by definition, canonical. In any
more general case the vanishing is conditional; for
example, the integrand could itself be any Lagrangian
for the system, with the equations of motion being the
condition. But for the present purpose the important
and relevant case is the former, wherefore

oL
gf o(D™;)

D~ vg)=DQ,  (14)

which may be called the ‘““canonicity condition” for
the infinitesimal symmetry transformations (11).

Assuming that (14) is satisfied, the equations of
motion (9'), without primes, are dotted with (f; — v,g),
summed on i from 1 to 2, and the result subtracted
from the left-hand side of (14), giving

z{ oL

n,¢ a( D "l})

[(-— )"a(D,, ,)} (,-~v,~g)}=DQ. (15)

By the rule

« D"(f; — v;g)

DS (D™'B).(—DYA = A- D*'B — B (— D)*"A,
=0

the curly braces on the left-hand side of (15) contain
an exact derivative. The integral

— ) = const

(16)

immediately results. This constitutes Noether’s theo-
rem for a system containing all orders of time deriv-
atives—one constant for each canonically represented
symmetry transformation of the equations of motion.

2 Z D"(f; — v,g) - (— D)’

nyi =0

o( D"v‘)
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The association is not one-to-one, however, as the
replacing of f; and g with f; + v.h and g 4 A, with &
arbitrary, leaves the constant unchanged.

Infinite-Order Integrals

The dynamical equations (2) implied by the La-
grangian (3) have no explicit time dependence, have
relative coordinate dependence only, and are three-
vector equations. They are thus form invariant under
the following:

time translation (TT): r;=1r,, t'=t+¢ (17a)
space trapslation (ST): rj =1, + i, ' =1, (17b)

space rotation (SR): r, =1, + b xx;,, =1,
(17¢)

respectively, where the unit vectors are fixed in the
directions of translation and rotation. An Q exists for
each of these cases and can be found from (14), al-
though for these particular symmetries, it is easier to
refer back to (12). The Lagrangian is manifestly in-
variant under the above transformations (being a
time-independent, relative-coordinate-dependent sca-
lar), so that the e piece in the integrand of (12)—not
only its variation—vanishes; since that piece is just
D(Lg + Q), then Q = —Lg, and, by comparing (11)
with (17), the three {’s follow as

QTT = -L’ (183)
Qgp =0, (18b)
Qe = 0, (18¢)

Finally, the transformation between infinitesimally
different Lorentz frames is®**

r =1 + efviit - (1, — 1) — iit],

r; = ry; — efif, (17d)

tl=t'—€ﬁ'r2,

where efl is the velocity of the primed with respect to
the unprimed frame. Though it is not so obvious that
an € exists, the transformations {17d) are canonical
with respect to the Lagrangian (3), and the result of
the computation of Q from (14), carried out in

Appendix B, is
QLT = —mlﬁ . rl(l - U?_)% — mzﬁ M rg(l - Ug)é

-3 go( (12);)132) (A= vy ) Mi(r, +1,).
(184)



FORMULATION OF

The corresponding integrals are

Crr=L-— g lZo(D"‘ V) (— D)la(D" ) (19a)
= —D)* 19b
Cor = ;1( D) a(D" 5’ (19b)
Con =3 S(D™) x (— D)} —o=—, (19¢)

) ' o(D™, 1)
Cur = Z ian-z(riv In]. (- D) ( " ) LT»
' (19d)

where Qpp = Q1 - i

The first of these but for the sign can be recognized
as the extension to the infinite-degree-of-freedom case
of the usual energy. The last three vector integrals are
the linear momentum, angular momentum, and the
so-called “‘center-of-mass” constant, the generaliza-
tion of MR,,, — Pt going with the Galilei transforma-
tion in the nonrelativistic case.

To complete the computation the integrals must be
rendered functions of the primitive variables. The
expression for the derivative of the Lagrangian with
respect to D*v; [Eq. (B3) in Appendix B—just shift n
to n + 1] is substituted in each of the constants and
the results simplified. For example, for the linear
momentum,

P= z (_D)n[mivi(l -
a2 (=D
Z (2p + 2)!

P+1)1_ . 20—1(n __ p.
X (n 41 ( Yy V)r?T(r; — 1)

p=n (2p)'

U%)_% 607&

@p+1)

— 2yt — 2 2
E =m(l — v} + my(1 vz) +eg(2 Y

CLASSICAL ELECTRODYNAMICS

1355

where j = 2 when i = 1, and vice-versa. The counting
in the second term may start with n = —1 since the
term vanishes at that number. Then shifting the index,
n—n + 1, and using the counting rule

P

2

p=0 n=0

O a0

53-

leads to

P= z my(1 — UE)_é

(D
1
D;(z +2),( p+1)
x (1 — v1 Vo)1 1(r -r,)
2 Z )21’ —1
I X) (2p)' j ’
where, in addition, the binomial expansion

(=D = (D,— D=3 (k)(_D)an_n

n=0

)2(11+1)

has been used in the last two terms. In the middle
term, however, this last step can only be effected if
the term is first differentiated (“multiplied” by — D);
it must then be integrated, here represented as division
by D. The representation is unambiguous since D can
be factored out of the middle term and the previous
expression recovered, a fact more visible when the
above is summed on i:

P= mlvl(l - D%)—% + myvy(1 — Ug)_i

Y = DP)(1 ~ vy - vr

= (2p)' D
22 —(Dz”v 271 4 D¥v,r® Y, (20a)
p=0 (2 )'

The other integrals may be similarly expressed, and
are found to be

(D2p + D2p)r2p—l

22 - (D2p+1 + D29+1)(1 — v vg)r%—l’ (20b)

=0 (2}7)' D

L = my(r, x v))(1 — Uf)_é + my(ry x vo)(1 — Uz)—é + ezz —— [D3(xy X v)r® ' + DP(x, x v)r**]

22 1

= (2 )v I
K=mr(l — vﬁ)*% + mary(1 — 03 — Pt

p= 0(2 D!
— DP)(vy x Vo)™ 4+ (2p — 1)(1 = vy - Vo)(ry X £)r**%], (20c)

22 T {rlD%[Dlrzp—l + Dy(vy + v)r* ] 4+ 1, DIP[Dyr™ ™ + Dy(v, + Vo)r™~ 1]}
p= 0(2 )!' D
+ 3 L (ppvr 4 Dty 4 @S L Lo pyop — 11— vy v (200)

=0 (2p)' D

o (2p)! D
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As in the linear momentum, the inverse D’s cancel
the numerator D’s and are therefore integrations. It
will presently be seen, however, that actual integration,
attempted order by order in €?, is ambiguous due to
the possibility of adding any term whose derivative is
of order e2**2 to the integral computed to e** accuracy.
A test of the admissibility of such additive pieces is to
reintroduce the speed of light into (20) wherever it
dimensionally belongs [in (20a), for example, c¢*?
follows each summation sign, c¢? divides each quad-
ratic velocity term], and then to compare the expansion

& 1

P = mv,(1 — U?)—i + mavy(1 — Ug)—i Py D ar

+ & — § [exp (sDy) ——=——— ( » + exp (sD,)

To find P correctly to order e, the finite-shift
operators are adequately represented by the first term
in the expansion (8). Thus, the only complex integrals
that appear are of the type

ffexp (sv, 9 )ﬁ ds,

which, for j = 2 say, is

(22)

27 [ S1 _ S ]
(1 — vB(s; — sILIr — vos3] |1 — vasg |

just matching the analogous force computation. The
roots s, and s, are as before (9) and, again, the de-
nominators in the square bracket are, respectively,
5, and —s,. The integral is therefore

21

—_— (23)
il — @ x W)t
The gradient of this quantity is

f—vzx(i‘xvz)
r[l—-(i‘xv)z]*}

and the time integral of the gradient, needed in the

mv, myvy

jﬁ [exp (sDy) — exp (D] L=
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in ¢~ powers of the direct integration result with the
c~% expansion of (20). The latter is unique owing to
D’s explicit and remainderless division into the oper-
and following it.

Newtonian Integrals To Order 2

The order depression proceeds exactly as before,
with the first step the expression of the constants in
complex integral form. Just as was the force law, the
linear momentum (again singled out for illustration)
may be written

Vi Vz)

-
T_——z—)]s ds. (21)

second term of P, may be written

_sz‘ o + v — ¥ X [(1 + V1) X v,]
to {(Fo + V1)* — [(xs + V1) x vy}

d1, (24)

that is, r is considered to change uniformly. A more
accurate calculation would contribute terms at least of
order e? in the integral or of order ¢* in the momen-
tum. The integration is straightforward. It is guessed,
and confirmed later by the final form of P, that the
result vanishes at f,, so that upon eliminating r, (by
Iy = r — vt), one has for (24)

—2miNFY(# x V)2 — [(} x V) x (F x v}
x [1— @& x v, (29
where
N=f%[f:v— (Fx vy (v; X vy)]
+ vl —Fx Vz)z]
+ vl — (@ x V)« ( x V)]

Finally, these fragments, (23) and (25) for j = 2,
along with their exchanged-subscripts counterparts,
are assembled according as they appear in (21). The
result is to order €* the linear momentum associated
with the admissible solutions of (2):

el —v;+vy)

Ta-ot (- o)

e { \Z! \D
A=t -

|+ 2 2
rl(p; — p2)® — (1 % p2)’]

X (g 10— A =l = ) — ey = X w)

1

+ ‘u2)§ {Vz(l - /4‘%) — vyl — ) + B[RV — g o (v x Vz)]}) , (26a)

-
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in which # X v; = p;, # X v, = p, for short, and v
is the relative velocity v, — v,.

An expansion of P (after putting ¢ back in) in
powers of ¢? is identical with the same expansion of
(20a) with velocities held constant, thereby ratifying
the choice of lower limit.

The other constants of the motion are handled in
the same way. The only little puzzle in each case
concerns the proper choice of ¢, in the time-integration
step, there apparently being no systematic way for
knowing what it should be ahead of time. The simplest
guess, that the time integral should vanish at the
lower limit, works for the linear momentum and also,
as it turns out, for the energy; but it fails for the
angular momentum and for the center-of-mass con-
stant. These latter two are each distinguished by
requiring among their time integrations a type signifi-
cantly different from the form of (24). For integra-
tions in which the curly-braced expression appears
just as in (24), in the denominator and to the § power,

m; my
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the above rule for ¢, applies—the integral vanishes at
the lower limit. In all other cases that curly-braced
expression occurs also in the denominators, but to the
4 power. Then, although the vanishing rule fails, a
factor of the form

‘“B@r+wﬁ—um+voxuﬁ*

vV —(rg X V)« (v X Vz)]
= x vt L

arising when each of these remaining time integrations
are evaluated, hints at another simple #,, namely,
that which gives zero for the curly brace itself. The
conjecture is reinforced when elimination of r,, as in
(25), results in the logarithm’s argument being a
function constant to e? with no explicit time depend-
ence, and is established by a ¢—2 expansion test of the
final L and K.

The energy, angular momentum, and center-of-
mass constant are, to e? order, respectively,

+ 1ot — (v, x v 4+ 0

82(1 - V1 * V2)

é? 1
= + + —[ +
A=) (—dt Lo - i

+
a—@g (g —

P2)* — (1 X o)’

Por (g — o) Py (g — ) 26b
[u—m* a—@*}( )
- my(ry X V1) | my(ry X V) _[ T XV I, XV, ] (1 — vy - vp)
R L (I L WC R iy S R (TR COp
XszgmeO—M—WXMO—mMJHWMXth—m@Mwm

+ ——1—2_; {0ry % vo)(1 — ) — (13 x v)(1 — gy * o) — (1/r)(xy X w)[B - v — oy + (v % Vz)]})

(I —u

(v X Vo)(1 — v1 - ¥y) {I¢-

(1 — p2)® — (1 % @)*][0° — (V1 X V)°]

V— e (v x VI — )}

oD = v])(v, x \D)

FY = e (X I — DY) + 2L
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A direct check by time differentiation verifies that
this set of functions (26) is indeed constant in straight-
line approximation, the accelerations being deter-
mined by the opening terms in (5).

Lorentz Transformation of the Newtonian Integrals

It should finally be noted that, to within their order
of accuracy, the constants of the motion (26) have the
required transformation character when passing from
one Lorentz frame to another. The quantity P? — E?
is a four-scalar, and K and L are the components of
an antisymmetric four-tensor, the transformation rule
for infinitesimally distinguished frames being

L' =L + «fi x K, (27a)

K' =K — e x L. (27b)
These statements may be tested by brute-force trans-
formation or, more elegantly, in the same way that
(5) may be proven covariant,*? by developing certain
necessary and sufficient conditions that they be true.
For example, by direct transformation, using (17d),

L' = L(r;, r3; Vi, v3)
= L[r; + e(v;fi - v — fif),
v, + e(vii- v, — it + Vit o), vy + e(voih e ¥, — B,
which to first order is

r, — eiit;

L(r,,ry; v, vo) + e[(vlﬁ o — if) . _BL
or;

—(ﬁt)-a—L+(v1ﬁ-v1— ﬁ+vlﬁ-r)-21—‘
or, ov,
+ (vfiev, — A1) ﬂf]
ov,

Equating this to the right-hand side of (27a) gives

ﬁ-r(vl-g—L+Wl-QI—J) +ﬁ-v1v1-a—L

1'1 avl av1
oL oL oL
fie A W Do e
+Av ov, (av1 + avz)
oL oL
—(@){—+—|=axK
(84) (81'1 + al'z) X

This result may be reduced further by factoring out
the i. When L and K are introduced from (26), one
has a dyadic equation in which sixteen linearly inde-
pendent pieces can be identified, all of which, upon
the substitution of ¥; from (5a), have been found to be
satisfied to order e

The transformation rules for all the constants have
been tried out in this manner, the error in each case
being a term of e* order.

IV. CONVENTIONAL ELECTRODYNAMICS

The treatment so far has been a sort of paper-and-
pencil experiment attempting to see some of the
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actual features of a covariant Newtonian dynamics.
In this last section we briefly comment on the overlap
of the results of the “‘experiment” with what ought to
result from the conventional retarded interaction of
two charges.

The overlap can be perceived in the Egs. (5): The
right-hand side of each, to first order, is the force on
one charge in time-symmetric interaction with its
uniformly moving companion. But that same term is
also, and independently, the force [excepting the
relativistic factor (1 — v%)#(1 — v,v,)] on the one
charge in retarded interaction with the other, moving
uniformly—a commonplace calculation.!

In this present context, the latter result can be
retrieved by repeating the steps of the first section
starting with fully retarded potentials. The outcome
will be an e? expansion of the forces differing from the
time-symmetric case in every term but the first. Im-
portant consequences are as follows:

(a) The well-known extension of Coulomb’s law to
include uniform motion of charges yields an interaction
approximately covariant in the sense already men-
tioned.

(b) Although like constants of the motion (energy,
etc.) will differ in the two interactions, their coupling
constant expansions will be identical to first order.
Consequently, the integrals to e® of the dynamics
which result from replacing Coulomb’s law with its
straight-line extension are just those presented in the
last section, Eqs. (26).

Of course, as they contain no power of the coupling
constant already neglected in the forces, it is just the
approximate integrals of the corrected Coulomb
dynamics which are physically consistent. Nevertheless
it is interesting to regard that dynamics—the system
(5) with e* and higher terms dropped—as exact, and to
seek exact integrals; an example of this is a kind of
internal angular momentum

B — rxXxy
(1 — o)1 — ot

Because the coupling constant is missing, £ also
happens to be an approximate integral of the full
dynamics. When terms beyond e? are included in the
forces, its time derivative will be of order €4

What can be said about the domain of validity of
the approximation to the completely retarded dynam-
ics by the straight-line equations of motion?
Unhappily, little at present, but reflection on this
concluding question raises interesting possibilities.
One can see by dimensional analysis that, when the

i1 R. Becker, Electromagnetic Fields and Interactions, F. Sauter,
Ed. (Blaisdell Publ. Co., New York, 1964), Vol. I, pp. 267-271.



FORMULATION OF CLASSICAL ELECTRODYNAMICS

masses are the same, the expansion in e? of either
time-symmetric or completely retarded forces is
(excepting a common factor of e?/r?) in fact an
expansion in powers of the classical charge radius r,
divided by the separation of the charges.

Then, because approximations to the fully retarded
forces obtained by truncating the e® series depend
upon both the size of ¢ compared with charge speeds
and r, with charge separations, the error introduced
by keeping the opening term alone [which is also the
opening term of (5)] of each charge’s force will be
minimized only by an appropriate set of restrictions
on the charges’ speeds and closest-approach distance.
The meaning of “‘appropriate” will become clear
when the behavior of higher-order terms at various
speeds has been understood; so far, it has only been
established? that, for the one-dimensional case, the
second and third terms in the force law have logarith-
mic branch points, but no poles, at the speed of light.
The implication is that the opening term of (5) might
successfully comprehend the dynamics of such events
as the collision of high-energy charges, the sole con-
dition being the specification of some minimum impact
parameter.

V. SUMMARY

For a pair of charges, application of the criterion
that the world lines should straighten out as the
ccupling constant is turned off leads to frame-
invariant Newtonian equations of motion, thus
singling out a twelve-parameter set of world lines from
among the infinitude admitted by classical electro-
dynamics.

The computation of the forces to ¢* order has been
reduced to the evaluation of certain integrals. Either
completely retarded or time-symmetric interactions
may be treated, but as the latter both follow from an
action principle and are form invariant under the
inhomogeneous Lorentz group, Noether’s theorem
applies and delivers ten constants of the motion. The
time-symmetric case has therefore been investigated
here and the integrals presented explicitly to first
order in €%

The equations of motion are covariant and the ten
integrals are possessed of their characteristic trans-
formation rules only approximately, that is, consistent
to their degree of approximation in e?. Only when
terms of all orders in e* are summed will the dynamics
be completely consistent with the principle of rela-
tivity.

All of the results, however, remain formal because
the question of convergence of the expansions in e?* is
still unresolved. Until the problem is settied the whole
regime is tentative; in the meantime such facts as the
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opening terms in the ¢~ expansion of the forces being
the Coulomb and Darwin interactions, respectively,
suggest that the e* terms also have perturbative
significance and that the expansions in that param-
eter might at least turn out to be asymptotic.

The opening term in the e? expansion of the forces
for the fully retarded and time-symmetric cases is
identical and is, furthermore, the classical result
(multiplied by a relativistic kinematical factor) of
computing the force on one charge via the retarded
fields of a second whose velocity is fixed. This straight-
line correction to Coulomb’s law is then seen to be
rather more significant than ordinarily remarked.
It correctly approximates to €%, in a frame-invariant
way, the force on one of a pair of charges in retarded
interaction. Finally, owing to the coincidence of all
first-order results, the constants of the motion of the
corrected Coulomb dynamics are just those of the
time-symmetric equations.

A Hamiltonian formulation, with the inhomogene-
ous Lorentz-group canonical, of the dynamics sketched
in this presentation is known to exist and to be
unique. The next major step will be its construction.
One can already anticipate from the approximate
covariance of the theory that even to order ¢® the
injunction of the zero-interaction theorem will only be
short-circuited by eliminating physical positions as
candidates for the ¢;’s. Although a commutation-rule
puzzle then looms, it was not expected that the
marriage of the canonical formulation of the instan-
taneous interaction of charges with the special theory
of relativity would take place gratuitously. We just
hope that the union proves fruitful.
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APPENDIX A: ORDERING OF exp (sD,)

It has been shown!® by Feynman’s calculus for the
noncommuting operators 4, B that

exp [s(A + B)]
= exp (s4) + sf 0exp [(1 — «)sA]B exp (asA) da

+ L I_OCXP [(1 — B)sAlB
Xfﬁ exp [(B — 2)sA]B exp (asAd) dudf + - - -,
a=0

(Al)
where s is a ¢ number.



1360

Now, if D, = A + B and

a2
A =
Yer 6r2
Bty T

(n)
av2 ovy”

n being the order of the time derivative, the com-
mutation rule

B exp (ksA) = exp (ksA) (ksv'2 - Ea— + B) (A2)
Ty

is obeyed (k is another ¢ number). Using (A2) in
(A1) gives

exp (s Dy) .
= exp (s4) + exp (sA)sf (ocs»"2 . ai + B) da

—0 r,

+epa[ f 3 (ﬂsv2 2+ 5)

X(asﬁ’zo—a—+3) dodf +--- (A3)
or,

When each of the integrands is expanded, the result
can be arranged in a multinomial series in time
derivatives of the velocities. The contribution to the
linear terms by each integrand in (A3) is easily found
by induction and is

+v(n+1) a +...’

0 KA
asvi™ o — 4 vim . -
6 Va

A4
or, ov, (A%

in which the order of the time derivative n is also
equal to the number of products in the integrand; or,
in other words, (A4) is the linear term for the inte-
grand of 5™ in (A3), whence

exp (sDy) .
= exp (sA)[l + sf (rxsi'z . —aa— + B) do
a=0 1'2

+ szfl fﬂ (ocsv‘z’-i
2
=0 Ja—0 or,

0
__+..
ov,

+ v(2) ) da dﬂ + - ]

Integration gives

exp (s Dy)

1 d 1 2
=e A1 Voo— + B @,
xp (s ){ + s(2! SVy - ar, + ) + s [3’ SV arz

1 (2) 3) ) } A
— P S 5
+ ( Ez + v§ E‘2 + I + (AS5)
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The coefficients of d/0r, and i?/E}v2 are

1 1 5@ S e
2'sv2+3'sv2 + +
and
sv +iS2v(2) +ls3v(3) + ..
Y 310 ° ’

which are, respectively,

f ' f iovz(t + &) dedy

and
f T vt + &) dé.
£=0

The remaining terms in the { } of (AS5) are

0 ( 0
(v?) av2+ +vl+1) a_;l)_l_ ...)
1 0 0
+as2(v(23),a_‘.'2+ +v(l+2) .a_él_)_l_)_*_,

which may all be written
2 0 0
e oy,
ngl( (t + s) a ;n) V2 av(zn)) )
Thus, to terms linear in the time derivatives of the
velocities,

exp (sD,) = exp (sv2 aa )

[1+f fvz(t+§)«—dsdn
=0 J{=0

Vz(t + &) é_ dé
Vg

+ Z(v‘")(t +5)— ¥y 2 )]. (6)
n=1 a 2"
In the present application the operand of (A6)
contains no time derivatives of v, beyond the first.
Therefore, only #n = 1 appears in (8).

APPENDIX B: COMPUTATION OF Qpp

It is first necessary to find an expression for the
derivative of the Lagrangian (3) with respect to D™r;.
By the Cauchy integral formula, with the trans-
formation z = s + ¢, the Lagrangian may be written

L=—m(l — o)t — my(1 — ot

_ 2 (=D !
=0 (2p)! 2mi
1-—
§ [ e pj—ll(s + 9] Iry(s +t) — rzlzp_l ds.

(B1)
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The form (B1) is suitable for taking the derivative S0, With factorials of negative numbers denoting

with respect to D"r,: vanishing terms, (B2) becomes
oL —_mv . oL _ M .
apr) (1—odt” apm) (-t "
_ 2w(—D2)p(_I_7_!_§L e (=DyDP™" 2p — 1
¢ ,Zo @p)! \2mi J " ¢ En 2p)! @r =1
X {[1 — V(s +l(2p—1) '—s-; X (p)(l S A L §
n! n
X [ry(s + tl) — ] Ir(s 4+ 1) — ry* 4 ¢ i (—Dg’l))?_"“( 4 1) vyr¥
s"_ _ 2p—1 p=n—1 D) n —
BT TR }ds)’ (B3)

(B2)  which is the desired expression. The derivative of L
where the last term in the curly braces is zero for With respect to D"r, follows by exchange of indices.

n = 0. Retransforming to z and again using the inte- _ Now, in the equation for the determination of any
gral formula gives for the term in parentheses Q, Eq. (14), it suffices to treat i = 1; then, with f; and
P! g given by (17d),
— L — (2p— DDA — vy - V)PP ®
nl(p — n)! ! (DQu)ir =3 > a’; . D"(wfi -1y — fif). (B4)
p! - n=0 (D rl)
v, {—n+ r p—1

=D —n+ D! Substituting (B3) in (B4) gives

L\ op. —
(DQur), = a— vf)} D(v,fi - r, — fit)

L D NYP—n

-3 [Z (=DufDy™ @r—-1 (p)(l —v- vg)r”‘ar] « DY(vifi - 1, — fit)
n=0| p=n (2p)! n
© o — 2 ne—n+l

+ e22 [ z _(.___M_( p )v2r21)—1] N D'ﬂ(vlﬁ . l'1 _ ﬁt). (BS)
n=1{ p=n—1 2p)! n—1

The first term is the exact derivative of the sum rule

8
8

—myfi - 1y (1 — v3),
Also, with . ."
and shifting the index from n — 1 to » in the last
D™(vifi e 1, — if) = DY(v,ft 1) — A8, — Bd,,,  term, (BS5) becomes

n  p=0

3
[Rgb

’
0 p

I
I

(DQur)y = — Dlmyf - ry(1 — o))

-3 i(—_—%—)f (2p - 1)(i ) [D3~"(1 — vy - v)r**3r]« DY(vifi - 1p)

=0 n=0 (2p)!
w P ?
+e3 STy (pponr) . Dt ny
»—0n=0 2p)! \n
2(=Dy)*DY ! - e v (=D1Dy)” —
+ 321 _p02p— D — v, - V)P Ore i — Y12 y ., f2l B6
El p)! (2p X 1° Vo) IZO p)! 2* Br (B6)
The term containing ¢ explicitly has been dropped; using Leibniz’ rule
being antisymmetric in the charge indices, it is DYA-B)=> (p)( D?"A) . DIB.
cancelled by its opposite number upon addition of #=0\n

(DQy,1); . The remaining pieces may now be simplied Further, if the index p is shifted in the fourth term so
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that counting begins at zero, the interaction pieces of
(B6) become

Rl v
—etS SR o 1yt vy v i e g
=0 (2p)!

- rzp_lDl(Vl * v2ﬁ . l‘l)
+ $D,[(1 — vy - wpIr - 87 7] 4 vy - 7, (BT)
the curly brace of which is equal to
Di[(1 — vy« vp)fi o 1?7 — fi o vrPt
+ 3D,[(1 — vy - vy - 1) (BY)

The piece involving the relative speed is antisymmetric
and can be discarded.
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The interaction part of (DQpqy), Will be just (B7)
with an index-exchanged curly brace. Then the inter-
action terms of D, . will be (B7) with a braced term
the sum of (B8) and its exchanged counterpart, easily
seen to be

Dy + DII(1 — vy » v)r** M« (1 + 1))

The right-hand side of (14) is thus an exact derivative
for Lorentz transformations. The expression may be
integrated to give

Qur = —myfi 1yl — oD — myf - (1 — o)}
200 ¢ D D 1.
- %Zo(_(lz);_)_'zl 1—v- V2)r2ﬂ . (1'1 + ry).
' (BY)
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Degenerate perturbation theory is employed to discuss the motion of a charged particle in a constant
magnetic field on which is superimposed a weak, transverse, spatially periodic magnetic field. A first-
~order solution of the equations of motion is presented. It is shown that the secular motion is periodic
in time. The significance of this result with.respect to the stability of protons in the inner Van Allen belt

is discussed.

1. INTRODUCTION

In a previous paper! (henceforth cited as I) we
presented a new formulation of classical perturbation
theory. There we illustrated the nondegenerate form
of this theory by discussing the van der Pol equation.
The van der Pol equation has, of course, been ade-
quately discussed by many authors using a variety of
techniques. In the present paper, however, we
discuss a problem which has not been adequately
treated in previous publications. Here we employ
degenerate perturbation theory to discuss the inter-
action between a charged particle and a constant
magnetic field on which is superimposed a weak,
transverse, spatially periodic magnetic field.

This interaction has played an important role in
recent discussions of the stability of protons in the
inner Van Allen belt. For example, Dragt®? and
Wentzel®* have argued that a resonant interaction
_*rpm)rted in part by the National Science Foundation.

t Present address: EGG, Inc., Arlington, Virginia.

1T, P, Coffey and G, W. Ford, J. Math. Phys. 10, 999 (1969).

2 A. J. Dragt, J. Geophys. Res. 66, 1641 (1961).
3 D. Wentzel, J. Geophys. Res. 66, 359 (1961).

between the charged particle and a periodic magnetic
field would cause a breakdown of the adiabatic
invariance of the particle’s orbital magnetic moment.
They further argue that such a breakdown of the
adiabatic invariance of the magnetic moment would
destroy the magnetic trapping effect. This reasoning
has led them to assert that a periodic disturbance
(produced, for example, by a hydromagnetic wave)
on the geomagnetic field is responsible for the removal
of protons, which would otherwise be trapped, from
the inner Van Allen belt.

In what follows we obtain a complete first-
order solution of the equations of motion in the case
where the periodic field is a sinusoid. We find
that the secular changes produced by such a field are
of bounded variation. In particular, the “average”
magnetic moment is a periodic function of time. The
relative fluctuation in the “average’” magnetic moment
depends upon the ratio of the particle’s cyclotron
radius to the wavelength of the periodic disturbance:
the fluctuation is large when the ratio is small and
small when the ratio is large. The essential point is that



1362

that counting begins at zero, the interaction pieces of
(B6) become

Rl v
—etS SR o 1yt vy v i e g
=0 (2p)!

- rzp_lDl(Vl * v2ﬁ . l‘l)
+ $D,[(1 — vy - wpIr - 87 7] 4 vy - 7, (BT)
the curly brace of which is equal to
Di[(1 — vy« vp)fi o 1?7 — fi o vrPt
+ 3D,[(1 — vy - vy - 1) (BY)

The piece involving the relative speed is antisymmetric
and can be discarded.

JOURNAL OF MATHEMATICAL PHYSICS

FREDERICK JAMES KENNEDY

The interaction part of (DQpqy), Will be just (B7)
with an index-exchanged curly brace. Then the inter-
action terms of D, . will be (B7) with a braced term
the sum of (B8) and its exchanged counterpart, easily
seen to be

Dy + DII(1 — vy » v)r** M« (1 + 1))

The right-hand side of (14) is thus an exact derivative
for Lorentz transformations. The expression may be
integrated to give

Qur = —myfi 1yl — oD — myf - (1 — o)}
200 ¢ D D 1.
- %Zo(_(lz);_)_'zl 1—v- V2)r2ﬂ . (1'1 + ry).
' (BY)

VOLUME 10, NUMBER 8 AUGUST 1969

Motion of a Charged Particle in a Spatially Periodic Magnetic Field*

TiMotHY P. CorreYt
Department of Physics, University of Michigan

(Received 14 August 1967)

Degenerate perturbation theory is employed to discuss the motion of a charged particle in a constant
magnetic field on which is superimposed a weak, transverse, spatially periodic magnetic field. A first-
~order solution of the equations of motion is presented. It is shown that the secular motion is periodic
in time. The significance of this result with.respect to the stability of protons in the inner Van Allen belt

is discussed.

1. INTRODUCTION

In a previous paper! (henceforth cited as I) we
presented a new formulation of classical perturbation
theory. There we illustrated the nondegenerate form
of this theory by discussing the van der Pol equation.
The van der Pol equation has, of course, been ade-
quately discussed by many authors using a variety of
techniques. In the present paper, however, we
discuss a problem which has not been adequately
treated in previous publications. Here we employ
degenerate perturbation theory to discuss the inter-
action between a charged particle and a constant
magnetic field on which is superimposed a weak,
transverse, spatially periodic magnetic field.

This interaction has played an important role in
recent discussions of the stability of protons in the
inner Van Allen belt. For example, Dragt®? and
Wentzel®* have argued that a resonant interaction
_*rpm)rted in part by the National Science Foundation.

t Present address: EGG, Inc., Arlington, Virginia.

1T, P, Coffey and G, W. Ford, J. Math. Phys. 10, 999 (1969).

2 A. J. Dragt, J. Geophys. Res. 66, 1641 (1961).
3 D. Wentzel, J. Geophys. Res. 66, 359 (1961).

between the charged particle and a periodic magnetic
field would cause a breakdown of the adiabatic
invariance of the particle’s orbital magnetic moment.
They further argue that such a breakdown of the
adiabatic invariance of the magnetic moment would
destroy the magnetic trapping effect. This reasoning
has led them to assert that a periodic disturbance
(produced, for example, by a hydromagnetic wave)
on the geomagnetic field is responsible for the removal
of protons, which would otherwise be trapped, from
the inner Van Allen belt.

In what follows we obtain a complete first-
order solution of the equations of motion in the case
where the periodic field is a sinusoid. We find
that the secular changes produced by such a field are
of bounded variation. In particular, the “average”
magnetic moment is a periodic function of time. The
relative fluctuation in the “average’” magnetic moment
depends upon the ratio of the particle’s cyclotron
radius to the wavelength of the periodic disturbance:
the fluctuation is large when the ratio is small and
small when the ratio is large. The essential point is that



MOTION OF A CHARGED PARTICLE

a resonant interaction between the particle and the
periodic field is not sufficient to cause large changes
in the magnetic moment.

Aside from its application to the question of
stability of protons in the inner Van Allen belt,
the example which we discuss is an interesting
mathematical exercise. It illustrates quite nicely many
of the phenomena which are characteristic of non-
linear oscillatory systems. For example, the ideas of
secular growth, stability and instability, and syn-
chronous and nonsynchronous behavior arise in a
very natural way. The example also illustrates that a
nonlinear resonance is considerably more com-
plicated than a linear resonance.

Our program is as follows: In Sec. 2 we derive
Hamilton’s equations of motion which describe the
interaction between the particle and the field; in
Sec. 3 we introduce the appropriate perturbation
theory and obtain the differential equations which
describe the secular motion; in Sec. 4 we perform a
phase-plane analysis in order to characterize the
secular motion; in Sec. 5 we obtain an explicit solution
of the differential equations which describe the secular
motion; in Sec. 6 we discuss the behavior of the
secular motion under resonance conditions. The final
section summarizes the main conclusions of the paper.

2. THE EQUATIONS OF MOTION
In the Cartesian reference frame x, y, z the magnetic
field is taken to have the form
B = [B, sin kz, 0, B,]. (2.1)
This field can be described by the vector potential
A = [—Byy, (B,/k) cos kz, 0]. 2.2)
The nonrelativistic Hamiltonian H which describes
the system is
H = (1/2m){p — (e[0)A}?
= (1/2m){[p, + mwey}’

+ [p, — (maw,fk) cos kz]* + pi},  (2.3)

where
Wy = eB()/mc,

(2.4)

In order to prepare the system for perturbation
theory, we introduce the new canonical momenta J,
P.» Pz and their conjugate coordinates y, r, and Z as
follows:

w, = eB,/me.

x =r— (Qmoy)tcosp, p, =p,,
y = —(1/mwg)p, + (2Jmwe)? sin p,
P, = Qmawg)} cos p,
P = Pg. (2.5)

The quantities r, p,/mw,, and Z are the Cartesian

z=2Z,
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coordinates of the guiding center. In the unperturbed
state the particle gyrates about this center with
angular velocity w, in a circle of radius (2J/mawg)?.
We measure the time in units of the rotation
period. To do this we introduce a new independent
variable

T = wyl.

(2.6)

It is straightforward to show that the Hamiltonian k
which is appropriate to the new variables is
h=J + (1)2mwg)P% — (/k)2mwyJ)? cos y cos kZ

+ (®mw,/2k?) cos® kZ, (2.7)
where
€ = w;/wy, = By/B,. (2.8)

Hamilton’s equations of motion are found from Eq.
(2.7) to be

J' = —(e/2k)2mawg)t

X [sin (y + kZ) + sin (y — kZ)], (2.92)
P, = —(¢/2)(2mwyJ)t

X [sin (¢ + kZ) — sin (y — kZ)]

+ (€mwy/k) cos kZ sin kZ, (2.9b)
kZ' = kPzlmw,, (2.9¢)

Y =1 = (¢2K)(may20)t
X [cos (v + kZ) 4 cos (y — kZ)], (2.9d)

where, for example,
J' =dJldr. (2.10)

The system of differential equations (2.9) is in the
standard form to which the perturbation theory of I is
applicable. The parameter of smallness is € = B,/B,.
We see from Egs. (2.9) that the sum angle v 4 kZ
contributes only small amplitude, rapid fluctuations
to the motion. However, the difference angle y — kZ
can give rise to secular motion when " — kZ’ = O(e).
The system (2.9) must, therefore, be treated by de-
generate perturbation theory. We carry out this
treatment in the next section.

3. PERTURBATION THEORY

In this section we perform first-order per-
turbation theory according to the formalism pre-
sented in I. Our object is to separate the rapidly
fluctuating motion from the secular motion. In order
to do this we introduce new variables U, V, K, and
¢ as follows:

kZ = KU + eDy(U, V, K, ¢) + O(e), (3.1a)
P, =V + ¢E(U,V,K, ) + 0(), (3.1b)
J=K+ F(U,V,K, ¢) + 0(?),  (3.1c)

py=¢ + G (U, V, K, $) + 0(?), (3.1d)
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where D, E;, F;, and G, are required to be periodic
functions of ¢ and of kU with period 27, The variables
U, V, K, and ¢ are to contain the secular motion and
D,, E,, F,, and G, are to contain the rapidly fluctu-
ating motion. In order to guarantee that U, V, K, and
¢ represent the secular motion, we require that

kU = (kV|mwy) + ea (U, V, K, ) + O(e?), (3.2a)
V' = by (U, V, K, $) + O(e), (3.2b)
K' = ed,(U, V, K, ¢) + 0(e), (3.2¢c)
¢ =14 eB,(U, V, K, ) + O(ed). (3.2d)

The functions a,, b;, A4,, and B, are to contain only
those combinations of U and ¢ which can give rise to
secular motion. The precise manner in which this
choice is made is fully described in I.

If we substitute the ansatz (3.1) and (3.2) into
Egs. (2.9) and retain only terms through first order in
€, then we obtain the following set of equations:

A1 + OF, = —(1/2k)(2maK )} [sin (¢ + kU)

+ sin (¢ — kU)], (3.3a)
b, + 0E1 = —($)(@2mwK)}[sin (¢ + KU)

— sin (¢ — kU)], (3.3b)
a; + OD, = (k|mwy)E,, (3.3¢)
B, + 0G, = — (1/2k)(mwo/2K)}[cos (¢ + kU)

+ cos (¢ — kU)}, (3.3d)
where the operator

0 = (kVImwy)o[okU + 0/0¢. 3.4

The difference angle 6 = ¢ — kU can give rise to
secular behavior when it is slowly varying. In order
that U, V, K, and ¢ contain all of the secular
motion, we must absorb the 0 dependence into the
functions A, a,, b,, and B;. We therefore choose

A; = —(1/2k)(2mwK)? sin 0, (3.52)
B, = —(1)2k)(mwy2K)} cos 0, (3.5b)
a, =0, (3.5¢)
b, = (3)(2mw,K)? sin 6. (3.5d)

With this choice of 4,, B, a,, and b, we find that

D, = (k/20)(2K/mawo)! sin (¢ + kU),  (3.6a)
Ey = (1/203)(2mwK)} cos (¢ + kU), (3.6b)
Fy = (1/2kw)(2mwoK)t cos (¢ + kU),  (3.6¢c)

G, = —(1)2kay)(mwe/2K)} sin (¢ + kU), (3.6d)

where

wy = 1 + (kV]/maw,). 3.7

When our choice for 4, , B, a, , and b, is substituted
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into Eqgs. (3.2), we find that

K’ = —(¢/2k)2mw K)} sin 0, (3.82)

V' = (¢/2)(2mwyK)} sin 6, (3.8b)

6 =1 — (kV/mwy) — (¢/2k)(mwe/2K)? cos 0,
(3.8¢)

where 0" = ¢’ — kU". It follows from Eqgs. (3.8a) and
(3.8b) that

K+ (Vlk) =1, (3.9)

where [ is a constant. The system of Egs. (3.8), there-
fore, reduces to two equations relating the two vari-
ables K and 6. In the next section we use these
equations to obtain some general information con-
cerning K and 6 without producing an explicit solution.

4. PHASE-PLANE ANALYSIS

We begin this section by introducing the new
variables @ and b which are defined by the equations

a=Rcos0O, b= Rsinb, 4.1)

R = kQ2K/mwy)}. 4.2)

The quantity R measures the ratio of the cyclotron
radius to the fundamental period of the disturbance.
The equations of motion for g and b are found from
Eqgs. (3.8) to be

where

ad =—(1 - C+ R¥2)b, (4.3a)

b =0 —C+ R¥2a — €2, (4.3b)
where

C = k¥limw, (4.3¢)

is a constant. These equations give rise to the differ-
ential form

[l — C + (R¥2)]b db
+{[1 — C+ (R*D)]a — (¢/2)} da = 0. (4.4)

This is an exact differential whose integral is

R* + 4(1 — OR® — dea = M, (4.5)

'where M is a constant. Equation (4.5) expresses the
conservation of energy through first order. It follows
from the Hamiltonian (2.7) that, to first order in e,

M = (8k%himw,) — 4C2, (4.6)

The important aspects of the motion can be illus-
trated by plotting Eq. (4.5) in the a-b plane. Before
doing this, it is useful to examine the points where
a’ and b’ are simultaneously zero. These are the points
of equilibrium and are usually termed singular points,
It follows from Eqs. (4.3) that the singular points are
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to be found from the equations

b=0,
@ +2(1—Cla—e=0.

(4.72)
(4.7b)

If € is sufficiently small, the cubic equation will have
three real roots; we assume this to be the case.
These roots, which we call a,, a,, a3, are
approximately as follows:

a, = 2[-2(1 — O)BR[(DF — 6/6] + O(e®) > O,
(4.82)

ay = 2[—2(1 — O)3R[—(D)? — 5/6]
4+ 0(*) <0, (4.8b)
ay = 2[—2(1 — O)3}(5/3) + O(¢®) <0, (4.8¢)

where

= —(¢/2)[-2(1 — C)/3] L (4.9)

The nature of these singular points can be deter-
mined by examining the behavior of the motion in
their vicinity. In order to do this we let

a=gqa,+¢& b=n,

where q, is one of the singular points and & and 7
represent small displacements from this singular
point. Upon substituting Egs. (4.10) into Egs. (4.3)
and retaining terms through first order in £ and 2, we
find that

(4.10)

& = —[1 = C+ (@¥2), (4.11a)
7 =[1 — C + (3d%2)]¢. (4.11b)

We seek solutions in the form
&= &, n = net. (4.12)

These solutions are valid if

A= +{—[1 - C+ @Il — C + Gay2)I}.
(4.13)

When the values of a; as expressed by Eqs. (4.8) are
substituted into Eqs. (4.13), we find that we can
classify the singular points as to their stability. This
classification is given in Table I.

Table 1 shows that the trajectories must close about
the point a; and they must also close about the point
a,. Furthermore, it follows from Eq. (4.5) that, for

TabLE I. Classification of singular points.

Nature of Singular

Singular Points A Point
a, imaginary Center (stable)
a, real Saddle point (unstable)
as imaginary Center (stable)

PARTICLE
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FiG. 1. Trajectories of a 50 MeV proton in the a-b plane;
k = 6.28 X 10~8cm™1, w, = 370 rad/sec, € = 0.01.

large values of R, the trajectories have the form

R* = const 4.19)

and are, therefore, circles centered about the origin.
The manner in which these requirements are satisfied
is shown in Fig. 1. The several trajectories are plotted
for a particular physical situation. The parameters such
as the energy, background field strength, etc., have
been assigned values which are appropriate to a
proton which is moving in the inner Van Allen belt at
a distance of two earth radii. However, the value of «
which was used in Fig. 1 was chosen to be about ten
times larger than what one would expect at two earth
radii.* This larger value of € was used to facilitate the
plotting of the trajectories.

The trajectories in Fig. 1 consist of a family of closed
curves. This means that K, and consequently V, is a
periodic function of time; we obtain the period in
the next section. The trajectories can be divided into
two groups: those which are centered about the point
a; and those which are centered about the point g .
The motion corresponding to the first group is non-
synchronous, since the difference angle 6 increases
without bound. The motion corresponding to the
second group is synchronous since, for these trajec-
tories, the angle 6 oscillates between well-defined
limits. The synchronous and nonsynchronous regions
are separated by the trajectory, called a separatrix,
which passes through the unstable point a,.

The largest fluctuations in K occur on trajectories
which pass close to the separatrix. As one moves

4 See Ref. 2.
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away from the separatrix into the nonsynchronous
regions, the trajectories rapidly become circles
centered about the point a,. As one moves away
from the separatrix into the synchronous region, the
fluctuations in K and 6 become smaller until, at the
point a,, they vanish. The separatrix, therefore,
determines the range of values of X and 6 for which
maximum resonance occurs. In the following sections
we obtain the time dependence of K and we estimate
the total fluctuation in X under resonance conditions.

5. TIME DEPENDENCE OF THE MOTION

In order to find the explicit time dependence of K
and an expression for the period T, we introduce a
new variable

S = R? = (2k*/mw)K. (5.1)
It follows from Eqs. (3.8) that
S’ = —eRsin 6. (5.2

The right-hand side of Eq. (5.2) can be expressed as a
function of S alone by making use of Eqs. (4.5) and
(4.6). A straightforward calculation gives

S = —(D[—S* — 8LS? — (8N + 16L?)S?
— 16(2LN — &S — 16Nt (5.3)
where
L=1—C, N=C>—2ChHl (5.4

If we denote the roots of the quartic in the square
bracket in (5.3) by S}, S;, S3, and Sy, then Eq. (5.3)
becomes

8" = —(DIS; — S)(S — SIS — S)(S — SYIL.
(5.5)

This is a first-order differential equation for S(=) which
is solvable in terms of elliptic functions. The solutions
depend upon the nature of the roots Sy, S,, S;, and
S,; we must distinguish the case of two real roots from
the case of four real roots.

Case of Two Real Roots

It should be clear from Fig. 1 that two real roots
corresponds to motion in the synchronous region.
We arrange the real roots S; and §, such that
Sy > S,. The complex roots S, and S, may be written
as

S;=m+in, S;=m—in

(5.6)
In this case Eq. (5.5) has the solution®

S;B + 8,4 + (S,4 — S;B) en [(v — 7)/4g]
A+ B+ (A—Byen[(r —1)/dg] '
5.7

5 P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals
for Engineers and Physicists (Springer-Verlag, Berlin, 1954), Eq.
(259.00), p. 133.

S(r) =
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where
A = (S, —m?+n?, B = (S, - m?+n, (5.8)
and

g = (4B)%. (5.9

The function cn (x) is a Jacobi elliptic function. The
modulus « of the elliptic function is given by

NG Sy)* — (4 — B)?
4AB )

(5.10)

The constant 7, is chosen to satisfy the initial con-
ditions. The function cn (x) is periodic in x with
period 4K, K being the complete elliptic integral of
the first kind. It follows that S(7), and hence K(7), is
a periodic function of = with period T given by

T = 16K(4B) %, (5.11)
where the modulus « of the complete elliptic integral
is given by Eq. (5.10).

Case of Four Real Roots

Four real roots correspond to motion in the non-
synchronous region. We consider first the case where
S$1 >8> 8> 8;> 8, In this case the solution of
Eq. (5.5) is®

Sy(S1 — Sy) — S(S1 — Sy) sn’ [(r — 7)/4g]

S(r) = - ,
§; — 83 — (8y — Sy) sn*[(v — 7¢)/4g]
(5.12)
where
g = 2[(8; — S3)(S, — SPI L. (5.13)

The modulus « of the Jacobi elliptic sine function is
given by

K2 — (Sl — S?)(S3 - S4) . (5.14)

(81— 83)(S2 — So)

The function sn® (x) is periodic in x with period 2K,
K being the complete elliptic integral of the first kind.
It follows that S(z), and hence K(r), is a periodic
function of = with period

T = 32K[(S; — $:)(S, — SOI 3. (5.15)

In the remaining case where S; > S, > S; > S >
Sy, we find that?

Si(81 — S;) + Si(S5 — Sy) sn® [(r — 79)[4g]
S;— 83+ (S3— 8 Snz[(T — 7o)/4g]
(5.16)

where g is given by Eq. (5.13) and where the modulus
« of the Jacobi elliptic sine function is given by

S(7) =

¢ Reference 5, Eq. (256.00), p. 120.
7 Reference 5, Eq. (252.00), p. 103.



MOTION OF A CHARGED PARTICLE

Eq. (5.14). It follows that S(r) is a periodic function
of = with period given by Eq. (5.15).

We have now determined the function S(7) in the
synchronous and nonsynchronous regions. A knowl-
edge of the function S(7) immediately determines
K(7), V(r), and cos 0(7). These latter functions allow
us to find the explicit time dependence of ¢(r) and
kU(r). We do not attempt to do this, since the
resulting expressions would add little to our under-
standing of the motion. The significant point is that
K(7) and V(r) are strictly periodic functions of 7. In
the next section we estimate the maximum fluctuation
in K(7).

6. BEHAVIOR UNDER RESONANCE CONDITIONS

Exact resonance occurs when the particle traverses
a single period of the sinusoidal field in one cyclotron
period. This exact resonance is nearly fulfilled when

kVimw, = 1. (6.1)

If we substitute condition (6.1) into Eq. (2.7) and
neglect the first-order term, we find that

K2K|mw, = (Khjmog) — (3. (6.2)

Equations (4.5), (4.6), (6.1), and (6.2) allow us to find
a value of the constant C which corresponds to near
resonance. The appropriate value of C is found to be

C=d+1, 6.3)
where d = k®h[maw,. With this value of C the quartic
in Eq. (5.3) becomes
§* + (4 — 84)S® + (6 — 24d + 244%)S?

+ (4 — 24d + 484% — 3243 — 16€%)S

+ 1 — 84 4 2442 — 324% 4+ 1644, (6.4)

The roots of this quartic are approximately as follows:

Sie=(2d — 1) £2024 — D + 0(e), (6.5)
Ssa =(2d — 1) + i2(2d — Dl + 0(e). (6.6)

Since two roots are complex, it follows that the
trajectory corresponding to condition (6.3) lies in the
synchronous region. Now, by definition,

d = kK’hjmw, = k*H/mw?, 6.7

where H is the energy. Thus
2d — 1 = 2k*/mwd)[H — (mwl/2k?)]
= (k¥ mad)[(mo? /2) + (o1, /2m)
— (mag/2k”) + 0(9)), (6.8)

where v, is the initial transverse velocity and Pz, 18
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the initial longitudinal momentum. According to Eq.

(6.1),
Pa, = Mmaglk + O(e). 6.9)

Upon substituting Eq. (6.9) into Eq. (6.8), we find that
2d — 1 = k%] Jof + O(e). (6.10)

We now define the relative fluctuation AK in X as
follows:

AK = 2(Kma,x _ Kmin) — 2(S1 — SZ) .
(Kmax + Kmin) (Sl + Sz)
Upon making use of Egs. (6.5), (6.10), and (6.11), we

find that

(6.11)

AK = 4(kv, Joo))tt + O(e). (6.12)

If we denote the initial value of K by K,, then v,  and
K, are related by the expression

mvd,[2 = Kooy + O(e). (6.13)
1t follows that
kv Jw, = kQ2Komwg)t + O(e)
= R, + O(e), (6.14)

where R, is 2= times the ratio of the initial cyclotron
radius to the wavelength of the disturbance. Upon
substituting Eq. (6.14) into Eq. (6.12), we find that

AK = 4R;EE + 0(o). (6.15)

Thus the relative fluctuation in K under resonance
conditions depends not only on e but also on the ratio
of the cyclotron radius to the wavelength of the
periodic disturbance. This dependence of the relative
change in K upon R, is not surprising. An increase of
the wavelength of the disturbance requires a corre-
sponding increase in the longitudinal particle velocity
in order to achieve resonance. Associated with the
increase in the longitudinal velocity is a decrease in the
transverse velocity and hence a decrease in absolute
value of K. This decrease in absolute value contributes
to the increase in the relative change.

The ideas developed above are best illustrated
through an example. We first observe from Eq. (6.15)
that relative fluctuations of order unity will occur
when

R, ~ (166, (6.16)

Now consider the trajectories plotted in Fig. 1. These
trajectories correspond to a 50 MeV proton moving in
a disturbance whose wavelength is 108 cm (1000 km)
and to a field strength ratio ¢ = 0,01, It follows from
Eq. (6.16) that, for € = 0.01, relative fluctuations of
order unity will occur when

R, = (0.16)% = 0.543 (6.17)
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F1G. 2. Trajectories of a 50 MeV proton in the a~b plane;
k= 4.19 X 1072 cm™, w, = 370 rad/sec, € = 0.01.

lies in the resonance region. However, it is clear from
Fig. 1 that R, = 0.543 lies well outside the resonance
region. Thus K(r) for a 50 MeV proton moving in a
periodic disturbance whose wavelength is 1000 km
undergoes only relatively small fluctuations.

Let us now increase the wavelength of the dis-
turbance to 1.5 x 10®cm (1500 km) and hold the
other parameters fixed. The trajectories in the a-b
plane for this situation are plotted in Fig. 2. Inspection
of Fig. 2 reveals that R, = 0.543 lies in the resonance
region. Thus, as is evident from Fig. 2, K(r) for a 50
MeV proton moving in a periodic disturbance whose
wavelength is 1500 km can undergo relative fluctua-
tions of order unity. Here we have graphic evidence of
the influence of R, on the relative fluctuation of K(r).
We conclude this section with a few remarks relating
our results to previously published work.

The average orbital magnetic moment u(r) is related
to K(7) by the equation

u(7) = eK(7)[me. (6.18)

Therefore, what has been said above about K(r) also
holds for u(r). This means that u(r) is a periodic
function of 7. Furthermore, the relative fluctuation in
p(7) (that is, the fluctuation measured with respect to
the mean value of u) depends upon the ratio of the
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cyclotron radius to the wavelength of the periodic
disturbance. Neither of these results was employed
by Dragt? or Wentzel® in their discussions of magneto-
spheric scattering.

The problem of magnetospheric scattering is
certainly more complicated than the problem which
we have discussed here. In magnetospheric scattering
the effects of the mirror fields must be included as
well as the fact that a particle encounters many
waves of varying intensity, wavelength, and initial
phase angle. These variations are typically accounted
for by assuming that the particle’s magnetic moment
performs a random walk between mirror points.??
The step size in the random walk calculation is found
by estimating the change in the magnetic moment
during one cyclotron period and multiplying this
result by the number of cyclotron periods per transit
between mirror points. The estimate is made by
deriving an expression analogous to Eq. (3.8a) and
integrating this expression by holding the phase angle
fixed. Such a procedure neglects the subtleties such as
synchronous and nonsynchronous behavior and the
dependence of the motion on the ratio of the cyclotron
radius to the period of the disturbance. These effects
become increasingly more important the longer a
particle remains attached to a given wave. It must be
borne in mind here that the period of the secular
motion varies as e} and not as e. Thus the time interval
over which one can employ linear perturbation theory
is greatly curtailed under resonant conditions. We see
then that, although the previous analyses may give an
order-of-magnitude estimate of the change in the
magnetic moment, they neglect some interesting and
possibly important effects.

7. CONCLUSION

We have shown that the perturbation theory
presented in I yields a complete first-order solution
for the motion of a charged particle in a constant
magnetic field on which is superimposed a weak,
spatially periodic magnetic field. The significant
result from a physical viewpoint is the periodic be-
havior of the secular motion. It is hoped that we have
succeeded in showing that this periodic behavior
points to some possible deficiencies in previous work
concerning the stability of protons in the inner Van
Allen belt.
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In this paper we consider a system of nonlinear wave equations which admits, in a linear approxima-
tion, a planewave solution with high-frequency oscillation. Then, for the wave of small but finite
amplitude, we investigate how slowly varying parts of the wave such as the amplitude are modulated by
nonlinear self-interactions. A stretching transformation shows that, in the lowest order of an asymptotic
expansion, the original system of equations can be reduced to a tractable, single, nonlinear equation to

determine the amplitude modulation.

1. INTRODUCTION

It was first shown by Gardner and Morikawa!
that, by means of a coordinate stretching, the system
of equations for a hydromagnetic wave in a cold
plasma can be reduced to the Kortweg-deVries
equation. The extension of the theory to general
nonlinear systems, dissipative? as well as dispersive,
has been established by Gardner and Su® and Taniuti
and Wei.* However, their theories are restricted to the
propagation of waves of small wavenumber and low
frequency. For example, if they are applied to a
nondissipative system, it is required that the dis-
persion relation for linearized equations takes a form

w=ik+O0K()+ -,

and waves for small k are to be considered, where w
is the frequency, k the wavenumber, and 4 is constant.
This restriction excludes direct applications to systems
involving oscillations such as are characterized by
the dispersion relation

w = w, + Ak + Ok?).

In order to establish a theory applicable to like systems,
in the present paper we consider a system of nonlinear
partial differential equations, which admits, in a
linear approximation, a plane wave with high-
frequency oscillation.

If the amplitude of the wave is small but finite, non-
linear terms give rise to a modulation of the amplitude
as well as waves of higher harmonics. When the
amplitude varies slowly over the period of the oscilla-

1C. S. Gardner and G. K. Morikawa, Courant Institute of
Mathematical Sciences, New York University, Report No. NYO
9082, 1960.

2 A successful application of a stretching transformation to a
dissipative system was done earlier. See G. K. Morikawa, Comm.
Pure Appl. Math. 10, 291 (1957).

3 C. 8. Gardner and C. H. Su, 1966 Annual Report, Princeton
Univ. Plasma Phys. Lab., Matt-Q-24, May 1967.

4 T. Taniuti and C. C. Wei, J. Phys. Soc. (Japan) 24, 941 (1968).

tion, a stretching transformation allows us to separate
the system into a rapidly varying part associated with
the oscillation and a slowly varying one such as the
amplitude. Then a formal solution is given in an
asymptotic expansion, and we derive, in the lowest
order of the expansion, an equation to determine the
modulation of the amplitude, which in certain cases
becomes the nonlinear Schrddinger equation.

2. METHOD OF SOLUTION
In this paper, we consider a system of equations,
ouU ou ,
5+ 4WU) -+ BU)=0, (1)
ot ox
where U is a column vector with n components,
Uy, Uy, "+ ,U,,and the n X n matrix A4 and the
column vector B are functions of u;’s, being assumed
sufficiently smooth. Let U™ be a constant solution,
satisfying

B(U =0, 2
and define the matrices 4, and VB, by
Ay = AU, (3a)
(VBo),; = (273:)0=Um. (3b)
Then Eq. (1) linearized about U takes the form
aa—ltJ+Ao%g+VBo-U=0, 1"
which admits a plane wave
~exp {Lilkx — wit)}
subject to the dispersion relation
det W, = det |Fiwl £ ikdg + VB =0, (4)

where I is the unit matrix. Our object is to investigate
how the plane wave is modulated by nonlinear
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effects. For this aim we may restrict ourselves to the
following case: For any real k, Eqs. (4) admit simul-
taneously at least a single real root w, which changes
smoothly as k changes so that w(k) is continuously
differentiable with respect to k. In addition, lw’s
(I =0, +£2, 3, - - -) are not roots of Eqs. (4) when
w is the root of Egs. (4), that is,

det W,#0 for || #1, @)
where W, is the matrix —ilwl 4 ilkA, 4+ VB,.

We now assume the following: In a neighborhood of
U'® there exists a solution expanded in terms of a

small parameter ¢ and of harmonics exp [il(kx — w?)],

U = zeaU(a)’
a=0
U = 2 U(r, &) exp [il(kx — wt)], o> 1;
l=—00

for example,

U=U"+ Z Ze“U,‘“’(T, £) exp [il(kx — wt)].
l=—w a=1
(5)
Here 7 and £ are slow variables introduced through

the stretching
T = €%, (6a)

& =e(x — A1), (6b)
where 4 is the group velocity, that is,

1 = dw/ok. (6c)

We also note that for the coefficients U® the reality
conditions

(a) __ () ¥
U@ =y

hold. (The asterisk denotes the complex conjugation.)
The idea of the expansion (5) is to include the fast
local oscillations through the dependence on the
harmonics, while dependence on = and & takes care
of the slow variation in amplitude.
The expansion and collection of powers of e is
straightforward. Substituting the expanded terms

A=Ay + VA UV + &{VA,+ U
+ AVVA: UDUDY 4 - - -

B = B, + VB, UM
+ &{VB, - U + JVVB,: UVU™M}
+ &{VB, - U® + VVB,: UVU®
+ LVVVB.UDUDMUW} 4 - - -

into Eq. (1) and equating the various powers of € of

T. TANIUTI AND N.
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the same harmonics to zero, we get

WU =0, (7a)
(1)
MUP+4—%I+A032
+ V4 / g +}f kUM exp {il'(kx — t)}\
0\ V=—c voxp e /z
+ AVVB,: (UPU)y, = 0, (7b)
aU(Z) aU(l)
WU(3) lI A 1 1
L (AL 4+ Ay) Py ar

aU(l)\
VA /.U(l) = .
+ © 0& /z

+ VAU S il'kUP exp {il'(kx — wb)}),
~+o
+ %VVA0<: uPu® Y irku®

U=—00

x exp {il'(kx — wt)}>

+ V4 < U z il'kUP exp {il'(kx — wt)}>

+ VVB:(UPUP),

+ WVVVB UM UPUD), = o, (7c)

in which the angle bracket { ), denotes the coefficient
of the /th harmonics; that is, for any function in

Egs. (7), say Q,

0= +Zm (Qy, exp {il(kx — w1)}.

l=--0

Also we have assumed the notations

=3 (L)
=1 \du

U=U,
2
04 ) u(_l) (1)
i Y5
auiauf U=U,

VWA UDUD =3 (
4,7

and so on.
In view of the condition (4), Eq. (7a) yields

U(l) = (p(l)R, (8a)
and for /| # 1,
U =0, (86)
where R is a column vector satisfying
WR =0 ©)

and ¢ is a scalar function of = and £ to be deter-
mined later. Since Egs. (8) imply

<2 S UPUPPI exp (i(] + I)(kx — wt)}> =0
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for any p and p’ assumed zero or positive integer,
then, from Eq. (7b) with / = 1, it follows that
1
WUR + (—2 + A)R %2
0¢
hence Eq. (4) requires a compatibility condition for
this equation to be solved. Introducing a row vector
L corresponding to R through the equation

LW1=0

9"
and multiplying Eq. (10) by L, we have the explicit
form of the condition,

L(—A + 4)R = 0. (11)

It can easily be proved that, by means of the definition
(6c), Eq. (11) is satisfied automatically; that is,
differentiating Eq. (9) once with respect to k and
multiplying the equation thus obtained by L from the
left leads directly to Eq. (11). Solving Eq. (10)

algebraically, one has
.l 1;0(1)
U® = ¢®R + Z(—AI 4+ AR %

(10"

Here ¢! is a function of & and = to be determined
in the higher order and Z is a matrix expressed by

Zy = (%D_lk) / (a_];)) s
D /p=0 ap P=0

in which D(p) is (det Wy),_,, e.g.,
D(p) = det |—ipl + ikA, + VB,
and D;(p)’s are the cofactors of D(p). The following

identities, with Eq. (11), prove that Eq. (10’) satisfies
Eq. (10):

Z_ Wi(P)is D(P) s = 04, D(p),
g D(p)iiWi(P)jq = 04y D(D).

The latter of these implies D(w),; oc L;, from which
differentiating with respect to p the former, at o,
yields

: oD
Z WiiZie = Ogy — 0 Z 6kiD:ia(w)/($) .

Since det W, # 0 for [/| = 1, Eq. (7b) allows us to
determine uniquely U} for |/] # 1. Noting that

UV, =0, for |l >3,
we get
UP =0, for |l|>3; (12a)
while substituting both Egs. (8) into Eq. (7b) gives
UP = =W ik{(V4, - RHR — c.c}
+ 3(VVB:R*R + c.0)} |¢™[2, (12b)

1371

UP = —W3{ik(V4, - R)R + 3VVB:RR}(pM),

(12¢)
UB = —WI{ik(VAR*R* + JVVB,: R*R*}(p' %)%

(12d)
We are now ready to determine ¢™. Multiply Eq.
(7c) for I = 1 by L from the left, and introduce Egs.
(8), (10"), and (12) into theequation so obtained. Then,
by means of Eq. (9'), the first term disappears, and
thereby Eq. (11) eliminates d¢®/(9£) in the second
term. In addition, Eqs. (8) imply (UWU®) = 0;
consequently, the terms comprising ¢* vanish. Hence
it reduces to an equation for ¢V, such that

o) 2, (1)
“8% + ﬂ% FylePe™ =0 (13)
Here «, 8, and y are constant, being given as follows:
«=0L-R, (14a)
B =L(—Al 4 A)Z(—Al + AR, (14b)
y = L{ik{2(V4, - R*RP
— (VA4, - R{)R* + (V4, - RP)R
+ (VV4,:RR*R — }(VV4,:RR)R*}
+ VVB,:(RR® + R*R{¥)
+ 31VVVBRR*R], (14c)

where R’ and R{Y are constant column vectors
introduced through the equations

U(22) — R(zz)(qju))z’

(2) _ (@], (2.
Us' =Ry 95
for example,

RY = —W;{ik(VA, - R)R + $VVB,:RR}, (15a)
R = —W;[ik{(VA, - R*R — c.c}
+ $(VVBy:R*R + c.c)]. (15b)

If « is pure imaginary and f and y are real, then, in
terms of real constants p = f/|«| and ¢ = y/|a|, Eq.
(13) may be written as
) 2 (1)
20", 00

or 082
which, for g equal to zero, reduces to the Schrédinger
equation. In this sense, Eq. (16) may be called the
nonlinear Schrodinger equation. If, in addition, these
constants take the same sign, the solution of Eq. (16)
which tends to zero for || — 0 isa solitary wave,5~7
so that

g0 = (—=2v/g)t sech {(—p/v)~¥&} exp (—ivr); (17)

5 P. G. Saffman, J. Fluid Mech. 11, 16 (1961).

¢ R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Letters
13, 479 (1964).

? T. Taniuti and H. Washimi, Phys. Rev. Letters 21, 209 (1968).

+ 4¢P ¢ =0, (16)
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hence if | V| approaches a constant @, at infinity, the
solution is given by a plane wave

o = gy exp [i(ué — Enl, (18)
where

E = pu® — q9;.

We note here that the plane wave is not stable but
subject to the modulational instability.”~® In order to
show this we introduce the real functions p and o

through10-1t
o = () exp [oaers). a9
Substituting Eq. (19) into Eq. (16) gives
dp , 9(po)
— 4 —— =0, 20a
AT 20
do do Op | 2 a( 3 8( 4 ap))
Z e B =pg 4 Pt (7t 2E)).
or T 00T P TP e\P 2\’
(20b)

Since pg > 0, in the long wavelength limit Egs. (20)
are equivalent to a hydrodynamic system with
negative pfessure; in other words, the system becomes
elliptic. Hence the perturbations modulating a con-
stant amplitude p, and phase g,,

po + dp exp {i(ké — @)},

0, + do exp {i(ké — »7)},
grow for small k; that is,

& = —ak £ (—2pgpoltk + O(K?),
provided that p, is finite. A solution for finite-ampli-
tude waves was considered by Kelley'? to account for
the self-focusing in nonlinear optics. Recently the
evolution of the instability was investigated by Karp-
man and Krushkal.?

On the other hand, if p and ¢ take the opposite
signs, the plane wave is stable. In this case, Egs. (20)
satisfy the conditions given in Ref. 4 to be reducible to
the Kortweg-deVries equation; that is, for the
expansion in terms of a small parameter u about the
constant state,

p=rotupt+ ot
0 = 0o+ poy + pPoy + 0,
the stretching
& = p(¢ — (o0 + (=2pgpoh)r),

T=ur,

8 M. J. Lighthill, J. Inst. Math. Appl. 1, 269 (1965); Proc. Roy.
Soc. (London) A299, 28 (1967).

2 V. I. Karpman, Zh. Eksp. Teor. Fiz. Pis. Red. 6, 829 (1967)
[YETP Letters 6, 277 (1967)]; V. I. Karpman and E. M. Krushkal,
Zh. Eksp. Teor. Fiz. 55, 530 (1968) [Sov. Phys.—JETP 28, 277
(1969)).

10§, A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Zh.
Eksp. Teor. Fiz. 50,1537 (1966) [Sov. Phys.—JETP 23, 1025 (1966)].

L. A. Ostrovskii, Zh. Eksp. Teor. Fiz. 51, 1189 (1966) [Sov.
Phys.—JETP 24, 797 (1967)].

12p L. Kelley, Phys. Rev. Letters 15, 1005 (1965).
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transforms Eqs. (20) into the Kortweg-deVries
equation for p; and o, .

Example

If 4 is symmetric and VB is antisymmetric, the

matrix
H = kA, — iVB,

becomes Hermitian. Let the eigenvalues of H be
w,, (m=1,2,+-,n), and denote the corresponding
left and right eigenvectors by L,, and R,, respectively.
[The root of Eq. (4), w, is identified with w,.] Then
we may normalize L,, and R,,, such that

(Lm * Rm) = icm’

where ¢, is real. On the other hand, the solution of
Eq. (10), U®, may be obtained by means of the
expansion in terms of the eigenvectors {R,,}, which
yields

U = —0 Y (0 — w,)™"
m=1 (1)

X ML (—A + A)R,}R,, o9

3
Hence, noting that the constant § is equal to
0 <P(1)
Ly(—AI + 4 U‘z’/(—)
l( 0) 1 aE
= z (60 - wm).-lc;l ILm(_}J + AO)Rllz,

m=1

we find that § is real. Therefore, Eq. (13) takes the
form 3 5
.09 ¢ 2
i—+ — c =0,

W +pa.§2 + (e lol* ¢
where p (= B/c,) is real.

CONCLUSION

We finally note a validity of the assumed expansion
(5) and a physical relevance of the conditions (4').
Since Eq. (1) may be a system of hyperbolic type which
does not admit, in general, unique solutions for all
time, it seems likely that the expansion (5) does not
converge for a sufficiently long time. The convergence
could be connected with a breaking time of the plane
wave which is supposed to be larger for smaller k.
Hence Eq. (13) may cease to be valid after a finite time,
even if it admits solutions for all time.

The conditions (4'), which exclude the self-reso-
nance, may be considered to be generally valid for
! > 2, However, the condition for /=0, that is,
det (VB,) = 0, is not satisfied in most physical systems.
In such a case, however, we often find extraneous
physical conditions to determine U{®, such as bound-
ary conditions and subsidiary conditions, so that the
method of solution given in this paper is still applicable.
This will be shown in Paper 11 by examples.
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We consider a one-dimensional model with infinite-range interaction, a two-dimensional model, and a
three-dimensional model, whose free energies can be expressed in terms of the largest eigenvalue of an
integral equation. High- and low-temperature expansions in powers of the reciprocal of the range of the
exponential part of the interaction, with the classical Curie-Weiss theory as leading term, are developed
and studied in the critical region. We find that to leading order in the critical region the resummed high-
and low-temperature expansions are analytic at the classical critical point but are nonanalytic at a dis-
placed critical point. The modified singularities, which are no longer of Curie-Weiss type, give critical
exponents which are identical with those obtained by Brout and others, and are almost surely not the true
exponents. The technique, however, suggests a possible general method of successive approximation to

true critical behavior.

1. INTRODUCTION

It is well known that critical behavior predicted by
classical theories of phase transitions is in disagree-
ment with experiment. On the other hand, Onsager’s
exact results for the two-dimensional Ising model and
the extensive numerical results for the three-dimen-
sional Ising model have striking similarities with
experiment.! It is natural, therefore, that the classical
theories have been neglected in favor of the short-
range, or Onsagerian, theories.

The first step in the revival of the classical theories
was taken by Brout,? who developed general perturba-
tion expansions in the reciprocal range of interaction,
with the classical theory as leading term. The hope was
that the expansions in the critical region could be
resummed to give results in accordance with the
Onsagerian theories. Unfortunately, the expansions
are only valid at temperatures above the classical
critical point and to get beyond this point additional
assumptions are required. Recent refinements® of
Brout’s method have failed to overcome this difficulty.
A different tack has been taken by studying a class of
models for which explicit expansions can be worked

* Present address: Applied Mathematics Department, Massa-
chusetts Institute of Technology, Cambridge, Mass. 02139. Per-
manent address from September 1969: Northwestern University,
Evanston, Il

! For comprehensive reviews and references see, for example, C.
Domb, Advan. Phys. 9, Nos. 34, 35 (1960); M. E. Fisher, Boulder
Lectures, 1964 (Univ. of Colorado Press, Boulder, Colo., 1965); and
C. Domb, ““Critical Phenomena,” N.B.S. Misc. Pub. 273, Dec. 1966.

2 R. Brout, Phys. Rev. 118, 1009 (1960). For a review of this and
later work see R. Brout, Phase Transitions (W. A. Benjamin, Inc.,
New York, 1965).

3 For example: P. C. Hemmer, J. Math. Phys. §, 75 (1964); J. L.

Lebowitz, G. Stell, and S. Baer, ibid. 6, 1282 (1965); and G. Stell,
J. L. Lebowitz, S. Baer, and W. Theumann, ibid. 7, 1532 (1966).

out at temperatures above and below the classical
critical point as well as in the critical region. For a
one-dimensional gas of hard rods attracting each
other with a potential ~Jy exp (—v |x|) it has been
shown* that for finite y there is no phase transition,
but that in the limit y — 0, the classical van der Waals
theory results. It has since been proved® that for a gas
with attractive interaction in d dimensions of the form
¥?@(y [r]), the van der Waals theory results in the limit
y — 0. Similar results hold for the corresponding
lattice systems and in the magnetic case the y =0
limit gives the classical Curie-Weiss theory.

To avoid the necessity of going to the y = 0 limit
to produce a phase transition, and in so doing re-
cover the classical theories, a number of two-dimen-
sional lattice models were proposed? which could be
reduced in essentially the same way as the one-
dimensional model to the determination of the largest
eigenvalue of an integral equation. High- and low-
temperature expansions (in powers of the reciprocal
range of interaction y) were given in Ref. 7 and a
preliminary study of the critical region (where the
expansions break down) for one of the models (model
A) was reported at the 1966 Brandeis summer school.?
It was found that for a range of temperature of order
y log ¥~ around the classical critical point, the high-
and low-temperature expansions become invalid and

¢ M. Kac, Phys. Fluids 2, 8 (1959).

5 M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys.
4, 216, 229 (1963); 5, 60 (1964).

¢ J. L. Lebowitz and O. Penrose, J. Math. Phys. 7, 98 (1966).

7 M. Kac and E. Helfand, J. Math. Phys. 4, 1078 (1963).

8 M. Kac, Brandeis Lectures, 1966 (Gordon and Breach Science
Publishers, New York, 1968).
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that a simple resummation gives new expansions
which to first order [~ y%(log ~1)?] are analytic at the
“old” classical singularity but yield a Curie-Weiss
type singularity (i.e., a jump discontinuity in the
specific heat) at a new “modified” critical point of
order ylogy! away from the old point. A one-
dimensional model with a bona fide infinite range
interaction v(x), i.e., for which

J;wxv(x) dx =

independently of y, was studied in the same way with
essentially the same result. It was also shown that the
resummation technique, when applied to the one
exponential model and a one-dimensional model for
which the integral in (1.1) is finite, yields new ex-
pansions which to leading order are analytic over the
whole temperature range. It is felt, therefore, that by
studying such perturbation expansions for various
models it should be possible at least to “diagnose” a
phase transition. It has in fact been proved® that the
two-dimensional models of Ref. 7 have a phase transi-
tion, and quite recently’®!! that the one-dimensional
model considered here, for which v(x) behaves
essentially like x~1*® [see Eq. (3.1)], does not have a
phase transition when a > 1, and does have a phase
transition when 0 < @ < 1. There is no proof either
way for @ = 1, but the analysis given in Sec. 3 can be
easily extended to @ = 1 and one finds similar critical
behavior to the two-dimensional model discussed in
Sec. 4, suggesting that in this case there is also a phase
transition. We remark that, contrary to a suggestion
in Ref. 8, Dyson!! has shown that (1.1) is, in general,
not sufficient for a phase transition.

Our purpose here is to present calculations on the
critical regions for a one-dimensional infinite-range
interaction model, a two-dimensional model A, and
a three-dimensional model. We carry the resummation
procedure described in Ref. 8 to next order and find
that to this order the singularity is no longer of
Curie-Weiss type and that the specific heat actually
diverges at the modified critical point. Unfortunately,
the new critical behavior is almost surely incorrect.

(1.1)

9 R. B. Griffiths, J. Math. Phys. 8, 478 (1967).

10 D. Ruelle, Commun. Math. Phys. 9, 267 (1968). Ruelle shows
that if v(n) > 0 and if X2, no(n) < oo, the one-dimensional Ising
model with interaction potential v(n) has no phase transition to an
ordered state.

11 F. J. Dyson, to be published in Commun. Math. Phys. (1969).
Dyson shows that if v(n) > 0 and is monotonically decreasing, there
is no phase transition if limy_, o (loglog N)= 37, no(n) =0,
extending Ruelle’s result (Ref. 10), and if »(») > 0 and

3 log log (n + &)irte(m} < o,
n=1

there is a phase transition.
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For example, in two dimensions one gets a logarith-
mically divergent energy, and in three dimensions a
square-root specific-heat divergence, which are identi-
cal with the predictions of Brout’s (and others)
resummations.?

The advantages of the present method over the
more general methods are these: (i) Low- as well as
high-temperature expansions can be developed; and
(ii) resummation shifts the critical point away from the
classical value, presumably in the direction of the
true critical point (the singularity in the general
methods sticks at the classical value). Although our
methods hint at a general underlying resummation
scheme, it seems extremely difficult, if not impossible,
to deduce the true nature of the singularity by such
methods.

In the following section, we summarize the method
used to reduce the problem of evaluating the free
energy v for a class of models, to the determination
of the largest eigenvalue of an integral equation, and
present high- and low-temperature expansions for y.
The critical regions for the one-dimensional model,
for model A and for the three-dimensional model are
studied in Secs. 2, 3, and 4, respectively, and the
main conclusions are summarized and discussed in the
final section.

2. INTEGRAL EQUATION AND HIGH- AND
LOW-TEMPERATURE EXPANSIONS FOR A
ONE-DIMENSIONAL MODEL

Consider a one-dimensional chain of N spins,
;= %1, i=1,2,--+, N, with interaction energy
given by

E=—Jy 3 pli—iDup;, J>0, (2.1
1<i{<j<N
where
p(?) =k21ak exp(—olth; a, >0, 0,>0. (2.2)
The problem is to evaluate the partition function
OQy=2 -+ 3 exp(—E[kT) 2.3)
n==x1 py==1
‘with E given by (2.1).

The simplifying feature in the reduction of (2.3)
comes from the exponential nature of the interaction.
Thus consider a set of m independent Ornstein—
Uhlenbeck processes x,(t), - * -, x,,(¢) with zero mean
and covariance

a(x(t + 7)) = exp (—o |7)),
k=1,2,---,m, (24)

where (- -+) denotes probabilistic average. Inde-
pendence implies that

xx(t+7))=0, for k #I, 2.5)
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and using (2.4) and (2.5), we can easily show that the
stationary, Gaussian process X(¢) defined by

X() = ga%xk(t) (2.6)
satisfies =
XXt + 7)) = p(7), 2.7

where p(7) is given by (2.2). Symmetrizing (2.1), we
can thus immediately write the partition function (2.3)
in the form

Qy = exp [—Np(O)/2]

N
L B (o Exon)

pr=%1
N
= {2 exp [—p(Q)ry/2]}" <1;I1 cosh [(vy)tX (J')}>,
(2.8)
where » is defined by
v = JkT. 2.9

Now, since the vector process x(f) = (x,(),
x,,(1)) is Markoffian, its joint probability density (by
analogy with the one exponential model”) can be
written as

W(xy, ", Xy) = W(xl);{;—[ll}’?(xk | %), (2.10)
where
W = 1T oo (—xi2mt}  @11)
and .
Px|y)

s —_xke*m)“’] /[277( o e_zm)]é}.

= ,:1 {eXp [" 21 — e )
(2.12)

The standard iteration argument® can now be applied
to (2.8), and one has finally that the free energy v
(in the thermodynamic limit) can be expressed in the
form

P .1
- —— == ]im —lo
XT g0y

N-owo
_ ”—(92)31 +log2 + log Agay, (2.13)

where A, is the maximum eigenvalue of the integral
equation

f f K, )83 dys - dypy = A(x) (2.14)

(x and y denote m-dimensional vectors) with the
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kernel K(x, y) defined by
m 3 %
Kx,y) = {cosh [(vy)'}glaixk}} [ggﬂ P(x|y)

x {cosh [(w)*kgaiyk} }%. (2.15)

For small y, it can be shown from (2.14) and (2.15)
(details can be found in Ref. 8) that to order 3*

Amax = €Xp (Z Eak - }’Eo),
2 k=1

where E, is the smallest eigenvalue of the differential
equation

(2.16)

m aZ
kzi ox? { g
- ilog cosh [(vy)’"él(akak)’}x{l} = —Ey.
2.17)

The first thing to note is that in the limit y — 0 one
recovers the classical Curie-Weiss theory from the
above results. A simple calculation shows that the
minimum of the potential in (2.17) (the term in curly
brackets) occurs at x = x®, where

5" = 20/ (@0} /ol tanh gy (2.18)
and 7 is a solution of the equation
7 = (2vy,) tanh 2.19)
with "
vy = 2 —= = f p(t) dt < co. (2.20)
k=10, % 8

The condition », < co is simply a stability condition
which is necessary to ensure the existence of the
thermodynamic limit. 2», = »;? is seen immediately
to be the classical Curie point and in the limit y — 0,
E, is just the minimum of the potential. Thus, by
substituting (2.18) into the potential of (2.17) and
using (2.16}, we have that

lim A, = KX() =1, 2v <9t
30
= exp [log cosh 5, — (vv,) tanh® 5},
20 > gt (2.21)

where 7, is the positive solution of (2.19).

For small but finite y, standard perturbation theory
can be applied to (2.17). Thus, for high temperatures
(2v < v7Y), the log cosh function in (2.17) can be
expanded directly, giving to order y

e e P

#=1 0x% E=1
,,,2,}/ m 3 4
+ 2 S@ovts| v = ~Ep. @2
12 {522
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FiG. 1. Eigenvalue solutions of Eq. (2.24).

The eigenvalues and eigenfunctions of the quadratic
form in (2.22) are obtained easily by minimizing

» m % 2 o m .
—{E@wﬁ&}——i&-@ﬂ)
21 k=1 4 =1

One thus finds that the eigenvalues w, are solutions of
the equation (shown schematically in Fig. 1)

m
} >o
k=1

, (2.24)

and the corresponding normalized eigenfunctions are
a*= (a,a, " ,a), where

s 1 (ako'k)% ; 450

NE=3 %%

= ; 2.25
“ Ns (O'l% - ws) k=1 (O'I% - ws)2 ( )
Applying the orthogonal transformation
m
Xp = Zla;:ys s (226)
we find that (2.17) becomes
< 629{) < 2 < Vs ¢
—L _ 8 = —Ed,
2o o2y o=
(2.27)

where

o = ¥¥12(2)* (2.28)

and m
$({y.p) = w({kglaiys})~ (2.29)
The unperturbed part of (2.27), namely
m 82 m
z 22 i‘ zwsyg’ (230)
s=1 0y: =1

is the Schrodinger operator for a set of m uncoupled
oscillators, with eigenvalues

=k + hol, k=012, (231)

=1

and corresponding normalized eigenfunctions

o = T =21 ok
X1, ", xm = ! ws xs
hh 1 [(%)*ks !] ul

X exp (—}oixd), (2.32)
where the H,(x) are Hermite polynomials [note that
because 2v < v;%, it follows from (2.24) that all the
w, are positive].

In terms of A) and g, the ground state of (2.27) can
be written as
Ey=h+h+h+ -,
where, from (2.31),

m=§§&,

(2.33)

(2.34)
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and by ordinary perturbation theory

= owf f[%(y)F(Z —) = 3ayp®, (2.35)

where p is deﬁned by
« 1

_, 2.36
v (2.36)

P =
and

ho= _éo(lﬂ — )™ U " f YY)y (é ]—’;—)4

2
x () dyy - - dy,,.), @.37)
etc.

Making use of the results

e (e[ (-1

(2.38)

(x —

and

—kr
exp [—4(x* + ) 3 AL

k! (2m)t
= I(x, y,7) — L(x, y, ©), (2.39)
where
L(x, y,7) = [2m(1 — e}
x exp [—(x* — 2xye™ + y?)/2(1 — ™)),
(2.40)

we have from (2.37) that

2= —f dt{the coefficient of (41)*(acy)*(uv)* in
0

[+ faneam,

X exp (uéxs/Njwf)f. in.fdyl o dy,
X exp (vgys/N:wf) -

X [ﬁ L(x5, ¥s» tws)

- ﬁ L(x,, y,, oo)] (277)_"'/2}

= —(4'ayp)® x the coefficient of (uv)* in
exp [3p(u® + v°)]

xfwdt{exp (uvg e““"}'/waf) - 1}
[} =1

= —24(ay)*{T, + 3p°T:}, (2.41)
where p is defined by (2.36) and T, by
- f ( Ee"”'*‘/wa;}) dt. (2.42)
0 81
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Finally, combining (2.41), (2.35), (2.34), and (2.33),
we have, to order 92,

=} Sot + 3ayp® — 28@)'[Ty + 3p°Tel + -

=1
(2.43)
where p and T, are defined by (2.36) and (2.42),
respectively.

To develop low-temperature expansions (2v > v%),
the potential in (2.17) must first be expanded around
its minimum. Equation (2.17) then becomes, after
making the change of variables (2.26),

m 2 4
D O P R+
= —(E — ylog X(»)¢$, (2.44)
where ) and N, are obtained from w, and N, by
replacing » by +', which is defined by
v = (1 — 5%2m,);

a, B’ are defined, respectively, by

2 2 2
o = —" (1——’7—)(1—3’7— (2.46)
12(2v)* 2y, 2wy,

“3m)
3(2 y? 20,)
and, recalling (2.21), y~! log J.(¥) is just the minimum
of the potential.

It follows from (2.45) and (2.24) that w}, > 0 when
2v > v51; so straightforward perturbation theory can
now be applied to (2.44) with the result

(2.45)

and

B = —— 2wy ( 2.47)

Ey =y 'log %(») + } gl w?

+ 3a'yp’® — 6"%y[T; + §3p"*T1]
— ('Y [Ti + 3p" T + -+ -. (2.48)

When |2v — 45| is sufficiently small (depending on
), the expansions (2.43) and (2.48) for E, become
invalid in the sense that terms of the same order are
present in all orders of perturbation. We call the
range of v’s for which the expansions are invalid the
critical region, and this is the subject of the following
sections.

3. CRITICAL REGION OF A ONE-
DIMENSIONAL MODEL

For the sake of definiteness, we take the interaction
potential p(¢) in (2.1) to be

1
o(d) =f A2 A da a>0. @3.1)
1]
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Discretized, this becomes
p() ~ D (kAN AL I A) = m™t,  (3.2)
k=1

i.e., in the notation of the previous section,
a, = (kANAL and ¢, = kA, 3.3)

and the free energy is obtained from (2.13) by letting
m — oo, It is easily verified that

o =f p(Hdt =at
0
and
© 1
f tp(t) dt =f 22dl <o, a>1,
0 0

=w, a<l. (34)

Since the integral in (3.4) is in some sense a measure
of the range of interaction, one might expect peculiar
phenomena for the case ¢ < 1 when the integral
diverges. In fact, it has been proved'! that in this case
the system exhibits a phase transition. We demon-
strate how this comes about by studying the critical
region for 0 < a < 1. a > 1is discussed in Ref. 8 and
the following analysis can be easily extended to a = 1
[where the integral (3.4) also diverges]. In this case
p [Eq. (3.6)] diverges logarithmically at 2» = a, so
the analysis is almost identical with that given in the
following section for the two-dimensional model A
[see Eq. (4.15)]; this suggests that for @ = 1 there is
also a phase transition. (There is as yet no proof that
this is or is not the case.) Another demonstration,
given in Ref. 8 and perhaps of some interest, shows
that for a < 1 and sufficiently low temperatures, the
maximum eigenvalue of the integral equation (2.14)
is asymptotically degenerate, which implies, as for the
ordinary nearest-neighbor Ising model, that long-
range order exists. We concern ourselves here, how-
ever, with an analysis of the critical region.

We define the critical region to be that range of »
values for which the »-dependent part of the unper-
turbed ground-state energy for E, is of the same order
as the first-order perturbation correction. At high
temperatures, from (2.43), this means

S (o) — 0@ ~ 3apt.

In the Appendix itis shown that, for smalla — 2v >
Dand0<a <1,

lim 3 {{o,)}F — [w @)

m-—+o0 s=1
= A(a — 2%) + Bla — 2»)"* 4+ - -+ (3.5

M. KAC AND C. J. THOMPSON

and, in the limit m — oo,

p =2a%4 + (Bla)(a — 2»)M 1 + - -1), (3.6)

where

© 1/& va—l
A=ﬁﬂjd{1—@{ 2@]
0 o 1+

. s o1 —~1
X [a E“J; T+ dv] 3.7

and
B = cosec (m/a)[}a%m cosec (3am)]/®.  (3.8)
For a < 1, therefore, the critical region is defined by
a—2v~y, (3.9

and it is appropriate in this region to define a new
temperature variable », by

(3.10)

If one examines the low-temperature expansion
(2.48), one arrives at the same result (3.9) with 2» — a
in place of @ — 2%, so that (3.10) is appropriate for
high (v; < 0) and low (»; > 0) temperatures.

Substitution of (3.10) into (2.43) gives the high-
temperature (v, < 0) critical-region expansion for E,.
It is not difficult to show, however, that terms of
order y'/® are present in all orders of perturbation so
that to calculate the precise coefficient of »'/¢ one has
to calculate and sum the “‘most divergent terms” to
all orders of perturbation. To second order (which is
as far as we have gone), using the fact that

T, = —2Ba*(1 —a)(a — 2»)t/* 2 - --

v = (2» — a)y ..

(3.11)

(see the Appendix), where B is given by (3.8), and in
general that
T,~ytr0/e=m for a—2v~y

and (3.12)

and in addition the expansions (3.5) and (3.6), we
find that Eq. (2.43) for E, becomes!?

n=1,2---,

m ad?  wA
Ey= 1 Slo] + y[(-—) - 1—}
s=1 4 2
-1, -1 2 412
+ Elvlyll/a [1 _ a;‘l + ‘i(a—l)(a_A) +-- .:l;
2 2 2! 7

(3.13)

12 In the computation of Amax [Eq. (2.16)], and therefore P, we
have a term lim,,_, , 4y 3™, (sA4 — w}), which is finite.
lim 3 ¥ w}

m—oo =1

is infinite, so that in (3.13) and subsequent formulas it must be re-
membered that 4 37, [w,(@)]t is to be combined with —} $™_, sAA
before letting m — co.
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and without actually calculating the remaining coeffi-
cients in the expansion of the p*/* term (coming from
higher-order perturbation), it seems clear that the
coefficient in question (remembering that », < 0) is
simply (a*4 — »,)'/%. We, therefore, make the follow-
ing conjecture:

_ 3 (aA) ’le
§ S + [ -2
Bylla (a2A » )l/a + -, for Y < 0.
(3.14)

If the conjecture is correct, then clearly the range of
validity of the expansion should be »; < a?4, which
is beyond the range of validity of the original high-
temperature expansion (2.43). Note also that (to
order p1/, at least) (3.14) is analytic at the old classical
singularity (v, = 0) but now has a singularity at
v, = a®4, which is precisely the position of the
modified singularity deduced rigorously in Ref. 8.

Let us now, as a check on the validity of (3.14),
examine the low-temperature expansion (2.48). In the
critical region we have, to leading order, from (2.19},
(2.21), (2.45), (2.46), (2.47), and (3.10), that

log ¥(v) = —3v}y*/4d?,
2y =a — 2uy,
= (48a") ' =«

(3.15)

and

B = a) /16 = pyt.
The differential equation (2.44), in the critical region,
then becomes
m 82 ‘b m , ys

-~ WgYs +
Lo fiaemen(3
LAY 31)?7/)
+ « == =—|E+—)¢, (3.16

A5 2))o= (e 2o o
and straightforward perturbation gives Eq. (2.48) for
E, with the replacements (3.15). Note, however, from
(3.12), that T, ~ ™! and, since ' = By? to leading
order, there is a first-order term in (2.48), viz.,
—9p%*T,, coming from second-order perturbation.
The reason for this is that in the critical region, the
minimum of the potential is no longer the correct
point to expand around. To remedy this difficulty,
we perform a shiftin (2.44), i.e., replace y, by y, + y®,
before applying perturbation, and then choose the
y“” to eliminate the linear term in second order (the
resulting y'®’s, as it turns out, also minimize E, to that
order). Thus substituting y, + y'@ for y, in (3.16)
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gives
m az m ,
2 a‘i’ {12 oy + 1 3ol

+ [% gwsysyi‘” + ﬂy(S +2 1):,)3
ol 33

=1 N’
(E + 3”?) $,

where the square-bracketed term is to be considered as
the perturbation, and S is defined by

(3.17)

S =32y IN;.
s=1
Application of ordinary perturbation theory to (3.17)
gives

(3.18)

3”17
4a 2
where, by applying the same method used in obtaining
(2.43), we have

Ey= + E + B+ EP + 0, (3.19)

E(O) — é Ew’& + % zws(y(o) 2’ (320)

Eg" = By(S® + 3p'S) + ay(S* + 6p'S* + 3p'),

(3.21)
and
B = — [} 300000 + 385S(5% + )
+ 4ayS(S® + 3p'S)
+ T;[4ay(S® + 3p'S) + 3py(S*+ p')]z}

— 18T32ay(S* + p') + pySI°
— 6Ti4ayS + By]* — 24(wy)’T;.  (3.22)
Minimizing E® + E with respect to y* gives

B = —(Njw) [4ayS® + 120pp'S

+ 36yS* + 36ypl, (3.23)

and multiplying both sides by (N,)~! and summing
over s, using (3.15) and the fact that

;w1 2v')? a’
=3 T
in the critical region, gives
S + 3(6v)ES? + (129, + 3p")S + 3p'(6v)t = 0,
(3.25)
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or

S = —(6y) or —(6v)t £ (69, — 3p")h. (3.26)

For cither value of S in (3.26), the term in braces in
(3.22), which is the unwanted linear term in second
order, vanishes,

To obtain the minimum value for E, to second
order, substitution of § = —(67,) in the above is
appropriate if », < 4p’; and if »; > $p/,

= (6”1)* + (6% — 3P')%
is appropriate (minimization of E® + E{ + Eg
gives the same result to second order). We, therefore,
have that

m

z + 3ayp’®
- 72(“7)2 3(6v; — P')2 +

for 0<»n <3, (3.27)
and
PR S A 4
Ey=14200 =70~ g

— T2ey)’To(—=2p')* + -,

for v, > %p’, (3.28)

and it is not difficult to show that, to order y, these

formulas are identical with those obtained rigorously

in Ref. 8 [Egs. (6.112) and (6.115), respectively].

Notice that the modified singularity occurs at 2v =
a + vy, where from (3.6), to leading order,

1 =30 = a4, (3.29)

and this is the value predicted in the conjectured
critical-region expansion (3.14). Clearly, as a final
check on our conjectured resummation, (3.27) should
reduce to (3.14).

It is not difficult to show that terms of order /¢
occur in all orders of perturbation below the classical
critical point just as for above, so that, again to
compute the precise coefficient of y'/%, one must sum
the most divergent terms to all orders of perturbation.
We have, however, only carried the perturbation to
second order. Nevertheless, if we substitute the
expansions (3.5), (3.6), and (3.11), with » replaced by
v given in (3.15), into the expansion (3.27), we find
that, for 0 < », < @%4,

Eo=1 Sl + y[(“f) "7’4]
2 1/a 1 % a_l(a_l _ 1)(_3_)2
+ (2ny) { > +271+ Y 5
_34._ E(“__l—_l_)(zfé c }
4, (1 —a+ 21 21)1) Ty

(3.30)

M. KAC AND C. J. THOMPSON

By writing

2 1/a
@ = = et (5 -T2
2 2y

the terms of the coeflicient of '/* given in (3.30) are
recognized immediately as the first three terms in the
expansion of (a*4 — »,)'/%in powers of (3 — a%4/2v,).
This observation, we believe, supports very strongly
the conjecture that (3.14) is the correct expansion of
E, to order /e for v, < a?4.

The conjectures leading to (3.14) can be stated more
clearly (and hence be generalized to the models
considered in the following two sections), and the
peculiar nature of the expansion for 0 < »; < 4?4 [in
powers of ($ — a*4/2v;)!] can be better understood if
one goes back to the expansions (3.5), (3.6), and (3.11)
and notes that to the order recorded

p= ¥ (3.31)
dv
and
— g af
L= -a'2 (3.32)
where f(») is defined by
16 =1 3ot
PO
+ A(a — 2v) + B(a — )" + (3.33)

Using these facts, we find that the high-temperature
expansion (2.43) can be written as

py\ df (m/)2
=)= ( 4 )dv + I\ 4
and the conjecture leading to (3.14) can now be

stated as follows: The /% term (or the most divergent
term) in nth-order perturbation is given by

If this is so, then (3.34) becomes, to order y/¢,

- ) 4 ()@

4/  2\4/ay’
and it should be noted that the second term in (3.36)
cancels against the y¥/® term proportional to A4 in

f(» — vp/4) [see Eq. (3.5)]. It is then straightforward
to reduce (3.36) to (3.14).

L]

d’v2+...’

(3.34)

, for n2>3. (3.35)

E, = f(v (3.36)
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Now when 0 < », < a%4, E; given by (3.27) can be
written as

f(”)—y( 46”‘)df+ .(p —6vl) &

dv’ 4 dv’?
d 3
sl —en L f 2L (330)

and the conjecture, stated implicitly above, says that
the most divergent term in nth-order perturbation
(when 0 < v, < a?A) is

ﬂ(f_:ﬁ) af ) (3.38)

n! 4 dv'’"

If this is so, then [using (3.31)] (3.37) becomes
=10"— iylp’ — on]) — (yp?/16a°). (3.39)

Now since 2¢" = 2¥ — 3,y in the critical region [Egs.
(3.10) and (3.15)]

g Yo =bv) o ye
4 4

and since, to order y/%, p’ can be replaced by p,
(3.39) is identical with (3.36) and, therefore, with
(3.14).

To complete the critical-region analysis for the
present model, we investigate the expansion (3.28) for
E, below the modified critical point, i.e., for »; > a%4.
Using the results (3.31) to (3.33), we can write (3.28)

(3.40)

as
o+ (B )
g1 (—-)% - %{% . (341

Assuming that the most divergent term in nth order is

1 yp')"d"f
—(~—~}—=, for n>3, 3.42
n!( 2/ dv'" = (3.42)
Eq. (3.41) becomes
c P 3y | ye”
E,=f(v +—) 3 Y 343
o= ( 2 s O
which reduces to
2 2
Ev= 1 Sloant + y[na - O - 2]
=1 2 4a
1/a
2y, —2a*A)Y* 4 - -+, for », > d’A.
(3.44)

In summary, if one accepts the conjectures re-
garding the form of the most divergent term in nth-
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order perturbation (n > 3), one finds on resumming
that the classical critical point (at 2» = g) is displaced
to the point 2v, = a + a4y and that for » < 7, E,
is given by (3.14) to order V¢, and for » > », by
(3.44). From these expansions and Egs. (2.13) and
(2.16) for the free energy in terms of E,, we see that
the specific heat behaves like |» — »,]**~% on both
sides of the modified critical point, with a super-
imposed (Curie-Weiss type) jump discontinuity. In
other words, if § < a < 1, the specific heat diverges
like |y — »,Jt/2~2, and if 0 < @ < 4, the singularity
remains basically of Curie-Weiss type. This behavior
is almost surely not the exact critical behavior;
especially, as we see in the following section, since the
same technique predicts a logarithmically divergent
energy for a two-dimensional model, which is certainly
wrong. We return to this point in the final section.

4. CRITICAL REGION OF MODEL A

The model considered in the previous section is
special in the sense that it is one-dimensional with an
infinite-range interaction. Two- and higher-dimen-
sional systems, on the other hand, exhibit phase
transitions already with finite-range interactions,
which is in a sense more realistic. In this section, we
consider a particular two-dimensional lattice model
(model A, which was first introduced in Ref, 7) with
M rows and N columns and with interaction energy

E=~— 2% okl ke 4.1)
1<k<K'SN
1<I<I'SM
where
o(kl, k'l = Jye_“k_k'l{al’,l + %[51',z+1 + 51’,1—1]},
J>0, 42

i.e., the spins interact with each other in the same row
and in the two neighboring rows according to the
exponential of the row distance between spins.
Griffiths has proved recently® that this model has a
phase transition (in fact, he proves that any two- or
higher-dimensional lattice model undergoes a transi-
tion to an ordered state, provided that the interaction
is ferromagnetic and that at least nearest-neighbor
spins in a plane interact). Our concern here is the
behavior of the model in the critical region.

Because of the exponential nature of the interaction
potential (4.2), the technique described in Sec. 2 can
be used to reduce the evaluation of the partition
function Qy ; to the problem of finding the largest
eigenvalue of an M-dimensional integral equation.
Details of the reduction are given in Refs. 7 and 8, and
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the final result is that the free energy v is given by

— ¥ lim lim — log Qx
M-o N»o MN
=log2 — Lt + lim — log Apax, (4.3)
M-o M
where
Amax = €xp [My|2 — yE}, 4.4)

and to order 9%, E, is the smallest eigenvalue of the
differential equation

M aZ
= {i Exk -y

=1 axk

x 3 logeosh ( )(xk + xk+1)}w = —Ey. (45)
k=1

At high temperatures the logcosh function in (4.5)
can be expanded, and to order y, (4.5) becomes

M 52 M » M
2 =+ {% DX — = E(xk + xk+1)2

k=1 0x} k=1

SkZ(xk + xk+1) y=—Ey. (4.6)

The quadratic form in braces can be diagonalized by
the transformation

M
Xp = 2:1 AerYr—1- 4.7
where
a4y = ME, forr =1,
= (2/M)} sin [#r(k — 1)[M], for r even,
= (2/M)% cos [n(r — 1)(k — 1)/M], for r odd;
(4.8)

and after making the change of variables (4.7), Eq.
(4.6) becomes

T

r=0 0y2

M-1

Z wryr
+ owZ( Zlbmy,)}qs = —E¢, (49)

k=1\ r=0

where 7 denotes the integral part of (r + 1)/2 and «,
w,, and b, are defined, respectively, by

o = »2/48, (4.10)
w, =1 — 4v + 4y sin? (wr/ M), “.11)

and
by = Q1 + G141 4.12)

Note that the ,’s are all positive provided 4» < 1, so
that ¥ = } in this case represents the classical critical
point.

M. KAC AND C. J. THOMPSON

By comparing (4.9) with the corresponding Eq.
(2.27) for the one-dimensional model, we can imme-
diately write down the high-temperature expansion
for E,, which to second order [cf. (2.43)] is

F————l—Mz—w + 3ayp® — 24(ay)
YRETTE Sl ¥
X {T4+3P T2}+.", (4.13)

and in the limit M — co, M~ Y M1 w%, p, and T,,

etc., are given by
M-1

1
lim _Z(Dr =—f (1 — 4v + 4y sin® )t 40,

M- r=0

M—1 2
p=lim > i%
M-wr=0 ©F
/2
= gf cos® 0{1 — 4y + 4y sin® 0}1’ df, (4.14)
mJo
and
oo M—1 aEne
T2 —_ llm M—lz z ( z bp.rba,r CXp( (,(), t))
M-w p=1q=1 r=0 w7
16 4 1.2 —-%
= — cos 6{1 — 4v + 4y sin® 0}7* 46,
T JO
etc.

The integrals (4.14) can be expressed in terms of
elementary elliptic integrals, and when 1 — 4» > 0 is
small, they have the expansions

f(» = lim —zw,

Moo 2

=—+—(1—4v)(10gx—1)+---,
T 4

d 8
p=—4d = 2 jrogx) 4+, @15)
dv T
and &f
X
T2 = —4 d_v2 == + s
where x is defined by
x = 16/(1 — 4v). 4.16)

The critical region, from (4.15) and by analogy with
Eq. (3.5), is obtained for that range of »’s for which

(4.17)

In this region, again by analogy with the analysis
of the previous section [(3.10), in particular], we
therefore define a new temperature variable »; by

(4.18)

and to obtain the high-temperature critical-region
expansions for E, we substitute the expansions (4.15)
into (4.13).

(1 — 4v) log x ~ y(log x)2.

4y — 1 = Hvyp) logx,
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The calculation is simplified somewhat by using the
relations (4.15) between p, T,, and the derivatives of
f [which hold exactly for all 4v < 1 and are essentially
equivalent to Eqgs. (3.31) and (3.32) for the one-
dimensional model]. Thus, if we make the same con-
jecture (3.35) (with yp[32 instead of yp/4) regarding
the most divergent terms, we have, using (4.15) {[cf.
(3.36)],

. E yp) 1 yp) df
1 m pl = —_ - L + _(_ — e
am v =e=f (” 32 o)’

_1 N ( yp)
X\l (1—4v+(yp/8)) 1]

y 16 ):r
—l1—-1%lo +
4772[ 2108 (1 — 4y
(4.19)

Substituting (4.18), and to leading order p by
(4/m) log x, (4.19) becomes

1 log y1)?
eo=7—r+7’(1§——:2—l[1—wvl]
1 —1
- @ mliog@ — m) — 11+,

for » <0. (4.20)

Again (4.20) exists for », < 2/ and is analytic at
the old singularity », = 0. The modified singularity
at v, = 2/m is from (4.15) to leading order p/2, and is
the value obtained rigorously in Ref. 8. The y(log 1/y)?
in (4.20) also agrees with that obtained in Ref. 8.

As a check on (4.20) we obtain, as in the previous
section, low-temperature (v, > 0) expansions in the
critical region and compare, in particular, the ex-
pansion for 0 < »; < 2/m with (4.20). They should,
of course, be identical.

We proceed exactly as before, expanding the
potential in (4.5) around its minimum and changing
to the transformed variables (4.7). In the critical
region, as before, we must first shift before applying
perturbation theory, and we find, by essentially
repeating word for word the argument from (3.16)
to (3.27), that ¢, for », > 0 is given by

€ = f(»') — 3np'y log x'/64
+ 3ayp’™ — T2oy)’Tilp' — 6v1log X' + - - -,

for 0 < v <2/m, (4.21)
and
o 3(v, log x')? 2
o= f) - XnEXY Ve
— TP TY =20 + -+, for » > 2fm,

(4.22)
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where the primed quantities are obtained from the
corresponding unprimed quantities by replacing »
by +', which, in the critical region, is given to leading

order by
1 — 4y = }vy)log x'. (4.23)

Using the derivative relations (4.15) and essentially
repeating the argument from (3.37) to (3.39), (4.21)
gives

_ ey

_of., _¥p" — 6w 1og x’)) L
o=/ (v 32 256 T
(4.24)
and since, from (4.23),
g Y —bnlogx) - yp (4.25)
32 32

to leading order (p’ can be replaced by p), (4.24) is
identical with (4.19) and, therefore, with (4.20).

Similarly for v, > 2/w, repeating the argument
(3.41) to (3.44), (4.22) gives

, ’ 3(y, lo xr 2 2
Eo_f(v +?_P_) __(L_ﬁ__._)_y %Jr
1 —1\2
=L MY ),y ym
T 8mt
_? ‘ng (o — 2)llog (o — 2) + 1] +
for v > 2/m. (4.26)

It follows from formulas (4.20), (4.26), (4.3), and
(4.4) that in the critical region, to order »? log y~1,

—yplkT~C.lv — v lloglv — v| 4+ Do, (427)

where C,, D, and C_, D_ are constants (depending
on y) appropriate for » < v, and v > v, respectively,
where from (4.18) and (4.22) v, = + + (y log y™1)/8=
is the modified critical point. From (4.27) we see that
to order y%logy~!, the energy diverges logarith-
mically and the specific heat has a simple pole at »,.
This is definitely not the true critical behavior of
the model, although one might be tempted to con-
jecture from this result that the specific heat does in
fact diverge logarithmically, just as for the two-
dimensional nearest-neighbor model.

5. CRITICAL REGION OF A THREE-
DIMENSIONAL MODEL

We conclude with a brief discussion of a three-
dimensional model, which may be considered as a
natural extension of model A.
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Consider a three-dimensional lattice of spins with
interaction energy

E=— z v(klm, K'UVm Mgty s (5.1)
1<k<p’<N
151<SEM
1<m<m’'<M
where
v(klm, k'l'm")

= J’}}e’“y'k_k'l{%él’z(amﬁm—l + Cs'm’,m-}—l)
+ %am’,m(al’,l—l + 5l’,l+l) + %(ai’,l-*-lam',m-—l

+ al',lﬂlam’,m-%l) + 61',15m’,m}' (5'2)
It is easily verified that
(X(kIm)X(K'Tm"Yy = vlkim, K'T'm’),  (5.3)
where
X(kim) = (JyINHUink) + Upps, u®) + Uy mia (k)
(5.4)

and U, ,(k) are independent Ornstein-Uhlenbeck
processes with zero mean and covariance

<Ulm(k) Ul‘m’(k,» = 6l’,lam',me-ﬂk—k','
So by the standard argument

—/kT =log2 — »y/2 + lim M %log Apax, (5.6)
M-

(5.5)

where
Apax = €xp (M?y — yE,), (5.7

and to order ¥?, E; is the smallest eigenvalue of the
differential equation

M 2 M M 3
5 Zr [ 3+ s 3 loncon (2
tm=10X; tm=1 1m—1 3

X (tym + Xis1m + xz,mﬂ)]w = —Ey. (58)

At high temperatures, the log cosh can be expanded as
before, and it is straightforward, but rather tedious,
to show that to second-order perturbation (x =
»2/108)

€y = lim M—ZEO

M-=w
=f(») + 3ayp® — 24()(T, + 3p°T) + -+,
(5.9)
where now
M1
o) = lim @MY 3 o,
M-w r,8=0
= Qm)* f ’ f a8, db,
0 JO
4y
X {[1 — 2y — ~3—(cos 9, + cos 0,
i
+ cos (6, — 62)] + 0, -02}, (5.10)
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@y p = wp,, for(a,f)=(2r,25) or (2r—1,2s),
= Wy _gs for (a, ‘8) ={2r,2s— 1)
or (2r—1,2s— 1),

W, =1—2p — %B[cos (gﬁ-r)

+ cos (%j—‘-s) 4+ cos ]2\—:[-7 (r — s)], (5.12)

(5.11)

and
p=—6 _@f’ (5.13)
dv
d*f
Ty = -9 :1} , (5.14)
ete.

Equation (5.9) is valid for 6» < 1, i.e., v = £ corre-
sponds to the classical critical point, and when
1 — 6v > 0 is small, f(») has the expansion

fO)=f@) + A1 —6») + B —6)t + - - -.
(5.15)

In the critical region, therefore [where f(v) — f (%) ~
3ayp?], we define a new temperature variable », by

6v =14 »y/9, (5.16)

and by repeating the previous argument we conjecture
from (5.9) that

€0 = f(2) + p(A2 — 3dwn) + BQA — Iv)hpd 4 -+,
for » < 184. (5.17)

The low-temperature analysis can be performed in
the same way as above, but the essential result is
contained in (5.17); namely, that to order 4%, the
critical point is shifted to

ve =% + Ay[3, (5.18)

and the specific heat diverges like |v — |} for
v < v, and » > v, in the neighborhood of »,. The
square-root singularity, as we have remarked, is also
predicted by the Brout and related expansions.®

6. DISCUSSION

We have studied a one-dimensional model, a two-
dimensional model, and a three-dimensional model,
all with a long-range exponential interaction, and have
developed high- and low-temperature expansions in
the reciprocal “range of interaction” y, with the
classical theory as leading term. The expansions
break down for a range of temperatures (defining the
critical region) around the classical critical point, and
in this region a resummation must be effected. We
have carried out the perturbation calculations at high
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and low temperatures and have conjectured the form
of the most divergent term in nth-order perturbation
(#n > 3). Summing these “most divergent terms’
shifts the classical critical point by a small amount,
and one finds that the resummed expansions are
analytic at the “old” classical critical point, but are
nonanalytic at the modified critical point (the high-
and low-temperature critical-region expansions actu-
ally match up at the old singularity, which lends
some support to our conjectures). The resummed
expansions predict critical exponents which are identi-
cal with those of Brout’s and similar schemes, and are
almost surely incorrect. Unlike our expansions,
however, the latter are valid only at high temperatures
(above the classical critical point), and in the re-
summed expansions the singularity “sticks” at the
classical value.

The resummation described in the previous sections
is only the first step in a succession of resummations.
One should now investigate the resummed expansions
given here and determine a new critical region, obtained
when these expansions break down. This then gives
us a new critical point and presumably, on resumming
once more, new critical exponents. The procedure, of
course, gets rapidly out of hand, and in any case it is
not at all clear at the moment how the correct ex-
ponents are approached by this successive approxima-
tion scheme. There is also the added difficulty that in
replacing the integral equations by differential equa-
tions we have neglected terms of order ¥, and in
making our conjectures about the form of the most
divergent terms, we are assuming implicitly that these
are the same for the integral equation and the differ-
ential equation.

Nevertheless, our results hint at a general resum-
mation method, starting from the classical theories,
and it is encouraging that the essential information
about the modified critical points and critical expo-
nents can be deduced from the high-temperature
expansions alone. However, the inability (at the
moment) of our method and more general methods to
give information about the true critical exponents
remains the most serious difficulty (or drawback)
with this type of approach.
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Addendum: After this work was completed it was
noticed that in all cases the high-temperature ex-
pansions for the models were formally identical with
the general high-temperature expansions obtained by
Siegert. By a slight extension of Siegert’s argument
it is possible actually to prove the most divergent
term conjecture (3.35) in general, but only for
temperatures above the classical critical point. Details
will be published subsequently.

APPENDIX

We derive here the expansions (3.5), (3.6), and
(3.11) for the one-dimensional model.
Our starting point is the result [Eq. (6.85) of Ref. 8]

26() = lim 3 (! — sA%)

m— o g=1
0 1/§ ~1

=lf log l:l -—2—1i+2v§“f 2dv:| dé.
mTJo a 0 v

(A1)

For 6 = g — 2v small and 0 < g < 1, we can write
(Al) as

2f(») = 2f(a2) + A + F(9), (A2)
where
A= ["10 - argeprarsenas @y
and
1 (1 — a&%(§))
F() = = f 1 [1 + —————]
) — ], o8 (k)
* (1 — aé’g(%)
dé, (A4
-2 ) e e
and g(é) is defined by
1/§ Ua-l
s =] - o (AS)
Making the substitution & = 61/9 in (A4) gives
F(6) = B6Ys 4 -+ - -, (A5)
where

B = i—r L w{log [l + DEY — DE}dE  (AT)

and

a—1

D—1=a2fw
o 1402

Now
OB lfw( 1 1)
s _ L — =) dy
oD =Jo \n*+ D n°

= —(D"_l_lla) cosec (@' — D),

2
dv = 121 cosec (‘12—77) (AB)

(A9)
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and it follows that
B = D4 cosec (/a). (A10)

Combining (A2), (A3), (A6), and (A10) gives the

expansion (3.5).
From the definition (2.36) of p and Eqgs. (2.24) and

Z exp (——w%t)

lim
New}

m—>0 $=1

x*2 exp (—x21) dx
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(2.25), it follows that
p=—yL 3ot
dvsz1

and the expansion (3.6) for p follows from (3.5) and
(All).

To derive the expansion (3.11) for T,, we use the
result [which follows from Eq. (6.70) of Ref. 8]

(A11)

-2

From the definition (2.42) of T,, it then follows
trivially that (in the limit m — o0)

x%{[1 — 2vja — vlog (I — x) + (va/2)x*? f “(log |1 — plfu+?) dﬂT + (wv)zx“}

(A12)

and

E=f loglu —1f, _ 27 (ﬂ) (A15)
0 a 2

T,=Cla—2v)* 24", (A13) ptral?
where
C= (a_2)2 f ® Making the substitution y — [yG~Y/2¢]2, where
2/ Je 8 :
y J‘oo a® exp (_Ty%)ym—u/z dy }2 AL G = D% = [a®n/2 sin (am/2)]2, (A16)
{ o [1 + (@%4)y“2E]® + (a®n[2)%y* and performing the integral over = gives
¢ =atc o[y [ “a: Gz) . ()
0 o [1 4+ 2cos(ma/2)y® + y*[1 + 2 cos (ma/2)z* + 2%y + z)
and making the further substitution y — y, z — &y (with Jacobian y) reduces (A17) to
C = giGg—‘1/-1 ©grdE (™ y* dy (A18)

o 1+ EJo [1+2cos (ma/2)y" + y*I[1 + 2 cos (ma/2(EW* + (E9)]

Substituting y = x'/¢ in (A18) and using the result
stated on p. 118 of Ref. 13 gives for the y-integral in
(A18),
__ 7 cosec (m/a) 1
a 2 sin (wa/2)
y 1+ & 2 cos (ma/2) .
£ (eina _ Ea)(e—iwa — &9 ’

13 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, London, 1927).

(A19)

and finally, making the substitution & = x1/* gives

2
C = — 28 G gosec (Z) sin (7a)

m a

J‘“’ dx

X

o x* — 2cos (ma)x + 1

= —2D7"%*1 — a) cosec (w/a), (A20)

and combining (A13), (A20), and (A10) gives (3.11).
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A proof by Craig that the perturbation expansion for the real-time self-energy of a particle in a many-
particle system has the same form in any statistical state is shown to be invalid and the stated theorem is

shown to be untrue.

In a recent paper,! Craig claims to demonstrate that
the perturbation expansion for the real-time self-
energy (mass operator) of a particle in a many-
particle system has the same form independent of the
statistical state of the system. In other words, the
self-energy can be expanded as a unique power series
in the potential whose terms are the irreducible
diagrams composed of interacting particle lines, and
the nature of the ensemble is reflected only in the
single-particle correlation function itself. It is the
purpose of the present note to point out that the pur-
ported proof is incorrect and that additional ensemble-
dependent terms must appear in the expansion.

The nature of the difficulty is easily understood
when one realizes that the successive terms in the
perturbation expansion contain expressions for higher
correlations of the system as functionals of the one-
particle correlation function.? The “proof” above is
then tantamount to stating that higher correlations
are a unique functional of one-particle correlations
independent of the statistical ensemble which is
appropriate to a given situation.® But surely an
ensemble can be found where the various correlations
are initially chosen to be quite different from those
implied by the “universal” functional form.* As a

* Work supported in part by the U.S. Office of Naval Research
(contract N0OO 14-67-A-0239-003) and the Advanced Research
Projects Agency (contract DAHG004-67-C0023).

* R. A. Craig, J. Math. Phys. 9, 605 (1968).

2 This connection of terms in the expansion with higher-order
correlations is pointed out in Appendix B of the author’s thesis
(Harvard University, 1965), where the perturbation expansion found
by Craig is derived in yet another way. See also V. Korenman, Ann.
Phys. (N.Y.) 39, 72 (1966).

4 That this is implied by Craig's proof can also be seen by follow-
ing the type of argument used in Ref. 2. The higher-correlation
functions are found by functionally differentiating lower-order
functions with respect to an appropriately defined external field. It is
easily shown that the functional expression for higher correlations in
terms of single-particle correlations is determined completely by the
functional expression for the self-energy in terms of the single-
particle correlations. See in this respect also G. Baym and L. P.
Kadanoff, Phys. Rev. 124, 287 (1961).

4 Bogoliubov has discussed the functional dependence of higher
correlations on single-particle functions in the context of a classical
system. See N. N. Bogoliubov, “Problems of a Dynamical Theory in
Statistical Physics,” translated by E. K. Gora, Geophysical Research
Papers No. 70, AFCRL-TR-60-279, 1960.

trivial example, consider an electron system with no
interactions. The “proof” would imply the Hartree-
Fock relation

Wit )p(ratayt sty (rat) = (p(rit)y' (rsts))
X {p(ratoy(raty)) — (p(rit)y'(raty))

X {p(rat)y'(rata)y (1)
for any ensemble. But let the ensemble be the pure
state which is the BCS ground state and the relation
above is clearly incorrect.

In general, then, there must be additional terms in
the expansion to take account of the relaxation® of the
given initial condition to the “‘universal” functional
form when, in an interacting system, this relaxation
actually occurs. These are presumably the terms found
by Fujita® which Craig claims to remove. It remains
to see just where Craig’s proof breaks down.

The difficulty is found after Eq. (3.12) of Ref. I,
where the interacting Green’s function G is expanded in
a power series whose terms involve noninteracting
Green’s functions of all orders computed in the relevant
ensemble. Craig claims that these can be decomposed
into products of single-particle Green’s functions in
the usual generalization of the Hartree-Fock pro-
cedure.®? The example above shows that such a
decomposition is not correct for an arbitrary en-
semble.

The proof cited for the claim of decomposability is
that of Ambegaokar.” In brief, Ambegaokar takes the
correct equation for the two-particle function®

GU(1, DG, 2; 1/, 2) = 6(1, 1)Gy(2, 2))
- §(1,20G(2, 1) (2)
and operates on the left with G, to find
Go(1,2; 1, 2) = Go(1, 1')Gy(2, 2)
— Go(1,2)Go(2, 1. (3)

5 8. Fujita, J. Math. Phys. 6, 1877 (1965).

$ See, for example, P. C. Martin and J, Schwinger, Phys. Rev.
115, 1342 (1959), Sec. VI.

? V. Ambegaokar, Astrophysics and the Many Body Problem, K.
W. Ford, Ed. (W. A. Benjamin, Inc., New York, 1963), p. 349.

8 See Ref. 7 for notation.
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This equation and its simple generalizations are the
results Craig needs. But G;* has a vanishing eigen-
value so that the solution to Eq. (2) is only given
modulo the addition of an arbitrary amount of the
solution of the homogeneous equation G;(1,T) X
f(I) = 0. This added term will serve to correct Eq.
(3) for the mismatch between the value of the two-
particle correlation function implied by the decom-

JOURNAL OF MATHEMATICAL PHYSICS

VICTOR KORENMAN

position and that appropriate to the statistical state of
interest.® These are just the terms which are neglected
in Craig’s expansion and which are needed to describe
the complete effect of the chosen statistical state on the
system properties.

® This is not to say that Ambegaokar’s proof is not valid in the
context in which it was introduced. In thermal equilibrium the
boundary conditions on the correlation functions are such that no
additional terms can be appended to Eq. (3).
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On Next-Nearest-Neighbor Interaction in Linear Chain. I
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(Received 2 September 1967)

Ground-state properties of the Hamiltonian

N N
H=§3Y0,-0,,+ a3 0,0,
=1 ;

i=1

(6x+1 = 01, Oy.2 = Gy)are studied for both signs of Jand —1 < « < 1 to gain insight into the stability
of the ground state with nearest-neighbor interactions only (¢ = 0) in the presence of the next-nearest-
neighbor interaction. Short chains of up to 8 particles have been exactly studied. For J > 0, the ground
state for even N belongs always to spin zero, but its symmetry changes for certain values of «. For
J < 0, the ground state belongs either to the highest spin (ferromagnetic state) or to the lowest spin and
so to zero for even N, The trend of the results suggests that these facts are true for arbitrary N and that
the critical value of « is probably zero. Upper and lower bounds to the ground-state energy per spin of
the above Hamiltonian are obtained. Such bounds can also be obtained for the square lattice with the
nearest- as well as the next-nearest-neighbor interaction.

I. INTRODUCTION

The Heisenberg linear chain with the Hamiltonian
N
H=14 Zl"i *OGiny (1)

(J < 0 ferromagnetic, J > 0 antiferromagnetic) was
thoroughly investigated by Bethe' and the ground-
state energy determined by Bethe and Hulthén.?
des Cloizeaux and Pearson® discussed the low-lying
excitation spectrum and Griffiths? calculated the
magnetization at zero temperature. While the 1-
dimensional version is an interesting many-body
problem, the general Heisenberg Hamiltonian as a
description of magnetic phenomena belongs, to quote
Herring,® “more to the world of thought” An
extensive criticism of the exchange integral and its
relevance to magnetic properties of solids is given by
Herring.®

! H. Bethe, Z. Physik 71, 205 (1931).

2 L. Hulthén, Arkiv Mat. Astron. Fysik 26A, No. 11 (1938).

3 J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131 (1962).

4 R. B. Griffiths, Phys. Rev. 133, A768 (1964).

& C. Herring, Rev. Mod. Phys. 34, 631 (1962).

8 C. Herring, in Magnetism, G. T. Rado and H. Suhl, Eds.
(Academic Press Inc., New York, 1966), Vol. IV.

Two obvious criticisms leveled against (1) or its
3-dimensional analog are the neglect of anisotropy
and the restriction to nearest-neighbor interaction
only. Taking the isotropic Hamiltonian, Mermin
and Wagner” showed that there was no spontaneous
magnetization in one and two dimensions. In three
dimensions, spontaneous magnetization is believed
to exist. An attempt to incorporate anisotropy is the
study of the Hamiltonian considered in detail by
Orbach®:

N
H=14 21 (of o';:”+1 + 0':{0':'/+1 + AUfo_,_l). 2

Many interesting properties of this Hamiltonian are
known from the recent extensive work by Yang and
Yang,® who give references to earlier works. One
might expect that in two dimensions, for sufficiently
large A, a spontaneous magnetic moment exists,
although in the 1-dimensional case, at finite tempera-
tures, it probably does not.

?N. D. Mermin and H. Wagner, Phys. Rev. Letters 17, 1133
(1966).

® R. Orbach, Phys. Rev. 112, 309 (1958); 115, 1181 (1959).

9 C. N. Yang and C. P. Yang, Phys. Rev. 147, 303 (1966); 150,
321, 327 (1966); 151, 258 (1966).
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known from the recent extensive work by Yang and
Yang,® who give references to earlier works. One
might expect that in two dimensions, for sufficiently
large A, a spontaneous magnetic moment exists,
although in the 1-dimensional case, at finite tempera-
tures, it probably does not.

?N. D. Mermin and H. Wagner, Phys. Rev. Letters 17, 1133
(1966).

® R. Orbach, Phys. Rev. 112, 309 (1958); 115, 1181 (1959).

9 C. N. Yang and C. P. Yang, Phys. Rev. 147, 303 (1966); 150,
321, 327 (1966); 151, 258 (1966).
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Our purpose is to direct attention to the second of
the two restrictions—only nearest-neighbor inter-
actions. We propose to study the Hamiltonian

3

(N+1=1, N+ 2=2), where the next-nearest
neighbors interact with a strength o/, —1 < a < 1.
In general, the next-nearest-neighbor interaction will
be smaller than the nearest-neighbor interaction. How-
ever, their ratio may not be completely negligible.!
An exact solution of this Hamiltonian, not to speak
of its 3-dimensional variant, is probably very difficult.
We shall, however, present lower and upper bounds
on the ground-state energy per spin in one dimension
for any J and for « in [—1, 1]. To get an idea of the
possibilities involved we have studied short chains of
4,6, 8 and 3, 5, 7 spins and we shall present the data
with the corresponding conjectures about large N.

The question that we hope to answer by studying
(3) in this way is the following: How stable are the
ground states of (1) with regard to the presence of
the next-nearest-neighbor interaction? In particular,
if the “classical” ground states become unstable,
what is the nature of instability and what is the new
ground state? Another purpose is to examine the
mathematical difficulties one might encounter in the
extension to a realistic situation of forces of inter-
mediate range.

The sign of the exchange integral is a difficult ques-
tion and without any prior prejudice we should allow
both possibilities for next-nearest-neighbor inter-
actions. We thus have the following four different cases:

(i) /<0, > 0: all the interactions are ferro-
magnetic, and the classical ground state of aligned
spins is expected to be stable;

(i) J > 0, « < O: the nearest neighbors interact
antiferromagnetically, while the next-nearest neighbors
tend to align themselves—again a stabilization of the
classically accepted picture;

(ii) J < 0, « < 0: the next-nearest-neighbors have
a tendency to align in opposite direction and the
ferromagnetic alignment is likely to be destroyed for
large |x| (An interesting question here is: what is this
critical o ?);

(iv) J >0, o> 0: the alignment of the next-
nearest neighbors is opposing that of the nearest-
neighbor interaction and the ground state, although
of spin zero, may have alignments different from that
of the classical ground state, that is, different
symmetry.

N N
H=1}J zci'°i+1 + oY 6,00,
i=1

i=1

103, S, Smart, in Magnetism, G. T. Rado and H. Suhl, Eds.
(Academic Press Inc., New York, 1963), Vol. III.
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The study of short linear chains corroborates the
expectations. In cases (i) and (ii), nothing untoward
happens. In the presence of strong antiferromagnetic
next-nearest-neighbor interaction, the ferromagnetic
ground state becomes unstable and the lowest state
has spin zero (N even). When all interactions are
antiferromagnetic, the ground state definitely has spin
zero, but the symmetry of the ground state changes
for strong antiferromagnetic next-nearest-neighbor
interaction.

Concerned with this last point we have a theorem
due to von Neumann and Wigner'! about Hamilton-
ians such as (3) that depend on a single parameter.
The theorem forbids crossing of two levels of identical
symmetry. By symmetry all possible symmetries are
to be included. The levels that cross in the case of all
interactions antiferromagnetic, differ by a kind of
permutation symmetry, which we shall describe in
detail for the short chains. We must also recall a
theorem of Lieb and Mattis!? for the ground state
when J > 0. According to this theorem, the ground
state always has spin zero. This we have found to be
true.

II. SHORT LINEAR CHAINS. NOTATION

Let us start with a few generalities and notations.
We note that the total spin $* as well as its z component
S, are constants of motion. Hence, to get a complete
picture of the eigenvalues, it will be enough to
investigate the S, = 0 subspace (N even) since every
state can be rotated to this subspace without change
in energy. The number of states with S, =0 for N
spin-} particles is given by (j}). It is also desirable
to know the number of states with total spin § =0,

which is
WICES

This is obtained by considering the difference in the
total number of states in the S, = 0 subspace and in
the S, =1 subspace, a procedure with obvious
generalization.’® It is possible to derive it in a some-
what circuitous way, which, however, has certain
advantages in that this new method gives also the
structure of S =0 states. Consider the problem
group-theoretically. Each particle of spin # is associ-
ated with the basic representation of the SU, group.
For N particles, the possible spins can be obtained
by constructing direct products of the basic repre-
sentations of the SU, group, the spin } representation.

1L E, P. Wigner and J. von Neumann, Physik. Z. 30, 467 (1929).

12 E. H. Lieb and D. C. Mattis, J. Math. Phys. 3, 749 (1962).
18 F. Bloch, Z. Physik 59, 208 (1930).
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The various representations are characterized by
Young’s tableaux, with at most two rows. It is well
known that, because of the nature of the special
unitary group SU,, only one number may be used to
characterize the representation. However, the tableaux
with two rows are also certain special representations
of the symmetric or permutation group of N particles.
The dimensionality of the representation is obviously
the possible number of linearly independent states
with the spin characteristic of the tableau. This
dimensionality is nothing but the character of the
unit element in that representation and can also be
obtained as the number of ways of filling up the
tableaux in the standard order. All this simply
depends on the correspondence of the representations
of the permutation groups and the general linear
group discussed extensively by Weyl.’® Now the two-
rowed tableaux with numerical characters filling them
obviously suggest a way of writing down the spin
S = 0 states. The number of total S = O states are
fewer than the number of S, = O states and the states
in S = 0 subspace may be studied for slightly longer
chains than those possible for S, =0 subspace.
Hulthén,? who first studied short linear chains, used
the construction suggested by the above procedure,
but found it convenient not to use the states of the
tableaux filled in the standard fashion. Rather he
used a set of states which had the same structure,
but took better advantage of the cyclic nature of the
Hamiltonian with only nearest-neighbor interaction.
We shall use the same set of states used by Hulthén,
but we shall find that the presence of next-nearest-
neighbor interaction introduces certain difficulties in
the computations as soon as the chain becomes
moderately long.

We shall follow Hulthén’s article? closely in notation.
Let « and f be the up- and down-spin states and
6%, ¢¥, o} be the usual Pauli spinors for the particle
numbered k. Now introduce

[7, m] = a(DB(m) — p(Da(m),
{l, m} = a(DB(m) + p(Do(m). 4)
In general, a symmetric function in particlesk,/, m, - - -
is {k, I, m - - -}. The basic functions of (4) fulfil certain
algebraic relations:
[k, [l{m, n} + [/, m}{n, k}
+ [m, nlik, I} + [n, k){I, m} = 0,
lk, 1 [m, n} + [k, n] [[, m] + [k, m] [n,]] = 0. (5)

4 D. Littlewood, The Theory of Group Characters (Oxford
University Press, London, 1940).

15 H. Weyl, Classical Groups (Princeton University Press, Prince-
ton, N.J., 1946).
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Hulthén’s basis functions are constructed out of such
units as (4). Hence it is important to know the following
properties for calculating eigenvalues of the Hamil-

tonian:
%(1 — G- o.m)[l’ m] = 2[1’ m]!

il =0 0, ){l,mk, -} =0,
3l — o,-0,)[k, [[{m, n} = —[I, ml{k, n},
i1 — o, 0,)lk, I} [m,n] = [, m] [n, k].  (6)

III. EVEN NUMBER OF SPINS
A. 4 Spins

We shall start by considering 4 spins. This is a
somewhat degenerate case since the next-nearest-
neighbor interactions are not fully developed. Never-
theless, certain interesting features are present. The
Hamiltonian is

4 2
H=%leo,--ci+1+%JaZci-cHz. @)
i= =1

Here the particle 5 is equivalent to particle numbered 1.
Define now

HI — H - dJ - 2.]
J
4 2
- 21%(1 T °i+1) ta 21%(1 — G- u.i+2)' (8)

There are 6 states with S, = 0, and are of the forms
a(1) B(2) a(3) (4), x(1) «(2) B(3) B(4),etc. The 6 x 6
matrix of the Hamiltonian can easily be constructed.
The diagonalization problem is trivial and can be done
by inspection. We shall rather follow Hulthén’s
construction procedure described above, so as to
illustrate our remarks in Sec. 11.

With 4 spin-} particles we have three tableaux to
consider corresponding to partitions [4], [31], [22].
[4] corresponds to only completely symmetric states
of spin 2, wg = {1 2 3 4} and using (6) one has

Hvys=H'{1234} =0. )

The tableau [31] can be filled in the standard order in
3 different ways:

1 34 124 q 1 23

2 '3 » ATy '
These have spin 1. As Hulthén remarked, it is con-
venient to choose a function suggested by the first
labeling and then use the nearest-neighbor interaction

part of the Hamiltonian (7) to generate the other
states. Hence we take as the basis

ys = [12){34},
vy = [23K41},
ps = [34){12}.

(10)
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It is especially important to notice that the basis
functions are not normalized and are not necessarily
orthogonal. Using (6) to operate with H' and using
(5), we get

H'ypy = 3y + y5 + a(ys — 5),

H'yy = =93 + 29 — 95 + o(ys + 294 + 95), (A1)
H'yy = y3 + 3p; — alys — ;).
Hence, we obtain the eigenfunctions

H'(ys + v5) = 4(ps + v5),

H'(ps + 9) = 2+ 20)(s + v, (12)

H'(py + v5) = (2 + 20)(ys + v5)-

We have also the scalar product (ys, w3) = (94, ¥,) =
(¥, ¥s) = 4, (¥, ¥a) = (¥u, ¥5) = —2,and (5, y5) =
0. Hence, the eigenfunctions (y; + ¥5), (s + vs),
and (v, + ;) are mutually orthogonal.

The tableau [22] can be filled in two ways:

13 12
2 4 ™ 3 4

They have spin zero. Again we choose Hulthén’s
basis functions, cyclically generated:

oo = [12] [34], @, = [23] [41]. (13)
Then, by (6) and (5),
H'g, = 49, + 2¢, + 22[13] [24],
H'py = 29, + 49, — 2«[13] [24], (14)
so that
H'(¢; + @2) = 6(p1 + @),
H'(g1 — @2) = (2 + 40)(p1 — @) (15)

In deriving the last equation we have used (5). We

5-.
4 SPINS
$,=0,J>0
E
-1.0 of 2 «C 1.0
0,]
}
-5l
(6]

FiG. 1. Eigenvalues of — H’ for 4 spins as functions of «. The
small circle denotes a doubly degenerate level. Spins of the levels
are also indicated.
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\\ R
\\ ’,
F1G. 2. Symmetries of the ol
4-spin complex. (x = 1) is a N
complete graph and repre- d S,
sents a tetrahedron.
€zl o« =1

have obtained all the eigenvalues which are given in
Fig. 1. It must be pointed out that this is not a
“spectrum of the chain” of 4 spin-} particles. As
des Cloizeaux and Pearson® have explained, the spec-
trum of the chain necessarily implies a consideration
of the wave vector k. (Identical remarks hold for Figs.
3and 5)

Figure 1 has been drawn for the S, = 0 subspace,
with J > 0, antiferromagnetic case. For ferromag-
netic case (J < 0) the picture should be inverted
(same for Figs. 3 and 5). For antiferromagnetic case
the ground state always has spin zero. For ferromag-
netic case, however, the ground state changes from
one having spin 2 to one having spin zero at o = —4.

There are certain interesting multiplet structures
and level crossings in the diagram, which may be
related to the symmetries of the problem. Since we
have already taken full rotational symmetry into
account by going over to S, = 0 subspace, we must
look for the explanation of the multiplet structure to
certain other invariances. In particular, the structure
at « = 1, where all states of the same spin come
together, is really interesting. To investigate the
symmetries, it is convenient to have geometrical
pictures, which make the permutation symmetries
inherent in (7) rather intuitive. So let us place the
4 spins at the corners of a square and imagine that
the sides represent bonds of strength J connecting
nearest neighbors. Join the diagonals with dotted
lines to represent the next-nearest-neighbor bonds of
strength «J. When o = 1, the dotted lines are replaced
by full lines. In the language of graph theory we have
now the “square of the original graph.”” !¢ If we call
two vertices connected by a nearest-neighbor bond
to be at a “distance” 1, the next-nearest-neighbor
interaction inserts a bond between vertices at distance
2. For the square diagram of 4 spins, the square of
the graph is a “complete” graph,'” a somewhat
degenerate situation from the physical stand point.
To obtain the symmetries of our Hamiltonian, con-
sider the automorphisms of the graphs in Fig. 2,
which leave the connections invariant. For « = 1, the

16 A. Mukhopadhyaya, J. Combinatorial Theory 2, 290 (1967).
17 G. Uhlenbeck and G. W. Ford, in Sratistical Mechanics, J.

de Boer and G. E. Uhlenbeck, Eds. (North-Holland Publishing
Co., Amsterdam, 1962), Vol. I, p. 119.
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graph is complete and the automorphisms constitute
the full symmetric group S,. The representations of
the group are well known'* and the degeneracies
of the states at « = 1 are immediately explained. In
fact, the very construction of our states ¢;, @5, ¥,
Yy, ¥, and yg make their transformation properties
obvious. When « 1, the group of automorphisms
is clearly the group of the square. It is a subgroup of
S, with 8 elements and is, in fact, the dihedral group
D,. The irreducible representations of D, fall into
five classes 4,, 4,, B;, B,, and E with dimensions
1,1, 1,1, 2 (see the Appendix for the character table).
It is easy to verify that the doubly ‘degenerate states
(ys + v,) and (y, + y,) form the representation of
dimension 2. The ground state (¢, + ¢,) belongs to
the representation A4;, as also the completely sym-
metric state yq. The state (¢; — @,) belongs to the
representation B, . The state (w3 + ;) transforms as
B, . The triple degeneracy at « = 0 of the eigenvalues
is accidental.

B. 6 Spins

Henceforth we shall concentrate on the S, =0,
S = 0 subspace. For 6 spin-} particles there are five
S = 0 states, which we take as

¢ = [12][34] [56], . = [23] [45] [61],

vy = [231[41] [56], v, = [12][45] [63], (16)
ys = [34] [61] [25].
The Hamiltonian is written as
H,=__H—3J—3ocJ
J
6 [
= %Z (1—-0;:0y) + i z (1 —s0;-0,,), (17)

=1 =1

with usual identification o, = 0,, 6, = 6,. With (6)
and (5) we get

H'g; = (6 + 60)¢; + (1 — 20)(vs + 94 + v;),
H'g, = (6 + 60)p, — (1 — 20)(ys + 4 + v5),
H'y, = 4y; + 20, — 2¢,

+ 2a{— @, + @, + 3p; — [25] [14] [63]},
H'y, =4y, 4+ 2¢, — 2¢,

+ 2a{— @, + @; + 3y, — [25] [14] [63]},
H'ys = 4y; + 20, — 29,

+ 20{—g¢: + @2 + 3y; — [25] [14] [63]}.
(18)

C. K. MAJUMDAR AND D. K. GHOSH

From (18), after some obvious manipulations, we get

H' (¢ + @5) = (6 + 62)(py + 9o,
H'(p1 — @3) = (6 + 60)(p1 — @2)
+ 2(1 — 20)(ys + w4 + v5),
H'(ys — pa) = (4 + 60)(ys — v), (19)
H'(ys — y5) = (4 + 60)(ys — v5),
H'(ys + o + w5) = (4 + 60)(ys + yo + v5)
+ (6 — 60)(p — @)
— 6a[25] [14] [63].

We have found 3 eigenvalues (6 + 6a), (4 + 6a), and
(4 + 6a). The remaining 2 must be found by studying
the secular equation connecting (¢; — ¢,) and
(w3 + vy + 5). The first difficulty of using the next-
nearest-neighbor interaction is apparent in the
existence of the state [25] [14] [63]. With « = 0, the
five linearly independent states of the Hulthén basis
(16) were the only ones regenerated by the operation
of the Hamiltonian. However, now another state
[25] [14] [63] appears which has to be re-expressed in
terms of the basis (16). The basis functions (16) were
neither normalized nor mutually orthogonal in gen-
eral. Hence we write

y = [25] [14] [63]
=" + Co@y + C3¥s + Cq4¥y + Cs¥Ws » (20)

and consider the set of linear equations for the ¢’s:

(91, %) = c1(P1> P1) + ca( @1, P2) + c3(@1, pa)
+ cs(pr, wo) + (1, vs), (21

etc. The matrix of the scalar product is easy to
construct:

(95 ) = (pi, ) =8,

(91, o) = =2,

(g1, 9) = — (@2, i) = 4,

(s ’/Jjj =2 (i#))

(P, 9) = —(p2,9) =2, (v;,p) =4

Solving (21), we obtain

Y= —(¢r — @) + (¥s + v + ), (22)

so that

H'(¢p; — @) = (6 + 6a)(@; — @3)
+ 2(1 — 20)(ys + vu + v5),
H'(ps + wa + y5) = 6(py — @) + 4(ps + vy + ¥s)>
(23)
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and the secular equation is
6+ 60 —A4 2(1 —2)
= 4

with the roots
A=(5+30)+ (13— 18x + %BE. (29

We have therefore determined all the eigenvalues of
S = 0 levels. The eigenvalue of the spin § = 3 levels
is of course 0. Hence a spin-zero state crosses the
ferromagnetic ground state when « = —0.25. For the
antiferromagnetic case a new possibility shows itself
at « = }. A spin-zero state (¢; + ¢,), which was
higher than the ground state at a = 0, crosses the
ground state and becomes the new ground state for
« > 4. By the Wigner-von Neumann theorem, the
two states must differ in symmetry, which we shall
examine below.

We have also determined the exact eigenvalues for
all states in the S, = 0 subspace. There are 20 S, = 0
states, and, rather than proceeding analytically as
above, the matrix of the Hamiltonian can be easily
diagonalized on a CDC 3600 computer. Figure 3
presents the eigenvalues of the 20 states. Their spins
can be determined by comparing our eigenvalues
with those given by Orbach® for 6 spins, or directly
by analytic computation. The point to observe is the
following. In the antiferromagnetic case the ground
state is always of spin zero. In the ferromagnetic case
(J < 0) the ground state is either of maximum spin
3 or spin zero. States of lower spin do cross the spin-3
state, but they all do so at values of « more negative
than that necessary for spin-zero-level crossing.

The symmetries of the 6-spin complex can be
described by placing them at the six corners of a

6 SPINS
S,=0,4>0

(3)

)

3

-ior ©)

Fic. 3. Eigenvalues of —H’ for 6 spins. The small circle implies
a degeneracy of 2. Level spins are indicated. The numbers on the
right indicate the total number of levels of the cluster.
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FiG. 4. Symmetries of the
6-spin complex. (x=1)
represents an octahedron.

o ¢

o€ =1

regular hexagon (Fig. 4). The next-nearest neighbors
can be joined by dotted lines, which are replaced by
full lines for « = 1, and we get the square graph of
the hexagon, which, unlike the 4-spin case, is not
complete. The next-nearest-neighbor interactions are
already fully developed. For o # 1, the symmetry
of the graph is obviously that of the dihedral group
Dy of the hexagon. Therefore the corresponding
permutation group that leaves the Hamiltonian
invariant has 6 irreducible representations: 4}, A4,
A}, Ay, E',and E” of dimensions 1, 1, 1, 1, 2, and 2,
respectively. The maximum degeneracy of the states
is 2, which is the case in Fig. 3 excepting a few points
of accidental degeneracy. Since two spin-zero states
cross for the ground state, it is necessary that they
must have different symmetry, according to von
Neumann and Wigner. It is easy to verify that the
state a(@; — @p) + b(ys + w4 + ;) (with @ and b
constants) has the symmetry Ay, while the state
(91 + @.) transforms as the representation A4;. For
a = 1, the graph obviously represents an octahedron.
The automorphisms of the graph constitute the well-
known group O, with 48 elements. The corresponding
permutation group for 6 spins can easily be written
down and be verified to leave the Hamiltonian
invariant. The irreducible representations of O, have
dimensions 1, 2, and 3. Figure 3, however, shows
that at « = 1, besides triply degenerate levels, we
have two levels of degeneracy 6. No group bigger
than O, has been found so far. Hence we may say
that there are accidental degeneracies present at & = 1.

C. 8 Spins
For 8 spins there are 70 states in the S, = 0 subspace
and 14 of them have spin S = 0. Following Hulthén,
we take the 14 basis functions as

@1 = [12] [34] [56] [78], @, = [23] [45] [67] [81],

po = [23][41] [56] [78], w, = [34] [52] [67] [81],
% = [23][41] [671 [85],

ps = [12] [45] [63] [78], v, = [23] [56] [74] [81],
xs = [81] [27] [45] [63],

ys = [12] [34] [67] [85], e = (23] [45] [78] [16],
xe = [78] [16] [34] [52],

y; = [34] [56] [81] [27], vy = [45] [67] [12] [38],
xa = [12] [38] [56] [74]. (26)
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The operation of the Hamiltonian
H —4(1 + «)J
J

8 8
= z il —o0;40,,) +« E 31 —o;.0,40) (27)

=1 i=1

H = —

(with o, = o, and 6,, = o,) gives
Ho =8¢+ 91+ vs+ 95+ 9
+ a8y, — 2y, — 295 — 295 — 29),
Hy, =6y, + 20+ 9+ %+ 11
+ a(8y; — 20 — Y4 — Y6 — 21 — X2 — X1),
H'y, =6y, + 20, + 95 + 92 + 22
+ a(8yy — 205 — Y5 — Y7 — 2 — X5 — Xe)s
H'yy = 45+ 295 + 291 + 295
+ (81 — 2y, — 295 — 2x5 — 2x7).  (28)

The structure of the remaining ten equations that we
have not written down can be surmized from these.
There are 8 extra states denoted by x;, -+ -, xg:

x, = [25] [36] [411[78], x, = [14][83] [52] [67],
x, = [14] [83] [56] [27], x, = [47] [36] [52] [81],
x; = [12] [63] [58][47], x, = [23] [74] [61] [58],
x, = [34]1 [85] [61] [72], x5 = [83] [72] [45] [16].
(29)
The appearance of these states accentuates the
difficulties of having the next-nearest-neighbor inter-
actions. We have now to express these extra states in
terms of our nonorthogonal basis (26). This is an
extremely tedious but straightforward calculation
along the line of Eqgs. (20), (21), and (22). Hence, we
get
X1 = —5p, — 580 + Y1+ F¥s — F5Ys — FY,
+ oo + s — f5¥s + ¥ + s + 3502
+ ixs — T5kas
Xe=—=¢1+ Y1+ ¥~ Yut Ja> (30)
and six similar equations. Thus the operation of the
Hamiltonian gives us, finally,
Heo =8¢+ v+ vys+ 95+ vy
+ a[8¢; — 2y, — 293 — 2y, — 2y,],
Hy, =6y, + 20, + pa+ 9+ 11
+ a[—F@1 + 2E@e + Sy — 19 + P5Ys
— 7 — ¥ — T6¥s — 6% — 11V
— Mt — $8xe — Taxs — k), (31

and 12 similar equations for the other functions. For
« = 0, Hulthén was able, by taking proper linear
combinations, to decompose the 14 x 14 subspace

C. K. MAJUMDAR AND D. K. GHOSH

8 SPINS
$=0,J>0

6

.
7

FiG. 5. Eigenvalues of —H " for 8 spins. Two levels are indis-
tinguishably close (the third excited state at « = 0). The circles
denote degeneracy of 2.

into smaller subspaces. Because of the complicated
nature of our coefficients, it is somewhat difficult to
use the same technique; in fact the decomposition
cannot be pushed as far as Hulthén did, while it was
still feasible for the 6 spins. We have therefore
diagonalized the 14 x 14 nonsymmetric matrix
arising from Eq. (31) directly on a CDC 3600 com-
puter, using the known values duc to Orbach® at
o =0 and the four analytically computed values
6 + 60 + ()}, 5 + 60 & (5 + 4a2 — 4t as checks.
Figure 5 represents the result. Only one new feature
is present: in the case J < 0, « < 0, the ferromagnetic
ground state is first crossed by a spin-zero state which
in turn is crossed by another spin-zero state. We have
also analyzed the entire S, = 0 subspace of 70 states
and werified that the ferromagnetic ground state be-
comes unstable first with respect to a spin-zero state
and that the ground state in all cases belong to either
S =0 or §=4. The symmetry group is dihedral
group Dy, with maximum allowed degeneracy 2.
Nothing particularly striking happens at « = 1.

IV. ODD NUMBER OF SPINS @3, 5,

We shall summarize the results for odd number of
spins briefly. For 3 spins there is no question of next-
nearest-neighbor interactions. For odd number of
spins, the total spin can only be half integral, so we
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TasLE I. Ground-state energy per spin for 5, 6, 7, and 8 particles.
No. of spins 5 6 7
o J>0 J <0 J>0 J<O0 J>0 J<0 J>0 J<0
-1.0 —0.8944 —0.8944 —1.3875 —0.7280 —1.1093 —0.7674 —1.3496 -1.0120
—-0.9 —0.8797 —0.8197 —1.3402 —0.6737 —1.0787 —0.6901 —1.3033 —0.9091
—0.8 —0.8650 —0.7450 —1.2930 —0.6263 —1.0483 —0.6137 —1.2574 —0.8185
—0.7 —0.8503 —0.6703 —1.2463 —0.5947 —1.0180 —0.5380 —1.2119 —0.7499
—-0.6 —0.8355 —0.5955 —1.2000 -0.5333 —0.9878 —0.4639 —1.1669 —0.6943
—0.5 —0.8208 —0.5208 —1.1540 —0.4873 —0.9582 —0.4248 —1.1226 —0.6361
—0.4 —0.8061 —0.4461 —1.1087 —0.4420 —0.9287 —0.4026 —1.0788 —0.5784
—0.3 —0.7914 —0.3714 —1.0640 —0.3972 —0.8996 —0.3802 —1.0359 —0.5219
—0.2 —0.7765 —0.4000 —1.0200 —0.4000 —0.8710 —0.4000 —0.9938 —0.4600
—0.1 —0.7619 —0.4500 —0.9770 —0.4500 —0.8430 —0.4500 —0.9527 —0.4500
0 —0.7472 —0.5000 —0.9340 —0.5000 —0.8158 —0.5000 —0.9128 —0.5000
0.1 —0.7325 —0.5500 —0.8930 —0.5500 —0.7896 —0.5500 —0.8743 —0.5500
0.2 —0.7178 —0.6000 —0.8540 —0.6000 —0.7648 —0.6000 —0.8376 —0.6000
0.3 —0.7030 —0.6500 —0.8167 —0.6500 —-0.7419 —0.6500 —0.8034 —0.6500
0.4 —0.6889 —0.7000 —0.7820 —0.7000 —0.7217 —0.7000 —0.7730 —0.7000
0.5 —0.6736 —0.7500 —0.7500 —0.7500 —0.7051 —0.7500 —0.7500 —0.7500
0.6 —0.6589 —0.8000 —0.8000 —0.8000 —0.6936 —0.8000 —0.7729 —0.8000
0.7 —0.6442 —0.8500 —0.8500 —0.8500 —0.7366 —0.8500 —0.7988 —0.8500
0.8 —0.6294 —0.9000 —0.9000 —0.9000 —0.8099 —0.9000 —0.8529 —0.9000
0.9 —0.6174 —0.9500 —0.9500 —0.9500 —0.8851 —0.9500 —0.9399 —0.9500
1.0 —0.6000 —1.0000 —1.0000 —1.0000 —0.9615 —1.0000 —1.0326 —1.0000

always have states with finite nonzero spin and the
interesting question is whether the state of maximum
or that of the minimum spin lies lowest. For 5 spins,
we find that a state of spin 4 has always the lowest
energy forJ >0, -1 <a < 1.

With J < 0, « > 0, the state of maximum spin %
lies lowest; as the next-nearest-neighbor interaction
becomes more and more antiferromagnetic, a state of
spin % becomes the lowest state and remains so. The
symmetries of 5-spin system are analogous to those
of 4-spin case, as the graph of 5 spins on a pentagon
becomes a complete graph for « = 1. For « 5 1, the
group of symmetries has 10 elements divided into
4 classes, with representations of order 1, 1, 2, and 2.
For « = 1 we have the full symmetric group Sj.

The situation with 7 spins is similar. The ferro-
magnetic ground state becomes unstable at a value of
|«| smaller than that for 5 spins.

In Table T we collected the ground-state energy
per spin for all values of « for 5, 6, 7, and 8 spins.
The cases of 3 and 4 spins are trivial and in any case
can be determined from known results.

V. BOUNDS FOR THE GROUND-STATE
ENERGY FOR LARGE N

In this section we shall present upper and lower
bounds of the ground-state energy for arbitrarily
large N, for the Hamiltonian of equation (3). Similar
bounds can also be found for the square lattice, where
the interactions between the nearest neighbors is J
and that between next-nearest-neighbors is aJ.

Consider Eq. (3). Let NzF(«,J) be the ground-

state energy, z is the coordination number or the
number of nearest neighbors. Let y, be the exact
ground-state wavefunction of the Hamiltonian (3).
Then

NzF(x, J) = (y,| H |yp)
= (yol 3 2 6,011 I90)

+ (ol 3Ja Z G, G (Vo)

. = (pol Hy |wo) + (wol Hz (o), (32)
with
H1=lJZcr,--ci+l, N+1=1, (33)
Hy=4aY6;:0,, N+1=1, N+2=2
’ (34)

Since y, is a variational function for H, as well as H,,
we have
NzF(2,J) 2> (Hy)ys + (Hy)gs. - 35

H, is precisely the Hamiltonian treated by Bethe and
Hulthén and its ground-state energy is known. If J
is negative, the ground state is ferromagnetic and
has energy — Nz |J|. If J is positive, the ground-state
energy is the celebrated Bethe-Hulthén result,
—NJ(2In2 — }) = —}NzJ(0.88629). As for (Hy),, ,
if «J is negative, i.c., J and « have opposite sign. we
have
/

(Hplgs, = \_% |1 el 2 o; - °'a'+2> n

= —§|J] ]« <§ G, "";‘4-2>mﬁbx

= —4 ] lof Nz (36)
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Hence, for J negative, a positive,

NzF(lo|, —=\J1) 2 —#Nz |[J| — £ | |«| Nz
or

F(lal, =) 2 =3 U1 — 2 1]« (37

For J positive, « negative,
NzF(—|af, |J]) > —3Nz|J| (0.88629) — Nz |J| |«

or
F(—[«l, [J]) 2 —4|71(0.88629) — % |J||«|. (38)

The case oJ > 0, i.e., « and J have the same sign, is
more interesting. We have now to determine ground
state of H, for a/ > 0. But taking N even, H, is the
sum of two Hamiltonians of spins that interact only
with nearest neighbors [odd-numbered spins interact
only among themselves, so do the even-numbered
ones, Fig. 6(a)], each sub-Hamiltonian containing
3N particles. As the two sub-Hamiltonians are not
coupled, the ground-state energy follows directly
from Hulthén’s work:

(Hy)ys, = —}Nz |Ja] (0.88629). (39)

The result is also valid for odd N, as then the chain
with next-nearest-neighbor interaction can be un-
folded into a single chain with nearest-neighbor
interactions (Fig. 6b). Thus, from (35) for J <0,
o <0,

NzF(—|a|, —|J]) = —{Nz |J| — Nz |J| [« (0.88629)

(c)

F1G. 6. (a) Decomposition of a linear chain into two independent
chains (even N); (b) unfolding of a linear chain into a single chain
by following the arrow (odd N); (c) decomposition of the square
lattice.

AND D. K. GHOSH

or
F(—la|, =J)) > —% /] — §|7]]«] (0.88629). (40)
Similarly, for J > 0, « > 0,
NzF(a,J) > —3NzJ(0.88629) — 3NzJx(0.88629)

or

F(a, J) > —1J(0.88629)(1 + ). (1)

To obtain an upper bound, consider a state y, com-

pletely symmetric in all spins:
G Cipa¥s = Y
O, * G o, = Y. (42)
Then for any J and «
NzF(a,J) < (| H |p,) = Nz + }aJNz
> Fa,J) < HJ + {Jo (43)

Since for J < 0, « > 0 the upper and the lower bounds
coincide, we have an exact solution for the situation
when all interactions are ferromagnetic. For J > 0,
the upper bound (43) is trivial. To get an improved
upper bound, we consider as a variational function
the following alternating function (N even):

y4 = a(1)BQ)a()B4) - - -. (49

Then,
NzF(a, [J) < (pql Hlypy) = —iNz|J| + Nz |J|a

or
Flo, V) < =t W+ e = —{J(1 — o). (45)

For large odd N, this result will also hold. Table II
contains all the bounds for various cases.

The particular topological property of the linear
chain which enabled us to determine the lower bound
is shared by the square lattice [Fig. 6(c)]; that is,
the square lattice with purely next-nearest-neighbor
interaction can be decomposed into two mutually
noninteracting square lattices with half as many
particles and nearest-neighbor interactions only. The
exact ground-state energy of the Hamiltonian with
nearest-neighbor interaction for a square lattice is not
known. However, an inequality of the type (35) still
holds if we know the lower bounds to the ground-
state energy. Such lower bounds can be obtained
from the work of Yang and Yang.®

Write for a square lattice

H=336-0 +3ad'c o (46)

the second sum goes over next-nearest-neighbor pairs
only. Call NzF*(«,J) the ground-state energy, with
z the number of nearest- as well as next-nearest
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or
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TasLE II. Uéper and lower bounds for the ground-state energy for large N. When
comparing with Table I, note the difference that the coordination number z appears
in the definition of F.
J<0, a>0 J>0, a>0
F(a,J) 2 =3 |J] (1 + o). F(a,J) > —3(0.88629)J(1 + «).
Fla,J) < =171 + o). Fla,J) £ =1 4 $Jx.
J<0, a<0 J>0, «<0
Flo, J) > —}|J| — 3 |7] |« (0.88629). F(a, J) > —3(0.88629)J — 3J [«].
Fla,J) £ =3[+ 7] ]«l. o, ) < =8 — o J.
neighbors and N even. Using the completely symmetric  or
state, we get an upper bound immediately for any J P(—la}, ) > -8 — L |al. (51
ForJ > 0, « > 0, we have
NzF*(a,J) < §J - 4Nz + $Jo - INz
NzF¥(jal, [J]) 2 ~3JNz — }JaNz
£, /) S (A + ). (7 or
Flal, ) 2 =31 + ). (52)

ForJ < 0, ¢ > 0, the lower bound is easily obtained:

NzF*(«, =) 2 (=3 J[2 0 0"),
+ (4| JI3 0 0")
= —}|J[#Nz — $a|J) §Nz
or

Fe, =/ 2 -1 10 + o), (48)

so that we have an exact solution as before.

For J > 0, Yang and Yang give a lower bound to
the ground-state energy of 3J 3 o - o', for any fixed
magnetization. It follows from the Lieb-Mattis
theorem that the ground state has spin zero and no
magnetization. So we obtain the inequality

QI (2o 0), 2Nz (49)

Now consider the lower bound for J < 0, o < 0:

NzF(=laf, =) 2 (=} J[D o '),
+ Gl [ e 0y,

2 —1VINz — § |« [J| Nz
or
Fo(=lal, =T 2 =31 — § /] |«l.

ForJ > 0, « < 0, we have

(50)

NzF(~laf,J) > (3] 3 0 -0"),,
+ (—¥l«[Y 60",
> —3#/Nz — } |a| INz

By using a variational function which has all spins up
in one sublattice and all spins down in the other, we
can improve the upper bound in the case J > 0 to get

Fa, | J)) < =4 + Ha. (53)

Finally, using the Yang and Yang result for one
dimension, we obtain lower bounds for the linear
chain, which are naturally not as good as those using
the exact result:

Flal, VD) 2 =41 + o) = —0.75/)(1 4 o),
F(=lal, =) 2 =11 — § ] e
= —0.25] - 0.75|J} {«l,
F(=lal, WD) 2 =371 = £ 171 ]e

= —0.75|J] — 0.25J] |« (54)

p
VI. DISCUSSION

The general trend of the results shows the usual
nonmagnetic character of the ground states except
when all interactions are ferromagnetic. The most
interesting case is J < 0, a < 0. Considering the
limit « — — o0 and applying the Lieb-Mattis theorem,
we may easily see that, for sufficiently large and nega-
tive «, the ground state must belong to spin zero. The
interesting trend of the results on short chains indicates
that the ferromagnetic state becomes unstable with
respect to a spin-zero state for the smallest absolute
value of a. It is, of course, easy to show that the
ferromagnetic state is unstable with respect to spin
waves for « < —1, but spin waves have very high
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spin, S'= N — 1. The indications are that the spin-
zero state crosses the ferromagnetic state at a very
small value of « for large N. Quite possibly « = 0
itself is a critical value; this situation is probably
characteristic of one-dimensional system and is almost
certainly untrue in three dimensions. Nevertheless, it
emphasizes the rather tenuous nature of the ferro-
magnetic states.
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APPENDIX

We give here the character tables of D,, Dg, Dy,
and D; for convenient reference.

D,
Class E C C Cy, G
Order of class 1 1 2 2 2
A, 1 1 1 1 1
A, 1 1 1 -1 -1
B, 1 1 -1 1 -1
B, 1 1 -1 -1 1
E 2 -2 0 0 0

Dy
Class E C C ¢ ¢ G
Order of class 1 2 2 1 3 3
Y 1 1 1 1 1 1
A 1 1 1 1 -1 -1
A 1 -1 1 -1 -1 -1
4 1 -1 1 -1 1 -1
E’ 2 -1 -1 2 0 0
E” 2 1 -1 =2 0 0
Ds
Class E G s CCt C. G
Order of class 1 2 2 2 1 4 4
A, 1 1 1 1 1 1 1
A, 1 1 1 1 1 -1 -1
B, 1 -t 1 ~1 1 1 -1
B, 1 -1 1 -1 1 —1 1
E, 2 1 0 -1 -2 0 0
E, 2 -1 0 1 -2 0 0
E, 2 0 -2 0 2 0 0
D;
Class E Cs C? C,
Order of class 1 2 2 5
A, 1 1 1 1
A,y 1 1 1 -1
E, 2 HVS-D —HVS+D 0
E, 2 —3(V3+1)  HV5-)) 0
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Continuing our work on the ground-state properties of the Hamiltonian

N N
H=4Y0;-0,, +#ado,.0,,, —1<aL]l,

i=1

=1

we have completed the study of 10 spins. The results of short-chain calculations provide better upper and
lower bounds of the ground-state energy per particle as N — co, but no simple formula can be fitted to the
data to get this limit for all «. For J > 0 and « = 4§, however, this is exactly found to be —3#J. Some
upper and lower bounds for the free energy are also derived.

In a previous work,! we studied the ground-state
properties of the Hamiltonian

N N
H=}30,-0,,+ a3 0.0,
i=1 i=1
= H, + «H’ ¢))

(N+1=1, N+2=2) for both positive and
negative J and —1 < « < 1. We obtained the upper
and lower bounds of the ground-state energy per
particle in the limit N — oo for (1),as well as for its
two-dimensional version with a square lattice. To
obtain more specific information about the depend-
ence of the ground-state energy on «, we studied
short linear chains up to 8 particles. It has been shown?
for linear chain with J > 0 and only nearest-neighbor
interaction (o = 0) that simple empirical formulas,
such as

Ey=Eq+ (@/N)+ -, @

for the ground-state energy per particle Ey, exist and
these can be used to get E_, the limiting value as
N — oo, with great accuracy. In order to examine
whether such a formula exists for all «, we have now
pushed our calculations to a chain of 10 particles. The
entire data are presented here in Figs. 1 and 2.
Although one can visualize the behavior of the ground-
state energy per particle E, for all « fairly well, it is
extremely hard to find any empirical formula of the
type (2) for all « or even a limited but useful region
of a. Nevertheless, the short-chain calculations appear
to provide much better bounds for E,, than we have
obtained previously.

An interesting by-product of these calculations is
to show that the exact ground-state energy per particle
E, ,forJ >0, «a =}, is —3J. The ground state is of
spin zero, but degenerate, and the corresponding

1C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1392

(1989) (preceding paper).
2J. Bonner and M. Fisher, Phys. Rev. 135, A640 (1964).

eigenfunctions for finite and even N can be written
down easily.

Some exact bounds for the free energy of the system
(1) can be obtained. More detailed information on the
finite temperature properties of system with nearest-
as well as next-nearest-neighbor interactions is
available from the work of Dalton.?

I. RESULTS OF SHORT-CHAIN
CALCULATION

The method of computation for the 10-spin case is
the same as employed in Ref. 1 and is originally due to
Hulthén.* There are 42 spin-zero states and we take
them as

¢ = [12][34] [56] [78] [90],

e = [23] [45] [67] [89] [01],
= [23] [41] [56] 78] [90],
21 = [23] [41] [67] [85] [90],
I'y = [23] [45] [16] [78] [90],
A, = [23] [41] [67] [89] [50],
w; = [23] [41] [78] [96] [50].

@)

There are 10 states each of the type v, x, and A, and five
of each of the type I' and w. Here 0 stands for the tenth
spin. The square bracket [Im] = a(l)f(m) — (Da(m),
where o and § are the up and down spin states. A
simple way of generating these states is to start with
¢; and ¢, and operate with the nearest-neighbor-
interaction part H, only. Note that these states are
not orthogonal. Operating with H' on these states, we
generate, besides these, other states of similar structure,
for example,
H'y, = 109, — 29y — 21,
-y —= Ty — 6, — 0, C))

3 N. Dalton, Proc. Phys. Soc. (London) 88, 659 (1964).
4 L. Hulthén, Arkiv Mat. Astron. Fysik 26A, No. 11 (1938).
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BOUNDS FOR
GROUND=-STATE
ENERGY
(POSITIVE J)

£/l

FiG. 1. Ground-state energy per spin for J > 0 (antiferromagnetic
case). The curves marked oo are bounds obtained directly (Ref. 1)
for H in Eq. (1), and the dashed curve is obtained from Eq. (23);
the others are short-chain results. (The vertical scale may be fixed
from Table L.}

where
0, = [36] [25] [41] [78] [90],
6, = [29] [30] [41] [56] [78]. 4)

The same difficulty was present in the 8-spin case, but
now it is far worse; we have 45 such states which must
be reexpressed in terms of the above nonorthogonal
basis by a long, tedious calculation. The presence of
these terms therefore destroys a basic simplifying
feature that prevails in the problem with « = 0—it is
now impossible to reduce the matrix of the Hamil-
tonian to smaller submatrices by inspection. The
matrix is nonsymmetric and has been diagonalized
on a CDC 3600 computer. The spin-zero states known
at « = 0 from the work of Orbach? serve as a useful
check. The ground-state energy per spin is given in
Table I. For J < 0, we have assumed, on the basis of
our previous experience, that the spin-zero state
becomes the ground state when « is large and negative.

At « =0, J > 0, the limit E, is approached from
below for even number of particles and from above
for odd number of particles in the chain. By continuity
this would hold for small «. From Fig. 1 it appears
that the even-chain (i.e., a chain containing even

5 R. Orbach, Phys. Rev. 112, 309 (1958); 115, 1181 (1959).
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number of spins) results are converging fast to a
limit for 0 € « < }. In the other regions nothing
definite can be said about convergence. But it appears
that the even chain results are below and the odd
chain results are above the exact answer for —1 <
a < 1. Assuming this to be true, we get the lower and
the upper bounds given by the results of 10 spins and
seven spins, respectively. For J < 0, the odd-chain
results are not useful and the even-chain results may be
assumed to approach the right answer from above;
we get its bounds by our previous calculation and the
ten spin results.

II. EXACT RESULT AT « =4 FORJ >0

Since at « = 4 (J > 0) all the even-chain results
indicate the same value, it is apparent that we may
have an exact answer here, E_/J = —0.75. Actually,
one can guess the eigenfunctions for the Hamiltonian
here. Take N even and consider

¢, =[12]1[34]-- [N—3,N—-2][N—1,N]. (5
Now

N
H=3iNJ1+o)—J> ¥l —0;-0,,)
=1

N
- J“.Zi 31 — 8- 0,14)

INJ(Q + o) — JA.

il

(6)

BOUNDS FOR
GROUND-STATE
ENERGY
(NEGATIVE J)

Eo/101

F -0

F -8

Fig. 2. Ground-state energy per spin for J < 0 (ferromagnetic
case). The notation is the same as in Fig. 1.
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TasLE I. Ground-state energy per spin for 10 particles
(divided by |J)).

o J>0 J<0 o J>0 J<0
-1.0 —~1.2429 —1.1310 0.1 -—-0.8679 -—0.5500
-0.9 -1.2130 -1.0398 0.2 —0.8337 -0.6000
-0.8 —1.1816 —0.9496 0.3 —0.8013 —0.6500
-0.7 —1.1492 —-0.8610 04 —0.7721 —0.7000
-0.6 —1.1157 -0.7746 0.5 —0.7500 ~0.7500
-0.5 —-1.0813 -0.7339 06 —0.7568 ~—0.8000
~04 —1.0463 —0.6992 07 —0.7850 —0.8500
-0.3 —1.0107 -—0.6366 0.8 —0.8384 —0.9000
—-0.2 —0.9748 —0.5642 09 -—0.9019 -—0.9500
-0.1 -0.9389 —04878 1.0 —0.9659 ~1.0000

0.0 —0.9031 —0.5000

Then,

Hy, = N, + [23]1 [411[56] - - [N — 1, N]

+ [12] [45] [63] [78] - - - [N — 1, N]

+oo 34 2, N = 1][N1]

— a{[13] [42]) [56]- - - [N — 1, N]

+ [24] 311 [56]) -+ - [N— L, N] + - -~

+ [N— 1,11 [2N][34]--- [N = 3,N — 2]

+ [N2][1,N—~1][34]--- [N —3,N = 2]}.

M

The structure of the terms is obvious. The terms
(second, third, etc.,on the right) are those we should

denote by w;, s, ¥s, - in accordance with our
previous notation. If we use the identity

[k1} [mn]) + [kn] [Im} + [km] [nl] = 0,
termwise for the coefficient of «, we get
Hpy = N( + a)gy + (1 — 2a){[23] [41] - - -
X [N—1,N]+ [12][451[63]--- [N — 1, N]

®

+-oo+ [N1][34]--- 2, N — 1]} ®
Fora =4,
ﬁ‘pl = {Ng¢,, (10)
so that
Ho, = (}NJ — 3N))p, = —iNJg,. 1)

Hence the energy per spin is —3J for N— o,
Similarly, we can show that, for N even,

@e = [23] [45] [67] - - - [N1] (12)

is another eigenfunction of H belonging to the same
eigenvalue. For odd N, the states are magnetic, but
as N — oo, the energy per spin can only differ by terms
of O(1/N). Hence at « = §, Ey = —3NJ for N — oo,
irrespective of evenness or oddness of N. Strictly
speaking, we have shown that (5) and (12) are just
eigenfunctions of H and, therefore, the eigenvalue
—32NJ greater than or equal to the exact ground-state
energy. But the numerical evidence of Fig. 1 leaves
little doubt that it is the exact ground-state energy.
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III. BOUNDS FOR THE FREE ENERGY

Here we shall present some bounds on the free
energy for the Hamiltonian (1) in the linear-chain case.
The upper bound for the free energy

F=—f1'InZ = —~$1InTr [exp (—BH)]

is obtained from Peierls’s theorem.® If F; is the free
energy calculated with only the diagonal elements of
the Hamiltonian (1),

N N
Hp = 31J 3 diof,, + $a D oo, (13)
i=1 i=1

we know F < F.

But Hy, is the Hamiltonian of the Ising model with
second-neighbor interactions. This can be solved by
the transfer-matrix method in one dimension (but not,
as far as we know, in two or three dimensions). This
gives an upper bound for the free energy: Put F = Nf;
we have

f < —%kgTIn [exp (—Ja/kyT) cosh (J/kgT)
+ exp (Ja/kgT) + {exp (—2Ju/kgT)
x sinh? (J/kzT) + 4 cosh? (J[2kzT)P]. (14)

In the case J > 0, « > 0, we can also get a lower
bound of the free energy by utilizing the convexity
property.” The method was used by Griffiths® and
utilized the solution of the X~Y model by Schultz,
Lieb, and Mattis.®* We have to use the fact that the
linear chain with only the next-nearest-neighbor
interaction can be decomposed into two noninter-
acting linear chains with half the number of spins each
and with only the nearest-neighbor interaction
(consider N even for convenience).
Write (1) as

H=X+Y+Z+ X+ Y, + Z,
+X,4+Y,+2Z, (15)
where
X =430, Y= %JZO':{U:"-H,

Z =} 3 0io}1, (16a)

X, = 3o ofofs, Y, =4Ja3 olol,,,
Z, = }Ja 3 0i0};s, (16b)

X, = 4o oiol,s, Y, =4uQ olol,,
Z, = }Ja Y diol,,. (16¢)

In (16b) the sum is over the odd-numbered spins and
in (16¢) it is over the even-numbered spins.
The convexity of the free energy provides the

¢ R. E. Peierls, Phys. Rev. 54, 918 (1938); for a recent proof, see
D. Ruelle, Helv. Phys. Acta 36,789 (1963).

? D. Ruelle, Helv. Phys. Acta 36, 789 (1963).

8 R. B. Griffiths, Phys. Rev. 136, A751 (1964).

? T. D. Schultz, E. Lieb, and D. Mattis, Ann. Phys. (N.Y.) 16, 407
(1961).
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relation
F(s sd) 2 SaFd), Se=1. (7
Rewriting (15) as
H=3BX+ N+3(Y+2)+HZ +X)
+ 0+ 32 + X)), (18)

and using the following relations,which hold because
of symmetry,

FT,3X + Y)) = F(T, (Y + Z))

=HT,3Z+X), @19
etc., we obtain
F(T) 2 AT, 3(X + 1))
+ §F(T, $(X, + Y,). (20)

Now the Schultz, Lieb, and Mattis solution of the
X-Y model gives

w/2
FUJ,T) = —NkBT[ln 2 + (2fm) f dk
4]
x In {cosh [(J/ksT) cos k]}:l. Q1)

Remember that the interaction in the second term on
the right-hand side is Jo and the number of particles
is 4N in X, + Y,, so we get

- /2
F(T) > —iNkgT|In2 + (/) f dk
L 0

x 1n {cosh [(9J/2k5T) cos k]}]

r w/2
— iNkgT|In 2 + (2/7r)J dk
L 0

x In {cosh [(9J«/2ksT) cos k]}] 22)

C. K. MAJUMDAR AND D. K. GHOSH

The lower limit for f, the free energy per particle,
follows after division by N.

Taking the limit T— 0, we get a lower bound for
the ground-state energy per spin:

E, 2 —0.955J(1 + «). (23)
We have obtained a lower bound better than this in
our previous work.

Such results are difficult to obtain in higher dimen-
sions, but there exact series expansion results are
available.®

IV. DISCUSSION

In this study we have unravelled some of the diffi-
culties of having second-neighbor interaction as
apparent in the linear chain. For J < 0, the most
interesting feature is the singularity at « = 0 and that
the ground state becomes one of spin zero for arbi-
trarily small second-neighbor interaction of opposite
sign. Such instability is to be expected for the same
reason as destroys the long-range order of the
ferromagnetic ground state in one dimension at all
finite temperatures. For J > 0, the existence of an
exact result at « =  is surprising, but « = } must be a
singular point. Here « = 0 appears to be smooth, but
may not really be analytic, thus explaining the failure
of the existence of simple analytic extrapolation
formula. While the singularity at « = 0 may be
removed in two or three dimensions, the existence of
second-neighbor interaction brings into play compli-
cated topologies; the trouble in the 8 and 10 spins of
the nature of Eq. (4) arose precisely from these reasons.
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It is shown that the spherical model consisting of N spins with nonzero interaction between two spins
only has a phase transition in the limit N — co. This is a counterexample to a suggestion of Kac which
states that an Ising model will have a transition if the corresponding spherical model has a transition.
Possible modifications of Kac’s conjecture are suggested and discussed.

SECTION 1

It has been suggested by Kac! that an Ising model
will have a phase transition if the corresponding
spherical model has a phase transition.

The purpose of this note is to present a counter-
example and to suggest that the conjecture may well
be true if the interaction potential is purely ferromag-
netic and periodic.

The example we consider is in itself amusing: it has
a phase transition and is in a sense zero-dimensional.

SECTION II
Consider a set of N spins s; with interaction energy
=— 2 Jiss; (D
1<6<i<N

for the Ising model s; = £1 and for the spherical
model2 — w0 < §; < oo with the constraint

N
>si=N. @
i=1

We take the particular case

J;=2J, when i=1 and j=2,
=0, otherwise, 3)

i.e., only spins 1 and 2 interact.

We wish to emphasize that this interaction is not
pathological in any sense. The above coupling con-
stant is a perfectly finite and fixed number, e.g., .

The Ising-model partition function is given by

ZJIV = 2—N e2V3182
py==1pg=:tl ny=xt1
= cosh 2, 6]

where v = J/kT (k is Boltzmann’s constant and T is
the absolute temperature) and, in the thermodynamic

* Work supported by National Science Foundation Grant No.
GP-9414.

T Permanent address: Northwestern University, Evanston, Illinois.

! M. Kac, Brandeis Lectures, 1966 (Gordon and Breach, Science
Publishers, New York, 1968).

2 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).

limit, the free energy per spin y is given by

~ ¥ —tim N 'log ZL =0 5
T gLy (5)
and v is clearly an analytic function of T, i.e., the
Ising model with interaction (3) does not have a phase
transition.

The spherical-model partition function with inter-

action (3) is given by?

Z5 = A}lf- . -J‘em‘s2 dsydsy -+ dsy, (6)
N

Z 352=N

=1

AN = 27TN/2N(N—1)/2(F(N/2))—1

is the surface area of the N-dimensional sphere.
We now integrate first over the variables s, 5,, - - *
sy in Eq. (6) as follows. Since
0(rt — a®) = 6(r — a)/2a
(6 denotes the Dirac delta function),

AN J . f €12 ds, dsy -+ - dsy
X

=X s,-2=N
i=l

where

@

bl

= AEIJ" ¢ 'fezvslszé(r -— \/N) dS1 d52 te dSN

=2JN A&lf' . -Jegw‘mé(r2 — N)ds, dsy -+ - dsy

= 2,/N 43 f e f ]
N -—Q0
X 6(2s§ —~ (N —s% — s§)) dsydsy -+
i—3

dsy

= /N A7 f ds, ds,e (N — 52 — 5%

s12+s325N

Xj‘wfé((ésf)é— (N — % — sﬁ)%) dsg -~ dsy,

1403
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and since
2731
dx, dxy - dx, = ———,
f f (() “) R = )

we have that

78 = (N - 2) NO-N72)
2w

ff e2vslsg[N - s2

s10+8s’<N

— sgl(N—«i)/z dsl dsz.

®)
Transforming to polar coordinates then gives imme-
diately

z8 = (N—zi—z) L TN — DAy (9)

where

27
Ifz) = = f g*oin 4f (10)
27 Jo
is the zero-order Bessel function with imaginary
argument.

The integral in Eq. (9) for large N can be evaluated
either by the method of steepest descents or, if one
wishes to be more precise, by obtaining upper and
lower bounds and then proceeding to the limit
N — oo. We adopt the latter approach.

To obtain an upper bound for Z§ we use the
elementary result

I(z) < e, for z2>0, (11)

which follows directly from (10). Substitution into (9)
then gives

N-—2(!
VA 5

\ eN\W(l — y)(N—4)/2 dy

N-2 Nvugq _ \(N—4)/2
<[F57] max ¥t = 0 12

from which it follows that

— % —1im N'log Z§ < f(), (13)
kT ~N-o
where
fO) =32y —1—log2y), 2v>1,
=0, <L (14

To obtain a lower bound for Z§ we use the result
Io(z) 2 (1/22)(ez - l)’ for z 2 0’ (15)

which follows from (10) by reducing the range of
integration to (0, »/2), expanding the exponential,
integrating term by term, and using

z/2
2 J' Sin?8d6 > (p+ 1), for p>0. (16)
0

™
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Substituting (15) into (9) gives

) f (1 — )(N—4)/2[ ;:v—yl] dy

> (_:G'v:_)f (1 — ) N-22[Nw _ 1] dy

1
= 1 — (N—4)/2erd ]
( )f 1= Ay

Now, assuming for simplicity that N is even,

1
J;(l - y)(N—4)/2eva dy

z§> (
an

_ (N - 4)/2]! eV [N/2] [(N — 4)/2]!
T R T & (N = )2 — (NP
(N — 4)[2]! ¥ 2
(Nv)N/D-1 - Ny — 1) !
provided 2» > 1,

and it follows from (17) and (18) that
—y/kT 2> f(v), provided 2v > 1,
where f(») is defined by Eq. (14).
Also, since I(z) > 1,

- 1
z3> (V) [ a - poray =1
0

and thus

2

(18)

(19)

—p/kT >0, for all, (20)

Equation (19) is true, therefore, for all ». Combining
this result with Eq. (13) then gives

—ylkT =1 (%), 2n

with f(v) defined by Eq. (14), and it is obvious that
f(»), and hence y, is a nonanalytic function of
temperature, ie., the spherical model with inter-
action (3) has a phase transition at temperature T,
given by

= 2J[kT, = 1. (22)
SECTION I
It is perhaps of interest to note that the free energy
,of "the “Curie-Weiss spherical model,” i.e., with
interaction energy
E J N 2
=——( s, 23
w(25) @)

is precisely the same as the above Eqgs. (21) and (14)!
Thus, for the interaction (23),

N
Zy= A;‘f- ‘ -fexp [V(N‘%gls,.)j ds; >+ dsy.

% N
- (24)
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Making the orthogonal change of variables to y,,
yz,... ,yNwith

*N
n=N" _zlscs

we have that

ZN=Az_vlf"'feW"dY1"'d}’N

N
2 1’12=N
i=]1

(25)

and integration over y,, """

. 2T(N/2)
N 7 NN — 1))2)

xf ewl’( N — yg)(N—s)/z dy1
v2EN

_ (N2
J7 DN = 1D/

» Y as before gives

J‘lesza(l - xZ)(N—S)/2 dx
(]

(26)

and it is obvious from the above analysis that
—ylkT = f(v) (Curie-Weiss, spherical). (27)
The difference now of course is that the Curie-Weiss

Ising model has a phase transition. In particular, for
the interaction (23) with s, = +1,

—wlkT = —vn? + log [2 cosh (2vn)]

(Curie-Weiss, Ising), (28)
where 7 is a solution of
7 = tanh (2vy). (29)
So, at least for this case, the Kac conjecture is true!
SECTION 1V

It seems likely to us that, in general, the conjecture
may be true if the interaction potential J;; in Eq. (3)
is periodic and ferromagnetic, i.e., if

Jiy=J(@; — 1) >0, (30)

where r; is the position vector of the ith spin. In
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support of this “modified Kac conjecture” we have,
in addition to the Curie-Weiss models, the following:
(i) the three-dimensional nearest neighbor Ising
and spherical models both have phase transitions, and
(ii) the one-dimensional Ising? and spherical models*
with interaction
J” = li _j|—(m+1)

have transitions when 0 < p < 1 and do not have
transitions when p > 1 (when p =1, the spherical
model does not have a transition and, at the moment,
the Ising case is undecided).

We remark also that for the Curie-Weiss models,
the magnetization M is given by

N 2
M =1im/(—l—z s¢)>
N-+w \\Ni=1
= 7%, for Ising,

=1 — 1/2», for spherical (2v > 1),
where 7 is defined by Eq. (29) and, since the slope of

the line y = % is greater than the slope of y =
tanh 2y where they intersect,

nt>1~—1/2y, when 2» > 1.
(When 2y < 1, both magnetizations are zero.)
It is then tempting to suggest that, in general, if
Jiy=J; — 1) >0,
Mlnlng Z Mspherical’ (32)

with the proviso that the inequality may only be true
for sufficiently low temperatures.

In addition to being true for the Curie-Weiss
models [Eq. (31)], it is true for the one-dimensional
nearest-neighbor models.

In conclusion we remark that

MIsing 2 M (33)

= continuum ?
where “continuum” describes the model with |s;| < 1.
To prove (33) write

(3D

+1 +1
(5252 continuum = f x f 5xS; €XP (ijJ;,s,-s,) ds; - - dsy / f = fexp (ijJi,s,-s,) ds, - dsy
i< i<
~1. 1

ay==1 sy=x1 i<j

1
= f ‘ 'fsksl Z e Z By €XP (”Z(Jﬁsisj)l‘iﬂf) ds;- - dslv/
0

(5e8q- -+
< max (i p)rink »,
0<8;<1

1
f- .. f Z . 0. 2 exp
o J mmEL wa=l

(‘sz(si-]ijsj)ﬂd[j) dsl “ e dsN

* F. J. Dyson, “Existence of a Phase-Transition in a One-Dimensional Ising Ferromagnet” and *“Non-Existence of Spontaneous
Magnetization in a One-Dimensional Ising Ferromagnet,” Commun. Math. Phys. (to be published).

4 G. S. Joyce, Phys. Rev. 146, 349 (1966).
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where

( R R
(/‘k/‘t>1?ins§

=%l  py=xl

If we now appeal to a theorem of Griffiths,5 which
states that ferromagnetic Ising-model correlation
functions {(u;u;) are not decreased if the interaction
between any two spins is increased, we see that the

maximum of ()i 5% is achieved when all

5 R. B. Griffiths, J. Math. Phys. 8, 478 (1967).
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W= Y 3 g exp [vz.(si‘]ijsi)/‘i”i:l
i<3
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2 o X exp l:vigj(si']iisj)/"iﬂi:l‘

p=:+1 py=%1

s; = +1. This is sufficient to prove (33) or, for that
matter, the stronger result

<sksl>continuum S <Sksl>Ising .
Notice that periodicity is not required in this case; the

only requirement being that the interaction J,; be
ferromagnetic.
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The problem of following the dynamical behavior of a quantum-mechanical system in the diagonal
coherent-state representation is examined for those systems whose time evolution is specified by equations
of motion for the coherent-state weight functional which resemble Fokker-Planck equations but have
non-positive-definite diffusion matrices. A particular equation of this type describing a linear parametric
process is considered in detail and several proposed generalizations of the diagonal representation, which
include dynamical effects of the atomic system coupled to the electromagnetic field in simple models of a

unimodal laser, are also briefly discussed.

L. INTRODUCTION

It has been noted recently by a number of authors*~*
that the problem of following the time evolution of
such quantum-mechanical systems as models of a
unimodal laser and optical parametric amplifier in
the diagonal representation’¢ of the density operator
with respect to the “coherent” states |z),’

p(t) = (1/m) f P(z, 1) |20zl d2, z = (x + i)/,
)

can lead to mathematical difficulty because the
weight function P(z,?) is, in general, not a well-
behaved classical function but a generalized function

* Supported by the NASA Multidisciplinary Research Program
under Grant No. 5522-52-12859.

1 B. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1097 (1967);
B. R. Mollow, ibid. 162, 1256 (1967).

2 J. R. Klauder, private communication (January, 1968).

3 J. P. Gordon, Phys. Rev. 161, 367 (1967).

4 R. Graham, Z. Physik 210, 319 (1968).

5 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).

¢ R. J. Glauber, Phys. Rev. 131, 2766 (1963).

7 R. J. Glauber, Phys. Rev. Letters 10, 84 (1963).

in a subspace of Z'(R,).® This difficulty manifests
itself in the fact that the equation of motion for
P(z,t) in these cases resembles the Fokker—Planck
equation familiar from the classical theory of stochas-
tic processes,® but has a non-positive-definite diffusion

8 M. M. Miller and E. A. Mishkin, Phys. Rev. 164, 1610 (1967).
The fact that the diagonal weight function associated with the
density operator actually belongs to a small subspace of Z’(R,) is
stressed in Sec. V of this paper, and a characterization of this
subspace Z,(R;) was given, based on the fact that the Fourier
transform of the diagonal weight is a continuous function with a
quadratic exponentjal bound. In terms of the classical generalized
function spaces, the space Z,(R;) most closely corresponds to the

space S’%(Rz). {For the definition of § spaces, see I. M. Gel’fand
and G. E. Shilov, Generalized Functions (Academic Press Inc., New
York, 1968), Vol. II; see also J. R. Klauder and E. C. G. Sudar-
shan [Fundamentals of Quantum Optics (W. A. Benjamin, Inc., New
York, 1968), Chap. 8] for a comprehensive discussion of the diagonal
coherent-state representation.} The fact that the diagonal weight
function lies in a subspace of Z’(R;) has also been noted by K. E.
Cabhill, ““Regularization of the P-Representation,” Phys. Rev. (to be
published). Cahill gives an alternate characterization of this subspace
based upon the decomposition of the Fourier transform of the
diagonal weight into the sum of a square-integrable function and
an infinitely differentiable function. [The terminology ‘‘P-Represen-
tation,” introduced by Glauber (Ref. 6), is frequently used in the
literature to designate the diagonal coherent-state representation.]

? M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
(1945).
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where

( R R
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=%l  py=xl
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in a subspace of Z'(R,).® This difficulty manifests
itself in the fact that the equation of motion for
P(z,t) in these cases resembles the Fokker—Planck
equation familiar from the classical theory of stochas-
tic processes,® but has a non-positive-definite diffusion

8 M. M. Miller and E. A. Mishkin, Phys. Rev. 164, 1610 (1967).
The fact that the diagonal weight function associated with the
density operator actually belongs to a small subspace of Z’(R,) is
stressed in Sec. V of this paper, and a characterization of this
subspace Z,(R;) was given, based on the fact that the Fourier
transform of the diagonal weight is a continuous function with a
quadratic exponentjal bound. In terms of the classical generalized
function spaces, the space Z,(R;) most closely corresponds to the

space S’%(Rz). {For the definition of § spaces, see I. M. Gel’fand
and G. E. Shilov, Generalized Functions (Academic Press Inc., New
York, 1968), Vol. II; see also J. R. Klauder and E. C. G. Sudar-
shan [Fundamentals of Quantum Optics (W. A. Benjamin, Inc., New
York, 1968), Chap. 8] for a comprehensive discussion of the diagonal
coherent-state representation.} The fact that the diagonal weight
function lies in a subspace of Z’(R;) has also been noted by K. E.
Cabhill, ““Regularization of the P-Representation,” Phys. Rev. (to be
published). Cahill gives an alternate characterization of this subspace
based upon the decomposition of the Fourier transform of the
diagonal weight into the sum of a square-integrable function and
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literature to designate the diagonal coherent-state representation.]

? M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
(1945).
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matrix. They are, therefore, not of the parabolic
typel® and the general question of the existence and
uniqueness of solutions to such equations when the
drift and diffusion coefficients are variable has not
been resolved.’! If, on the other hand, the drift and
diffusion coefficients are constant, then the “Fokker—
Planck-like,” non-positive-definite diffusion equations
—hereafter referred to as FPL equations—belong to
the class of “incorrectly posed” partial differential
equations which have been studied intensively during
the past ten years.!® A characteristic feature of such
equations is the existence of a time interval = during
which the solution is a well-behaved classical function,
but after which the solution exists only in the sense of
a generalized function. (A simple example of such an
equation is the heat equation for negative times.'?)
For “incorrectly posed” equations to have classical
solutions for a nonzero time interval, the initial data
must be an entire analytic function for complex values
of the spatial variables; then the magnitude of =
depends’on the growth of the initial data in the
complex plane.’® Although an analogous theory has
not yet been developed for FPL equations with vari-
able coefficients, the simple, variable coefficient
equation considered in Sec. II does exhibit such be-
havior. However, even this example illustrates that
variable coefficient PFL equations are much more
subtle and it is presently not known how to prove
existence and uniqueness and obtain an estimate for 7
in the general case.l

In this context, it is important to note that in the
case of the diagonal weight functional P(z,t) it can
be proved directly from the definition (1) that P(z, t)
exists and is unique.® Hence, proofs of existence and
uniqueness derived directly from the differential
equation for P(z,t), although interesting from a
mathematical viewpoint, are really “frosting on the
cake.” From a physical point of view, what is needed
is a solution for P(z,t) which would enable one to
calculate the normally ordered correlation functions
characterizing the coherence properties of the electro-
magnetic field using simple c-number operations.
In the sense that no general prescription is presently
available for calculating such averages when the time
evolution of P(z,t) is specified by a FPL equation,

10 I M. Gel'fand and G. E. Shilov, Generalized Functions
(Academic Press Inc., New York, 1967), Vol. III, Chap. III.

1t This question is currently being investigated by F. Treves and
S.Steinberg (private communication, November, 1968). See F. Treves,
Quciannikov Theorem and Hyperdifferential Qperators (Instituto
Matetica Pura ae Aplicada, Rio de Janeiro, 1969).

12 F. John, Partial Differential Equations (Interscience Publishers,
Inc., New York, 1964), p. 102.

13 Reference 10, p. 163, Theorem 3.

14 R. J. Glauber, Phys. Rev. 130, 2529 (1963).

1407

several authors'® have concluded that no “reasonable”
or “useful” diagonal representation exists in these
cases, and have advocated following the time evolution
of the density operator p(#) using other ‘“‘quasiproba-
bility” weight functions which are “better behaved”
mathematically such as the Wigner distribution!® or
the diagonal coherent-state matrix element of the
density operator.1”-1®8 While these alternate procedures
for calculating correlation functions are, of course,
valid, we believe that it is still of interest from a
physical as well as a mathematical point of view to
study the time evolution of the density operator in the
diagonal coherent-state representation even in those
cases in which P(z,t) is a generalized function and
bears only a formal relationship to a classical proba-
bility density function. In Sec. II, we discuss in
detail the model of a linear parametric process
previously considered by Mollow! and Klauder,? and
exhibit solutions for P(z, ¢) for all times. In Sec. I1I,
we consider the problem of following the time
evolution of the interaction between an atomic source
and its radiation field by means of a generalization of
the diagonal weight function which includes atomic
as well as field variables.

II. TIME EVOLUTION OF A PARAMETRIC
PROCESS

We consider a single-mode field governed by the
parametric Schrédinger Hamiltonian

H=wd'a + (a'e™oe ™4’ + He), (2

where a, a' are the usual boson annihilation and
creation operators, and w, ¢ are ¢ numbers which
specify the angular frequency of the mode and the
strength of the parametric interaction.’® The inter-
action Hamiltonian in the interaction representation
is, therefore,

Hy(t) = Hy(0) = ¢“'*{a e o' 4 H.c.}e oa"e!
= gah + o*d® 3)

15 See, for example, R. J. Glauber, Proceedings of the Symposium
on Modern Optics (Interscience Publishers, Inc., New York, 1967);
R. Graham et al., Z. Physik 213, 21 (1968).

18 E, P. Wigner, Phys. Rev. 40, 749 (1932).

17 C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274
(1965).

18 R. J. Glauber, Quantum Optics and Electronics (Les Houches,
1964); (Gordon and Breach, Science Publishers, New York, 1965).

1% Since an actual parametric process involves a coupling between
two (or more) harmonic-oscillator modes,a and alin Eq. (2) should
be interpreted as n-component row and column vectors and @ and ¢
as real symmetric # X » matrices in the general case of an interaction
between n-coupled oscillators. However, the resulting Hamiltonian
can be converted into a sum of n terms of the form of Eq. (1) by
diagonalizing the matrix o (the matrix o is already diagonal), so that
there is no loss in generality in considering the single-mode case.
(The n-mode problem is discussed in detail in the paper by Mollow
in Ref. 1.)
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and the time evolution of the interaction-representa-
tion density operator p,(¢) is specified by the equation

aPI( )
ot

We can transcribe this equation for the density
operator into an equation of motion for the diagonal
weight function P(z, t) by combining Eqs. (1), (3),
and (4),

; aPI(t)
ot

= [Hy(1), pr(1)}- @

|2)(zl| d°z

J‘ 0P(z, 1)

= 717 f Pz, DH (), |2zl d2

- ,i, f P(z, )(0a"™ + 0*a?), |z2)zl] d*2, ()

and making use of the differential-operator repre-
sentation of the creation and annihilation operators®
and two partial integrations to rewrite Eq. (5) in the
form

L [FED o
- 717 f {(ag—z _ 202 a%) - c.c.}P(z, ) 2)(z] dPz.
(6)

In terms of the real variables x, y and with the choice
o = 1/2i, the resulting equation for P(z, t) is

0P(x, y, 1)
ot
o 10 9 120
= P - ——|P s Y t ] 7
(xax 2o Yoy 23y ) ey, 0 ()
which has the formal solution
P(x, y, 1)

2 1 o2 L&
=PI X T — 4 s ’ ’0
e"p[‘(xax 2o Yoy T2y )] P(x. 7, 0).
®

If we assume that the mode is initially in a chaotic
state, then®

P(x Y, )_

— Ez.il’_z} )

1 exp {
2N) 2(N)
where () is the average number of quanta at ¢ = 0.

With this choice for P(x, y,0) the solution can be
written in the form

P(x, y, 1) =f(x’ Dg(y, 1),

20 See, for example, p. 127 of the book by Klauder and Sudarshan
in Ref. 8.
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where
_ _ 1) exp {=xT2N)}
s =om[i(x =) |
(10a)
_ _y 2 1 8\Texp {—)YXN)}
8(y, 1) = exp [t( yay+2ay=)] P
(10b)

To solve these equations, we note that the expo-
nential in Eq. (10a) is of the form e4*Z where

0 t 0°
A=tx— =—-— 11
x ox’ 2 0x*? (1)
Since the commutator product [4, B] = AB — B4
is proportional to B,
2
[4,B] = + —‘2—2 * = —2tB, 12)
X
the Zassenhaus formula® reduces to
21 1
B = et sn = —1 (3
2t
Hence,
0
f(x,t) = exp {tx ——}
ox
& 92 —_?
X oxp {(1 ) 8 }exp{ 2} 1
4 oxt [2{N)]

The right-hand side of Eq. (14) may be evaluated by
first utilizing the identity
21 2 2
exp ‘(1 —€ )_a_} exp {—x*/2(N)}
4l panp
et 2
— exp {(1 e 0 }exp{ x*2(Ny}
2w pant

and the Taylor-shift formula to rewrite Eq. (14) in the
form

f(x,t) = exp {tx 5%}

(15)

)]

5 [exp ([2<N> " (Jf—

(16)
[2(N) + (1 = 9P
By applying the Taylor multiplication formula??
o (e )y = pxe), (D
X

31 W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).
22 The function (x) in Eq. (17) represents an arbitrary function
of x.
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we obtain the solution

1
o) = SUNY + 1e 2t — 11

[(N) + De™ — 1]
The right-hand side of Eq. (10b) may be evaluatedina
similar fashion with the result

1

X exp{ } (18)

808 = e [2N) + et — 1]t
—»* 19
e T
Therefore,
P(x, y, 1)

1
T {IQUN) + D — 1[UN) + Der* — 1]}

—x? —y?

+ .

[N) + D™ —~ 1] [2N) + 1)e™ — 1]}

(20)

We note the following important points about the
solution for P(x, y, t) given by Eq. (20):

X exp{

(1) Since the density operator p;(¢) must satisfy the
constraint

Tr pylt) = = f Pz, tyd% = 1, Q1)
m
this solution is only valid for times # such that
(2(N) + De™ > 1 (22)

or0 < r < In (2N + 1)} = 7 because, for times ¢ > 7,
f(x, t) diverges as x becomes infinite.

(2) The solution for ¢ < 7 can also be obtained!-?
by solving the equation of motion for the Fourier
transform of P(z,t), the normally ordered character-
istic function Xy(y, t), defined by'":2

Xy(y, ) = Tr per'Pe=lalt) (23)

and then taking the inverse transform. Since the
Heisenberg equations of motion for a(t), a'(¢) are
linear, the right-hand side of Eq. (23) may be easily
evaluated with the result

Xn(u, 0,1
= exp [~ Hu[(N) + De — 1]
+ QN + De¥ ~ 11}], ¥ = (u + i)/
(24)

23 R. J. Glauber, Physics of Quantum Electronics (McGraw-Hill
Book Co., Inc., 1966), p. 788.
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In contrast to Eq. (20), this solution for Xy(u, v,?)
is valid for all times. Indeed it is easily shown that
Xy(u,v,t) is a continuous function with the expo-
nential bound

| Xy(u, v, t)| < exp [$(? + %))

Thus, for ¢ > 7, the solution for Xy(u, v, t) is

(25)

Xy(u,v,t) = exp {+ 12l — 2N) + e ¥]

— 1 [2(N) + Det™ — 1]},  (26)

which does not have a Fourier transform in the
classical sense because of the exponentially increasing
functional form of u.

(3) The time interval during which the solution for
P(z,t) exists as a classical function depends strongly
on the initial data, i.e., we have seen that with the
choice

P(x,y,0) = {exp [— (x* + yD)/2(N)I}/2(N)

a classical solution exists for the finite time interval 7.
If, on the other hand, P(x,y,0) = wd(x)d(y),
corresponding to the mode initially in the vacuum
state, a classical solution does not exist for any
nonzero time interval, while if P(x, y,0) decreases
faster than the exponential of any negative-definite
quadratic form in x as x — o, a classical solution
exists for all time.! In this regard, it is important to
note that not all rapidly decreasing functions are
admissible as valid initial data for P(z, t) or Xy(y, t).
For example, the function exp (—|y[|*) is not an
admissible normally-ordered characteristic function
since it characterizes a state for which (a'a) = 0, and
this state, the vacuum, is uniquely specified by
Xy(y,t) = 1.2 (This restriction on the class of
admissible characteristic functions is well known in the
context of classical probability theory. See, for
example, Ref. 25.)

(4) The technique used to solve Eq. (10) may also
be used to obtain an estimate of the time interval
during which a classical solution exists even in the
case of more general FPL equations for P(z, t),

0P, 1) = L(z —a—)P(z )]
ot "0z T

when it is impossible to obtain an explicit solution
because of the form of the differential operator
L(z, 8[9z) and/or the initial data P(z,0). That is,

@7

31 wish to thank B. Mollow for a discussion concerning this
question.

2 B. Lukacs, Characteristic Functions (Charles Griffin, London,
(1960), p. 59.
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since the formal solution of Eq. (27) has the infinite-
series representation

P(z,t) = exp tL(z, ai) P(z,0)

Z,
It mf, O
. (z,—— P(z,0), (28)
on! 0z

an estimate of the “classical time interval’” = can be
obtained from the convergence of the infinite series if
it is possible to estimate the effect of the nth-order
differential operator L™(z, 9/0z) on the analytic
initial data P(z, 0).

We next consider the solution of Eq. (7) in the time
interval ¢ > 7. This solution follows immediately
from the form of Eq. (26) for Xy(u, v, t) and the fact
that the Fourier transform of e*/%s, ¢ > 0, is the
analytic functional corresponding to the function
i(2a)}e*" and the contour (—ico, +ic0) in the
complex s plane.?® Hence, the solution of Eq. (7) for
t > 7 with initial data given by Eq. (8) is the analytic
functional of two complex variables s,, 55, corre-
sponding to the function

P(sl > s2 s t)
= i{[l — (N) + De [N + De* — 1]}

exp si 4 Sa }
[1L— QN+ De™]  [(AN) + De* — 1]
(29)
and the hypersurface I" defined by

Sp:(—ioo, +iw), Sy:(— o0, + 00). (30)

It is easy to verify that this representation leads to
the same normalily ordered moments as are obtained,
for example, by differentiating Xy(u, v,t). For ex-
ample, the mean number of quanta (a'(t)a(?)) for
times ¢ > T is given by

@ ay =L f f P(s,, 5o, y(s1, 52) dsy dsy,  (31)
r

where the test function u(s,, s,) is obtained via the
prescription
51> x| s @Y p(si, )~ i, ).
In this case,
P(x,y) = (zldlalz) = 32 +%); (32)
hence,
Y(s1, 82) = (—3% + s3)- (33)

26 I. M. Gel'fand and G. E. Shilov, Generalized Functions
(Academic Press Inc., New York, 1965), Vol. I, p. 188.

MARVIN M. MILLER

Substituting (33) and (29) into (31), we obtain

(@ ()a(t)) = (N)cosh 2t + sinh?z.  (34)

Thus, if it is possible to obtain an analytic functional
representation for the diagonal weight, it can be used
to obtain expectation values of interest in a straight-
forward manner. However, aside from the type of
FPL equation considered in this section, i.e., those
with linear drift and constant diffusion coefficients,
it is presently not known how to obtain explicit
solutions in this form. To overcome this difficulty, an
alternate procedure for evaluating expectation values
has been advocated by Klauder.?” This method, which
obviates the necessity of working with generalized
functions inherent in the direct approach, is based on
the observation that the derivative of a generalized
function is usually defined by its reciprocal derivative
action on an appropriate test function space. There-
fore, to find the mean value of an operator O(a, a', f)
at time ¢, we may either follow the time evolution of
the density operator via the equation of motion for
P(z,t), Eq. (27), or follow the time evolution of the
function O(z, t) = (z| O |z) via the equation

00(z, 1)

°
=L:r ’_0 s t)s
at (Z az) )

(3%5)
where L' is the Hermitian adjoint of L. That is,
©O(a, d', 1)) = 71—7 f Pz, 1)(z] 0(a', a, 0) |2) d*z
- J ¢LP(z, 0)0(z, 0) d*z
- f P(z, 0)e™ 0(z, 0) d*2

= f P(z,0)0(z, 1) d*z. (36)

Although conceptually it may be more satisfying
to calculate P(z, ) and then use it to compute the
mean value of any operator (Schrodinger picture), the
alternate technique of following the time evolution of
a particular mean value (Heisenberg picture) via an
equation of the form of Eq. (35) has the virtue of
avoiding the generalized function P(z,t) in favor of
the well-behaved classical function O(z,t). Applica-
tions of this technique are currently under investi-
gation.

27 J. R. Klauder (private communication, October, 1968).
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. GENERALIZATIONS OF THE DIAGONAL
COHERENT-STATE REPRESENTATION

Recently several authors®#2 have considered
generalizations of the diagonal coherent-state repre-
sentation to include dynamical effects of the atomic
system coupled to the electromagnetic field in simple
models of a unimodal laser. In previous work,
Fokker-Planck equations describing the statistical
state of the field alone were derived by adiabatically
eliminating the atomic variables from the stochasti-
cally equivalent Langevin equations.® Both Haken?
and Lax* derive a stochastic differential equation,
i.e., one containing derivatives higher than the second
order, for a generalized weight function including
atomic variables and also obtain the Fokker-Planck
approximation to the exact equation. Their weight
function is defined as the Fourier transform of a
characteristic function which is an atoms-field
generalization of the normally ordered characteristic
function defined by Eq. (23). For example, for a two-
level laser described by the five variables: a, a' (field),
M, M' (atomic polarization), and [N, — N,] (popu-
lation inversion), it is natural to define the generalized
diagonal weight function P as the Fourier transform
of the characteristic function®

F('}’, la (P, t)
= Tr {p(t)ei/l‘Mei(p[Nz—NlleilMTeiyaTeiy'a}. (37)

If we let
A = eL).*Meiqz[Nz—Nl]ei).MT’

(38)
(39)

8 H. Haken, H. Risken, and W. Weidlich, Z. Physik 206, 355
(1967).

2® M. Lax and H. Yuen, Phys. Rev. 172, 363 (1968).

30 See, for example, M. Lax, Phys. Rev. 145, 110 (1966).

31 The “stochastic equivalence” between the Langevin equations
and the Fokker-Planck equation is discussed, for example, by R. L.
Stratonovitch, Topics in the Theory of Random Noise (Gordon and
Breach, Science Publishers, New York, 1963), Vol. I, p. 102. Straton-
ovitch’s proof that it is always possible to go from the Fokker—
Planck equation to a set of equivalent Langevin equations is based on
the fact that the diffusion matrix of a true Fokker-Planck equation
is positive definite. Hence, the equivalence is open to question in the
case of the FPL equations we have been discussing. In this regard,
it is interesting to note that Gordon adiabatically eliminates atomic
variables directly from his basic FPL equation [see Ref. 3, Eq.
(3.19)] in contrast to the usual procedure.

P B 2 IR
— al iyta __ 2 ilyal+y%a)
B = &1%ei7 % = ol1l/2,ilra v'a)
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it follows from the inequality

ITr (pAB)2 < Tt p(474) Tr p(B'B)  (40)

and the fact that the operator B is traceable (since it is
defined in the finite-dimensional Hilbert space of the
atomic system) that the characteristic function exists.
Because of the g-number nature of the atomic com-
munators,?® we have been unable to establish a bound
on Fin terms of the atomic variables analogous to the
exponential bound and therefore cannot characterize
precisely the function space to which F belongs.
However, in general, it is clear that the inverse of F,
the diagonal weight P, is a generalized function in a
subspace of Z'.

In contrast to the above procedure, Gordon’s
generalization® of the diagonal coherent-state repre-
sentation is a direct extension of the definition Eq. (1)
that makes explicit use of the differential operator
representation of the atomic variables. Using the
laser model of Lax,* he obtains a FPL equation for
his diagonal weight. In addition to the mathematical
difficulty due to non-positive-definite diffusion matrix,
some of the drift coefficients are quadratic, and some
of the diffusion coefficients are linear in the atom-
field variables. For these reasons, no explicit solutions
have been obtained and the adjoint approach (see
Sec. II) seems to be the only method presently
available for distilling information from this equation.
In this regard, it is important to note that this method
does not lead to an increase in the order of the differ-
ential operator, i.e., L in Eq. (35) is of the same order
as L, whereas exact equations for such well-behaved
distribution functions as the generalized Wigner
density? are of infinite order and can only be handled
in a truncated diffusion approximation.
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The coupled set of first-order nonlinear differential equations describing a generalized form of Vol-

terra’s problem of two conflicting populations

X = Co + Clx + Czy + Caxy + C'4.x2 + Csy’,
¥ =Ao+ Aix + Ay + Asxy + A + Asy?

are solved by an approximate method which gives y(r) for the particular case in which the variables x and
y vary periodically, the coefficients C; and A4; are real, and the peak-to-peak amplitude of x is small
compared with the mean value of x. The peak-to-peak amplitude of y, however, is not necessarily small
compared with the mean value of y. When these conditions are satisfied, the functional form of y(r) is
approximated by Jacobian elliptic functions. The solutions obtained in this analysis are relevant to
special cases of the classical problem of predator and prey, and also to certain low-frequency oscillations
in partially ionized plasmas that arise from periodic solutions to the neutral and charged-particle con-

tinuity equations.

INTRODUCTION

This paper will be devoted to the following coupled
set of first-order nonlinear differential equations:

(1)
@

which are a generalized form of Volterra’s problem of
two conflicting populations.~® A less general form of
these equations was originally analyzed by Lotka in an
attempt to formulate a mathematical theory of the
behavior of two conflicting species in a state of
nature'-2 and of certain oscillatory chemical reactions.®
This work was later refined by Volterra,** whose work
is summarized by Davis.®

Most of the literature on this problem is concerned
with determining the conditions under which the
population of one or both species will remain bounded,
or under which periodic fluctuations of the populations
will occur.®® Little emphasis has been placed on
determining the peak-to-peak amplitude, period, and
waveform of the solutions to Egs. (1) and (2) because

x=Cy+ Cix + Cyy + Caxy + Cyx? + Cy)?,
y=Ag+ Aix + Ay + Agxy + AxE + Ag)3,

1 A. J. Lotka, Proc. Natl. Acad. Sci., US 6, 410 (1920), pp.
410-415

? A. J. Lotka, Elements of Physical Biology (Williams and Wilkins
Co., Baltimore, Md., 1925), Chap. 6.

3 A. J. Lotka, J. Am. Chem. Soc. 42, 1595 (1920).

4 V. Volterra, Lecons sur la theorie mathematique de la lutte pour
la vie (Gauthier-Villars et Cie., Paris, 1931).

5 V. Volterra, J. Conseil Perm. Intern. Exploration Mer 3, 1 (1928).

$ H. T. Davis, Introduction to Nonlinear Differential and Integral
Equations (Dover Publications, Inc., New York, 1962), Chap. 6.

7 M. Frommer, Math. Ann. 109, 395 (1934).

& R. D. Pittle and Thomas J. Higgins, J. Franklin Inst. 282, 291
(1966).

® R. D. Pittle, “A Detailed Study of the Nonlinear Systems
Characterized by Volterra’s Differential Equations of Growth,”
MS thesis, Dept. of Electrical Eng., University of Wisconsin, 1965.

of the difficulty of the exact nonlinear problem.
Analytical solutions have been obtained for the
linearized case in which the peak-to-peak amplitude
of both x and y are small by comparison with their
mean values.®® The waveforms are sinusoidal in this
case. In the present analysis, analytical solutions to
Eqgs. (1) and (2) were obtained under the assumption
that the fluctuations of only one of the two variables
are small by comparison with its mean value.
Equations (1) and (2) can be derived in a plasma
physics context by writing the continuity equations
for each of the three components (ions, electrons, and
neutrals) of a partially ionized gas and assuming that
spatial variations are small over the region of interest.
One of the three equations may be eliminated by
assuming that the Debye distance is small compared
with the apparatus dimensions, so that the ion and
electron densities are approximately equal at each
point. There will remain (in the absence of three-
body processes) two equations similar in form to Eqs.
(1) and (2).2>-* The variable x might represent the
number density of neutral particles and y the number
density of electrons, or vice versa. It has been demon-
strated experimentally!!-!2 that the periodic solutions
to Egs. (1) and (2) can be identified with a previously
unrecognized mode of plasma oscillation.

ANALYSIS

It is an easy matter to put Eqs. (1) and (2) on a
computer and obtain humerical solutions for a

10 J. R. Roth, Phys. Fluids 10, 2712 (1967).

11 J. R. Roth, Phys. Fluids 12, 260 (1969).

12 J. R. Roth, “Experimental Observation of Oscillations Described
by The Continuity Equations of Slightly Ionized Deuterium, Neon,
and Helium Gas,” NASA Technical Note TND-4950, 1968.
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particular set of C; and 4,. However, it is desirable
to have a closed-form solution for x(t) and y(¢) in
terms of the coefficients C; and 4, of the differential
equations, in order to compare experiment with the
predictions of the mathematical model. The most
obvious approach to obtaining a closed-form solution
is to linearize these equations through a “double-
perturbation” analysis, in which both x and y are
assumed to have constant mean values x; and yy,. The
time-varying portions of x and y [x,(t) and y,(¢)] are
assumed to be much smaller than their respective mean
values, so that x; 3> x,(¢)and y,¢ 3 y; (). This method
was used by Lotka® and by Volterra 5 in their analyses
of a less general form of Eqgs. (1) and (2), and yields
exponential and sinusoidal solutions.

The small-amplitude approach used in this analysis
starts with the assumption that the peak-to-peak
amplitude of only one of the two variables is small by
comparison with its mean value. Removal of this
constraint from the second variable is a desirable
generalization: It permits the amplitude of the second
variable to be calculated as a function of the coeffi-
cients C; and 4,. The amplitude and waveform of the
first variable (whose peak-to-peak amplitude is
assumed small) cannot, in general, be obtained in
closed form. The period of both variables is, of
course, the same.

The approximate closed-form solution of this paper
is obtained by assuming that the peak-to-peak ampli-
tude of the fluctuations in x is small compared with
the mean value of x:

Ax[x; L 1. 3)

In a plasma physics context, this is equivalent to
assuming that the gas is lightly ionized and the neutral
gas density only slightly perturbed. In the following
analysis, it is assumed in all cases that the function y
is periodic in time and that the boundary conditions
at time ¢ = 0 are given by Eq. (4):

@

It is further assumed that y, is positive-definite and
may be either the maximum value or minimum value
of y(t). No assumption was made about the relative
magnitude of Ay and y, so that the assumption
Axfx, « 1 could also cover the case in which the
relative amplitude Ay is either comparable to or small
in comparison with the maximum value of y. In
addition, the mathematical development is sufficiently
general so that x; may be either larger or smaller than
the mean value of y.

Immediate introduction of the small-amplitude

yt=0 =y, y(t=0)=0.
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approximation into Eqs. (1) and (2), setting x(¢) =
x; + Ax(f),and then obtaining a solution for y(t) by
ignoring terms containing Ax(t) would be premature
since it would merely decouple Eq. (2) from the
variation of x(¢) and lead to a family of trivial solu-
tions for y(z). If Eq. (2) is differentiated with respect to
time, one obtains

V= A + Ay) + Agxy + Agxy
+ 2455 4 24599, (5)

The first-order time derivatives in Eq. (5) may be
replaced by substituting Eqs. (1) and (2) for them to
obtain an equation of the form

V=1h+hy+hy* + Ly?, (6)
where the coefficients /; are polynomials in x, algebraic
in the starting coefficients C; and X;. If it is assumed
that the peak-to-peak variation of x(t) is sufficiently

small that x(#) in the coefficients /; may be approxi-
mated by its mean value x,,

x(1) = xy + Ax(t) ~ x4, M

the coefficients /; in Eq. (6) become constants.
Equation (6) with these coefficients may then be
considered an approximation to y(f), a necessary
condition for the validity of which is that the small-
amplitude approximation of Eq. (3) be satisfied.

Equation (6) is recognizible as a differential equa-
tion whose periodic solutions are given in terms of
Jacobian elliptic functions.®® The integral tables of
Byrd and Friedman' are extremely helpful in partic-
ular cases. The solutions to Eq. (6) for which I, =
and the other /; are constant have been worked out
and are available elsewhere.!®

DISCUSSION

The utility of the above approximation may be
assessed by considering a particular case given by the
pair of equations

X = —649.5 + 6.02x + 145y — 0.95xy

— 0.00025x2, (8)
y =105 + 0.15x — 100y + 0.95xy — 0.0115x%, (9)
with the initial conditions x(0) = 100.494 and y(0) =
0.881. Note that Cy = A; = 0. In Fig. 1 is shown the
x-y phase trajectory of the exact solutions to Egs. (8)

and (9), and the exact solution for y(z) is shown in
Fig. 2(a).

3G, M. Murphy, Ordinary Differential Equations and Their
Solutions (D. Van Nostrand Co., Inc., New York, 1960), p. 160.

14 P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals
for Engineers and Physicists (Springer-Verlag, Berlin, 1954).

15 J. R. Roth, “Periodic, Small-Amplitude Solutions to the
Spatially Uniform Plasma Continuity Equations,” NASA Technical
Note TND-4472, 1968.
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If a mean value x, = 100 is adopted, Eq. (6)

becomes
¥ = 83.8653 — 131.2249y + 47.0542y2.  (10)

A solution to this equation may be obtained by using
expression 233:00 of Ref. 14, to obtain

y(1) = 0.881 + 0.2329sn% (3.2017r),  (11)
for which the elliptic modulus is
k? = 0.1782 (12)

and sn is the Jacobian elliptic sine. Equation (11) is
plotted in Fig. 2(b). A comparison of Figs. 2(a) and
2(b) shows that y(¢) as given by Eq. (11) differs from
the exact solution only by a few percent in peak-to-
peak amplitude and period.

Equation (6) will not provide a satisfactory approxi-
mation to y(¢) when the time-dependent terms in the

L3—
L2[~
L1~
y LO—
9

8

a1 1 1 1 |
97 98 99 100 101 102 103
X

FIG. 1. Plot of the trajectory of the solutions to Egs. (8) and (9) on
the x-y phase plane.

J. REECE ROTH

.8 1|
0 .5 10 15 20 25 3.0 35 40 45 50

(b}

FiG. 2. (a) Plot of the exact solution of Eqgs. (8) and (9) for y(f) as
a function of . (b) Plot of the approximation to y(¢), given by Eq.
(11), as a function of z. Note the very good agreement in amplitude
and period between the exact solution and the present approxima-
tion.

coefficients /;, containing x(t) are nonnegligible. An
example of the failure of Eq. (6) to provide a satis-
factory small-amplitude approximation is provided by
Eq. (13) of Ref. 10, which was found experimentally
to hold over only a portion of the range of interest.!!-12

CONCLUSIONS

The analysis presented herein extends the approxi-
mate solutions available in the literature (Refs. 3 and
5) to the case in which the peak-to-peak amplitude of
y(t) may be comparable to its mean value. It can be
shown that the results obtained in this analysis reduce
to those given in Refs. 3 and 5, in the limit of small
peak-to-peak fluctuations in y(¢). The present analysis,
therefore, contains the previously obtained closed-
form solution to Eqgs. (1) and (2) as a special case.
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We study the asymptotic behavior of the ground-state binding energy G(4) of —A + 1V as 4 — oo,
Unlike the number of bound states, G(1) does not have a universal power growth as 4 — co. It is shown,

however, that as 4 — o for Kato potentials

AL < G(}) < Bt

Examples are presented for which G ~ 48 forany 1 < # < 4. Other examples are presented which obey no
power growth. We also prove theorems which reflect the close connection between the large A behavior of
G and the smalil r behavior of ¥ for potentials with a single attractive singularity at r = 0. These can be
roughly phrased as follows: If ¥ ~ —r—* for r — 0, then G(4) ~ AB with 8 = 2/(2 — @) as 4 — o,

1. INTRODUCTION

For large classes of potentials it has been shown
that the total number of bound states [N(AV)], the
number of states in any / channel [n,(AV)], and the
largest /-channel with bound states [/,,,,(AV)], for
the Hamiltonian —A + AV, all have power growth
in A as A — oo. Specifically,

AM < N(AV) < BA}  (see Ref. 1),
alt <1, (V) < bAt  (see Ref. 1),
CA < n(AV) < DAt (see Ref. 2),

where each formula holds for 4 sufficiently large, and
the constants are V-dependent. However, the powers
% or § are not V-dependent.

In this paper, we examine the analogous question
for G(AV), the binding energy of the ground state of
—A + AV. We define G so it is positive, i.e., G is the
negative of the energy of the bound state. We only
deal with potentials which are “negative somewhere”
(see Ref. 1, Corollary 1). In this case if 1, =
inf {4 > 0 | N(AV) > 0}, G(AV) only makes sense if
A > 49, and so we henceforth suppose 4 > 4,.

We see that, unlike N, n;, and /.., G does not
necessarily have power growth and, when it does, the
power can vary between 1 and 4; i.e., there is not a
universal power growth. We also show that, when V'is
a (not necessarily central) potential with a single
attractive singularity r = 0, that power growth of
V at r = 0 leads to power growth of G as 1 — co.
Thus, the large coupling-constant behavior of G

* This research partially sponsored under Air Force Office of
Scientific Research under Contract AF49(638)-1545.

+ N.S.F. pre-doctoral fellow.

1 B. Simon, J. Math. Phys. 10, 1123 (1969); F. Calogero and G.
Cosenza, Nuovo Cimento 45A, 867 (1966).

2 F. Calogero, Commun. Math. Phys. 1, 80 (1965); Variable Phase
Approach to Potential Scattering (Academic Press Inc., New York,

1967), Chap. 23; J. H. E. Cohn, J. London Math. Soc. 40, 523
(1965); 41, 469 (1966); W. Frank, J. Math. Phys. 8, 466 (1967).

“mirrors” the small r behavior of V, which is an
intuitively expected result.

For convenience, we restrict ourselves to potentials
V which are the sum of an L? and an L™ function.
This class was first considered by Kato,® who showed
that —A 4 V is self-adjoint on D(A), the domain of
A. We call such potentials Kato potentials.

Let us summarize the remainder of the paper. In
Sec. 2, we discuss various types of power growth.
In Sec. 3, we present a class of Kato potentials for
which G(A) ~ 2 for any 1 < 8 < 4. In Sec. 4, we de-
rive several general properties of G, including the fact?
that any power growth must have 1 < <4, In
Sec. 5, we show that,if ¥ has power growth V' ~ —r®
for r small (0 < « < §), then G~ 1* with § =
2/(2 — o). Finally, in Sec. 6, we present a ¥ with
G(4) not possessing power growth as 4 — .

2. TYPES OF POWER GROWTH

For a function F(2), there are at least five natural
interpretations for the expression F() ~ A*:

(a) There is a C such that, for any e, there is an 2,
with
(C — O <F(A) <(C+ X, for 2> Q,.
(b) There exist C, C’, and €, such that
Cr < FA) <, for 1> Q,.
(c) For every e, there is an £ such that

A< F(A) < A, for 4> Q.
(A OF
d) 1 — ] =
@ Ail?o(F(z) az) *
F'(4)

la—-—l

(e) lim exists.
A
3 T. Kato, Trans. Am. Math. Soc, 70, 195 (1951).
4 B < 4 depends essentially on the fact that ¥ is Kato. If we are

less restrictive and allow ¥ ~ % with 2 > o > §, we get G ~ A
with § > 4.

1415
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(a), (b), and (c) can be rewritten in terms of limits: 3. A CLASS OF EXAMPLES WITH DIFFERENT
A)/2%] exists and is finite and nonzero. POWER GROWTH
@) hm (F) Consider the class of potentials, V,(r) = —r~= For
(®") T_ [F(#)/A*] and lim [F(4)/A*] are finite and ¥ to be Kato, we must® have 0 < a < $. We first
nonzero. remark that —A + AV, always has bound states; in
(¢") lim log F(A)/logd = a. fact, because V falls at oo more slowly than r2,
PR —A + AV always has infinitely many bound states;

We also remark that (c) is equivalent to a form with ~ we do, in fact, prove this below.
C, C’ asin (b). The five types of growth are related by:
Theorem 3.1: There is a unitary transformation

Theorem 2.1: U(4, o) so that
@=>0 U, a)(—=A + VYU, o) = M(=A + V),
)~ (@) — (o) where § = 2/(2 — «).
and (d) + (a) — (¢). Moreover, no additional im- Proof: The formal scaling r — A#/%r takes —A + AV,
plications (single or multiple) hold. to ##(—A + V,). Thus we let
Proof: 1 (a) — (b) — (c) is immediate, as is (d) + (U4, a)pl(r) = A3¥/4yp(282r),
@)~ (@) Then U is unitary and UY(A)U = M¥A, U WU =

To see that (d) — (c), suppose (d) holds and ¢ is

B2
given. Then find €, so that 4 > Q, implies A*P2Y. But

faf+1=1+[«/2—a)]=2/2—0o)=4,

so the theorem is proven.

o — € 1 0F _a+e
A < F(%) 04 < A
which, integrated from , to 2 and then exponentiated,
says

1

Corollary 3.2: For any A, —A + 1,V has infinitely
many bound states.

) F(3) a+e
(ﬁ;) < TQO) (50) ’ Proof: A simple variational-principle argument as
in Simon,! Corollary 5, shows that —A 4 AV, has
which is (c) (in the C, C’ form). arbitrarily many bound states for 1 sufficiently large
(¢) — (a) requires the integration of an inequality [ie., N(AV) —> ). But by Theorem 3.1, —=A + AV,
as in (d) — (c). This integration also shows that when ,pq _A 4+ ).V, are unitarily equivalent up to a factor

(e) holds, and so have the same number of bound states.
lim F@) = o lim FQ)
Je-1 e’ Corollary 3.3: G(AV,) = A#G(V,), and thus
which is L’Hopital’s rule. This means that (e) — (d). G(AV,) ~ A8(e).

To see that no other implications hold, we remark
that F(2) = A(2 + sin A™%) obeys (b) and (d) but not Thus,in particular, any power growth 1 < 8 < 4
(a) or (e); F(4) = Alog A obeys (c) but not (a), (b), or is possible for Kato potentials. We can see that
(e); and F(A) = [1 + (1 + A)*sin A4] obeys (a), (b), f =1 and f =4 are also possible. [For § =1, see
() but not (d) or (€). Q.E.D. Theorem 5.1; for f = 4, we remark that Theorem
5.3(iii) 1mphes that ¥(r) = r-3(1 + |log r|)~, which is
We write F(1) ~ A*(—), to indicate growth of type Kato, has G(AV) ~ 2*(c).]
(—). We remark that similar power growth for V(r)
at r — 0 is also meaningful. Inpthis nogtation, we have 4. GENERAL PROPERTIES OF G(V)
the following: Let us write G(1) for G(AV) when V is held fixed.

Theorem 2.2: For a large class of potentials, Theorem 4.1: There is an Q and a B > 0 such that
NGVY~ 7t (b); m(AV)~ A (b); Ipex(AV) ~ A¥(b). G(A) > BAif 1> Q.
(See Ref. 5.) For proof, see Refs. 1 and 2.

8 Physically we expect no trouble if & < 2, but the mathematics is
i more complicated for o« > §, so we restrict ourselves.

* K. Chadan [Nuovo Cimento 58A, 191 (1968)] has shown that ? R. Cogrant and D. Hil%bert, Methods of Mathematical Physics
n(AV) ~ At (a) for a restricted set of V. (Interscience Publishers, Inc., New York, 1953), Vol. I, p. 447.
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Proof: Let A, be as in Sec. 1 and let y be the ground
state of —A + (4, + 1)V. Then b = (y, Vy) <0, so
that (y, (—A + AV)y) = a + Ab with b < 0. By the
variational principle, G(A) > —a — Ab. Let Q =
—2afb, B = —bf2, and the theorem follows.

Theorem 4.2: There is a ¢ > 0 such that G(4) <
CA* for 4 sufficiently large.*

Proof®: First suppose V € L% Let v, represent the
ground state, and write k? = G(4), with & > 0. By
Kato’s theorem, ; € D(A) so that (—A + AV)y, =
—k?*y, implies v, = (A — k3 1(AV)p,. Thus 9,
obeys the integral equation

pix) = — A f exp (—k|x — ) V(»)pa(y) d°y.
4m Ix = yl
Thus
d’x WA(X)F
A2 3 3 3., ’
<(4ﬂ)2fd xfd yfdy ) )
o YO IVG)Iexp [—k(lx — yl + Ix = y'D]
Ix — yl1x — y/|
—_— 2'2 3 3.7 ’ ’
= Jd yfd Y VO VO 190 19207

xfd‘"‘x exp [—k(x — yl + [x — J"l_)].

[ — yl[x" — yl
The x integral is 2n/k) exp (—kl|y — y') < 2n/k.®
Thus,

2 2
Il < gfr—k[ f &Py V) I%(y)l]

B o
—_— @3y V()%
<ol f Y IV

where this last inequality follows from the Cauchy-
Schwartz theorem. Therefore, k < C¥A2 or G(A) =

k? < Cas
Now suppose that V' = ¥V, + V, with V; € L? and
Vo€ L” and let |[V;]lo = D. Then ¥V > W, where
W=V,— D,soGAV)< GAW) = G@AV) + D <L
AC + AD, and so the theorem holds true in this case.
Q.E.D.

Let us henceforth restrict ourselves to ¥’s which
lead to nondegenerate ground states for —A + AV;
in particular, ¥ can be any central potential and any
but the most pathological noncentral potential.

8 This is a modification of an argument, due to G. Tiktopoulos,
private communication.

® This can be done most easily in prolate spheroidal coordinates
Ior by Iusing the Green’s-function equation for exp (—k |x — y|)/
x — y|.
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Theorem 4.3: G(4) is a real analytic function for
A>3, and G'(A) = —(y,, Vy,), where p, is the
ground state.

Proof: V is a small perturbation of —A + AV in the
technical sense.!® Since the ground state is nonde-
generate, Rayleigh-Schrodinger perturbation theory
for G(A + A,) (expanded in 2) converges,!! and so G
is real analytic. Moreover, G'(4) is given by the
perturbation theoretic result as —(y;, Vy,). Q.E.D.

The condition —G’' (1) = {y;, Vy,) is the famous
Feynman-Hellman theorem,'* whose proof is seen to
be completely rigorous for Kato potentials.

Theorem 4.4:

(i) G() > 0;

(i) G'(A) > 17'G(D);
(iii) G"(A) > 0.

Proof:
(1) is immediate.
(ii) follows from the fact that —A is positive for

G(A) = (i, Ay — Ay, V) < —AG'(A).

(iti) follows from the fact that the second-order
perturbation term for —G(4) is negative. Alternately,
we can prove that G'(4) is increasing directly, as fol-
lows: Let 4; > 4, and write y; = y, . By the varia-
tional principle,

G(h) = (w1, Ay — Ly, Vi) > (pe, Aypy)
- ll(‘/’z’ V'Pz)a
G(A) = (9a, A'Pz) - 2’2<1P2’ V) > (yy, A¢1)

— Axyr, Vo).
Adding, we see that

(A — )(was Vpo) > (4 — L) {yr, Vo)

or
—G' () > —G' (4. Q.E.D.
(ii) can be used to give an alternate proof of
Theorem 4.1. (iii) tells us that G is convex. We remark
that the reasonable conjecture that a smooth convex

function has power growth is false, as our example in
Sec. 6 shows.

10 T. Kato, Perturbation Theory for Linear Operators (Springer-
Verlag, Berlin, 1966), pp. 375-377.

11 Reference 10, pp. 381-382.

12 R. P. Feynman, Phys. Rev. 56, 340 (1939); H. Hellman, Ein-
fiihrung in die Quantenchemie (Franz Deuticke, Leipzig, 1937), p.
285.
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Theorem 4.5:
(i) G < =1, AV + 4r-2y,).
(ii) If @¥/or exists and the Virial theorem is obeyed,
then
G(A) = —Xy,, $r(@V[r) + Vy,).

Proof:
(i) follows from the simple fact that, for any
y € D(B),

1
—A =
(y, —Ay) > <w, Y/

(see Ref. 13 for a proof when y is C” of compact
support and then use the fact that A is the closure of
its restriction to these functions).

(ii) follows from the Virial theorem

2<wl5 —A’(/);_> = <'P;., r(aV/ar)'PA>°

For a C? central Kato potential, the standard proof
of the Virial theorem* should go through. For the
noncentral case, Weidmann®® has given simple con-
ditions for the Virial theorem to hold as a rigorous
result.

Q.E.D.

Theorem 4.6: If V; and V, are Kato and V,(r) <
Vy(r) for all r, then G(AV,) > G(AV,) (even if the V,
do not go to 0 at r = c0).

Proof: This is an immediate consequence of the
variational principle. We have, in fact, already used
this argument in the proof of Theorem 4.2.

5. POWER GROWTH AT r =0

Let us first eliminate the trivial case of potentials
that are bounded below.

Theorem 5.1: If V(r) > —C for some constant
C > 0, then G(A) ~ A(e).

Proof: [Notice that (b) growth is trivial since we
have Theorem 4.1 and G(4) < AC.] We have G'(4) =
—(w,, Vy;) < C. Thus G’ is bounded above, but G’
is increasing by Theorem 4.4(iii). Thus lim G'(4) exists

I
and is finite, i.e., G(1) ~ A(e). Q.E.D.

We deal in the remainder of this section with the
more interesting case of potentials with attractive
centers. We could deal with the case of finitely many
centers, but we restrict ourselves to the following
class.

18 Reference 7, p. 446.

14 The normal proof really supposes y4 € D[(9%/0r%)r(8/9r)]. For
negative energy eigenfunctions in a C! Kato potential, one should be
able to prove that vy, decreases exponentially from its integral
equaation. For the radial Schrodinger equation, it follows that
is C3.

16 J, Weidmann, Bull. Am. Math. Soc. 73, 452 (1967).
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Definition: We say a potential V is attractive if
(i) im ¥(r) = — 0,

r—0

(ii) for every R > 0, V is bounded in the region
{r|r> R}. (We say that V is “bounded outside
spheres.”)

Definition: We say V has attractive growth «(a)

[or a(b), a(c)] if
(i) V is attractive,

(ii) V' ~ —r—*(a) as r = 0 [or (b) or (c)].

We reserve a(d) and a(e) for a slightly stronger con-
dition.

We are heading towards proving that whenever ¥V
has attractive growth o of some type, G(4) ~ A# with
the same type of growth where 8 = 2/(2 — a): For
growth of type (a), (b), or (c), the crucial element of
the proof is the following:

Lemma 5.2: If V(r) < —Ar~" + B, then G(1) >
ARyP — BA;andif V(r) > —Cr—" — D, then G(1) <
CR, 2’ + DJ, where 6 = 2/(2 — y), and R, = G(V,)
as in Sec. 3.

Proof: This follows immediately from Theorems
3.3 and 4.6.

Theorem 5.3: Let 0 < a < $. Then
(1) If V has attractive growth «(a), then G(4) ~
H(a).
(i) If ¥V has attractive growth a(b), then G(4) ~
24(b).
(iii) If ¥ has attractive growth a(c), then G(4) ~
AB(c).
In each case, § = 2/(2 — a). In case (i),
lim ¢4 = R,lim — @
A~ oo Z.ﬁ r—=+0 r*
Proof: (i) Since V is bounded outside spheres and
V ~ —r~*(a), there is a C = lim —V(r)/r*, so that

p—>0

for every ¢, there is a B with

—(C+egr*—B< V(i) < —(C—er*+ B
Thus Lemma 5.2 implies

(C — ©RA* — BA < G(A) < (C + €)R,A* + BA.
Since § > 1, for every € we have

(€~ 9r, <1im D <Tm OB < (c + 9R..

Since e is arbitrary,

lim&j')=RC.

a
A~
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(ii) Since ¥V is bounded outside spheres and
V ~ —r~*(b), there is a B, C, C’ so that —Cr—* —
B < V(r) < —C'r* + B. Thus Lemma 5.2 implies

R,C'A* — BA < G(A) < R,CA* + BA.
Thus for A sufficiently large,
3R,C'2* < G(A) < 2R,C2.

(iii) Since ¥ is bounded outside spheres and
V ~ —r~*(c), for every ¢, there is a B so that

—r* — B <L V()< —r**+ B.
Thus Lemma 5.2 implies
—Bi+ R, < G(A) < Ryy A + B2,

so that

— log G(2) <

< lim + €.
log 2 fe

b <1im 8 CD
— lo

Since € is arbitrary and €', € — 0 as ¢ — 0, we have

lim 1089 _ 8.

.E.D.
log A Q

A=

We finally get to the interesting cases of Type (d)
or (¢) growth. The Virial theorem is crucial and so we
restrict ourselves to the following:

Definition: We say V has attractive growth «(d) or

a(e) if
(i) Vis attractive,

(i) V'~ —r=(d) [or ()],

(iii) V obeys a Virial theorem,

(iv) r(0V/or) is bounded outside spheres.

Condition (iv) is not essential in its strong form.
Using the fact that v, falls off exponentially, we could
probably survive with e~*[r(d¥/dr)] bounded for
some «. However, only the most pathological Vs
fail to obey (iv) and so we do not consider weakening
it in detail.

Lemma 5.4: Let fi(2), g;(A) (i = 1,2) be positive
functions with g, — o0 as 4 — 0. Suppose that

() fim & = ¢ < o,
l-’mgz

@i1) 1fi{(A) — g« < B for some B and all 4.
Then

lim 24 _ i 83 2 AR pr e

T LA T gA) 1) 82(4)
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Proof: We first remark that f, — o0 as 4 — oo by (i)
and (ii). Moreover,

h & =f1g2 —fag - (i — 808 — &:i(fa — g2)

fo g fage gafa
_h—8) slfa—g)
Iz g f
But for 4 sufficiently large, (g,/g:) < 2C, so
L_ & B,L2CB
fo &l fa fa
Thus
lim |2 — 8| o,
A= fz g2

so that the theorem follows.

Theorem 5.5: Let 0 < « < 3. Then:
(i) If V has attractive growth «(d), then G(4) ~
A8(d).
(ii) If V has attractive growth a(e), then G(4) ~
2(e).
In either case, § = 2/(2 — «). In case (ii),
limw = é&lim — -VLT)
Ao lﬂ_l o« r—0 Ta—l
Proof: (i) By the Virial and Feynman-Hellman
theorems,

G() _ (s, Gr(@V/or) + V)yyp
AG'(4) (va Vo)
Let us fix some R and let

b= Priwd.

Then |(y;, Vo) — (w;, Vo, x| and
[z, Gr(@V[or) + Vy,)
— (p,, (%r(aV/ar) + Vworl

are bounded,
l_lr—n—G-(—l)— <1
AG'(A)
[by Theorem 4.4(ii)] and {y,, Vy,) — . Thus, by
Lemma 5.4, the lim and lim of G(1)/AG’(A) are the
same as that of

(¥, (%r(aV/ar) + VMvor

(¥, Vyor

for any fixed R. Since F{(r) - — oo, pick R,, so that
V(r) < —1 for [r] < Ry. Given ¢, choose R so that
R < Ry and

<e for [r|<R.
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Thus
rov
le’ (_— + )W1> ( )('Pza Vyadr
/ r ov ‘
__ v
\ vas V 2V a + '/’/1/ =~ Kvas Vyorl-
Thus
1=%_f¢ (ya, Gr(@V/[or) + VIyi)r
2 2 (¥ Vyur
1245
< 2 + 2
so that
. G(4) — G(4) o €
1—%— Sctim 28 < fim B g %4 E
2 25 e > ""en > T2T
Since ¢ is arbitrary,
AG'(A) 2 B

so (i) is proved.

(ii) By Theorem 2.1, (e) implies (d) and (a) growth.
Thus, by Theorems 5.3(a) and 5.5(a), if V has attractive
growth a(e), then

G(H) ~ 1(d) + (a).
But (d) + (a) — (e) so G(1) ~ A8(e). Moreover,

G _ i 6D G
A lﬁ -t A0 G(l) l—»oo }»B

— R, lim X

roo 1
= r.(1im Z8) (1im T2
PR VO

® r=0 Fr

(by Theorem 5.3)

6. A CLASS OF EXAMPLES WITHOUT POWER
GROWTH

In this final section we construct potentials for
which G(2) does not have power growth. On the basis
of Sec. 5, we should try to construct them from
potentials ¥ which do not have power growth at
r=0. In fact, we use central potentials which
alternately grow as r—*t and r—*. The key to handling
G(4) in this case is the following lemma:

Lemma 6.1: Let V be a central potential which
monotonically decreases as r decreases. There is a
positive constant C, independent of V, so that for any

BARRY SIMON

fixed R and A
C . 1
_(R—2 + W(R)) < 6() < —min L—rz + W(r)]

Proof: The upper bound follows from Theorem
4.5(i). To get the lower bound, pick (independently of
V) some fixed normalized C* function ¢, with sup-
port inside the ball {r | |r] < 1} and let

C = (¢, —Ad) > 0.
R-%$(x/R), so that

f |$a(DI* d'r = 1.
Then, by the variational principle, for any R,

—G(A) < ($g, (—A + AV)¢R).
We have (¢p, —Adr) = C/R:. Moreover,
supp ($g) < {r|Ir| < R} and V is decreasing,
($r> Vér) < V(R).

Thus —G(4) < (C/R») + AV(R), which yields the
lower bound. Q.E.D.

Let ¢p(r) =

since

We could have proven Theorem 5.3 using a
strengthened form of Lemma 6.1.

We construct our examples by using the following
basic fact about potentials which grow as a “variable
power”:

Lemma 6.2: Let y,, be a sequence of numbers with
0<oy <y, <a;<$ Let 4, be a sequence of
numbers with

0<- .<An<An_1<-.-
Let V(r) be given by
V(r)= —-r"+8B,,
if 4,4 < r < A4,, where the B,’s are defined by B, =
0, and by the requirement that ¥ be continuous. Let
0, =2/(2 — y,).

Then there exist constants C, and C, dependent only
on a, and «,, so that
—AB,, + Ci4* < G(A) < —AB,, + CyA%
whenever
30 (A" < A < {8l(Any)* 7 — Bo(A, )1}

Proof: We first show that under the conditions on
A, that AV + 4r—2 takes its minimum value when
r€ (A,1, A,). For suppose that r > 4,,. Then, for
any m,

Ymh > 0d > 3A,) TP > HA,) 2 >

<A1=1<A0=00.
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(we have used the facts, &y < v,, <2 and 4, <1). .

Thus
@ldr)(=Arm & 3% = (Ay,, — =2 > 0,

so that AV 4 4r—2 decreases monotonically in the
region r > A,, and so the minimum is taken for
r<A4,.

On the other hand, the upper bound for A implies
that

—A 1

+ 4B, +
(Api)™ A’

{1 - 42’[(An+1)2_—y" - Bn(An+1)2]} >0,

-1
4(A n+1)2

so that +AV + 2 >0 at r=4,,,. But [r?V]is
monotone decreasing as r -0, so AV + }r—2 > 0 if
r< A,,;. Thus, we have shown that AV 4 4r—2
takes its minimum value in (4,,,, 4,) and hence at
the point

r=R,(A) = (7, H)" ",
At this point

IV(R,) = 1B, — (y Vo
and
R—2 — (,y )2/(2—}'”)25»_

Thus, using Lemma 6.1 with R = R,, we see that

—1B, + C,4* < G(A) < —AiB,, + CyA%,
where
C2 = max {(y)1/(2—y) _ i(y)2/(2—7)},

ay<y<az

Cl = min {(y)ll(2—f) _ C(y)z/(z—y)}. QED

a1 <y<ag

To assure that C, > 0, we restrict ourselves to
oy < min (1, C-1). This restriction is not essential;
if we were to work harder, we could probably remove
it. However, we only want examples of nonpower
growth—we do not wish to examine it in detail—so
we take the lazy way out.

Theorem 6.3: Let «,, o, be two numbers with
0 <oy <ay<min (1, C), and let 8, = 2/(2 — ).
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Then there is a Kato potential V' with

< By lim———= .
logA — A Lim log A 2 b

i 108 GAY)

In particular, G fails to have power growth at co.

Proof: Pick the sequence y, as in Lemma 6.2 by
Vom = %z, Yemi1 = % . We shortly pick the 4,’s and
B,’s recursively. Once we have done this, we define
V as in Lemma 6.2. For all r, ¥ > —r~*. Thus ¥ is
Kato. Let 4; =1 and suppose we have picked
Ay, ++,A,, and thus also By,---, B,. If we had

—iB, + CA% < G(2) < —AB,, + C,A%
for all 2 > (2¢;)714% 7%, then it would follow that
lim ECA) _
im0 loga
so we pick 4, > (2¢;)4%~2, so that

ns

—_— 6"
log (—AB, + C,4 )__én <l’ ati=14,,
log A n
and
—_— 6”
log ( an+Czl)_6n <1, ath= 4,
log A n

(C; > 0 is crucial here). Now pick 4,,,,, so that

{4[(An+1)2_?" - Bn(An+1)2]}_1 > }“n
and

A < A,.
This is always possible since
4[(4, 1) — B,(4,)'1 —>

as A, —> 0. Determine B,,; and proceed to pick
Apyzs . The V so constructed has the property
that log G(4y,)/log A5, — B, and

log G(22n11)/10g A2piq — By .
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Use of polar coordinates is examined in performing summation over all Feynman histories. Several
relationships for the Lagrangian path integral and the Hamiltonian path integral are derived in the
central-force problem. Applications are made for a harmonic oscillator, a charged particle in a uniform
magnetic field, a particle in an inverse-square potential, and a rigid rotator. Transformations from
Cartesian to polar coordinates in path integrals are rather different from those in ordinary calculus and
this complicates evaluation of path integrals in polars. However, it is observed that for systems of central
symmetry use of polars is often advantageous over Cartesians.

I. INTRODUCTION

Of fundamental importance to quantum mechanics
is the Schrodinger equation

_iatQP(r’ t) = H’P(l', t) (1)
containing H, the Hamiltonian of the system, as a

differential operator. This differential equation can be
replaced by an integral equation

W', 7) = f K@, s 7)w(r', 0) dr,

if the initial condition %(xr’, 0) = (x’, 0) is satisfied.
The kernel of Eq. (2) corresponds to the propagator
of the wavefunction u(r, ¢) from the point r' to r” in
time 7.

In Feynman’s Lagrangian formulation,® it is
asserted that the kernel is given by a path integral

K@, r';7) =fexp [iS(’, ¥')1Dr(s).

Here, integrations are over all possible paths, or
histories, starting at r' =r(0) and terminating at
r’ = r(7). The function S(r”, r’) in the integrand is the
classical action

S@", 1) =J:L(i', r) dt, O]

L(&, r) being the Lagrangian of the system in question.

As an alternative approach to quantization, Feyn-
man’s formalism has attracted much attention.?
However, this approach is applicable only to a limited
class of problems.? Certainly any effort to extend it
beyond its present limits would be worthwhile. In
most applications available so far, calculations are
done in Cartesian coordinates. It has been suggested
that the integral over all paths may be performed in
polar coordinates as well.* 1t is the purpose of the

()

3)

1 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

2 S. G. Brush, Rev. Mod. Phys. 33, 79 (1961).

3 See, e.g., R. P. Feynman and A. R. Hibbs, Quantum Mechanics
and Path Integrals (McGraw-Hill Book Co., Inc., New York, 1965).

4 8. F. Edwards and Y. V. Gulyaev, Proc. Roy. Soc. (London)
A279, 229 (1964); S. Ozaki, Lectures at Kyushu University, 1955
(unpublished).

present paper to demonstrate the usefulness of polar
coordinates in evaluating the path integral for specific
particle systems. Indeed, it is observed that most
solvable examples in Cartesians are equally well
treated in polars. Use of polars seems of better
advantage for certain systems of central symmetry,
although the applications considered are all essentially
of the harmonic-oscillator type.

In Sec. II, we derive several general expressions for
the path integral in the central-force problem. The
Hamiltonian path integral equivalent to Feynman’s
Lagrangian path integral is also discussed in polars.
Section I1I is devoted to applications. The propagator
of the harmonic oscillator is the first example, a
limiting case of which includes the free particle. A
slight modification of the procedure of computing the
propagator for the harmonic oscillator in polars leads
to the result of Sondheimer and Wilson for charged
particles in a uniform magnetic field.® The third
example is the rigid rotator, for which the Hamiltonian
path integral is utilized. The final calculation, con-
cerned with a particle in an inverse-square potential,
could hardly be completed in Cartesians but is found
trivial in polars. In an appendix, derivations of the
formulas used in the text are given. Throughout this
paper we employ natural units, ie., i =c¢ =1,

II. THE CENTRAL-FORCE PROBLEM
The Lagrangian Path Integral
It is customary to define the summation over
Feynman histories (3) by®
K", r';7)
N
= lim ANfexp [iES(r,, rj_l):l drydry - dry_y,
N-w =1
()

where r; =r(2), ro=r,ry=r", t;, — t;, , =7/[N=
¢, and Ay is the normalization factor in the Nth

5 E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London),
A210, 173 (1951). For derivation by the path-integral method, see
M. L. Glasser, Phys. Rev. 113, B831 (1964); A. Inomata, Benét
Laboratories, U.S. Army, Technical Report WVT-6718, 1967.
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approximation. The partial action in a small time
interval At; = t; — t,_; may be approximated by

S(r;,r;_4) ~ eL(Ar)/e, 1)), (6)

where Ar; = r; — r,_; and At; = e. This approxima-
tion reflects the situation that the important contri-
butions to the path integral are only from the paths
close to the classical one.

In polar coordinates, the squared distance between

two points r,(r;, 9;, ¢;) and r,_1(r,_1, 0, 1, ¢, is

(Ar)? = rj+ i, — 2r;r;_ 5 cos O, (7
where
cos ©; = cos 0, cos 0, ,
+ sin 0, sin 6,_; cos (¢; — ¢,_1). (8)

For a particle of mass m in a central potential, the
partial action is given by
S(rj,r;y)

= ym(r} + r3_Dfe — (m[e)r;r;_y cos ©; — €V(r;).

€)
If use is made of the expansion formula
o
exp (u cos O) = (21) > (21 + 1)Py(cos O, 4(u)
u/ =0
(10)

in terms of P,(cos ®), the Legendre function, and
IH%(u), the modified Bessel function, the integrand of
Eq. (5) can be written as

exp [ gS(r, ,T; _1):|
INII [i(zl + 1P, (cos O)R,(r;, r _1)] (11)

where

Ry(rj, riq) = {

ime }%

2mr,;r;_y
X exp |:—— 2+ ri) — leV(l‘,)}IH_%( Pty 1)
(12)

After interchanging multiplications and summations,
the right-hand side of Eq. (11) becomes

3 {H [(21; + 1)P,,(cos @ )Ry (r; .7 1)1}

tilg- 7
Substitution of this result into Eq. (5) yields
K@',vr;r)=1lmAy Y
N-wo Iilg iy
f IT {21, + DPy(eos O)R, (7, 1)

N-1

x T (r*sin 6 dr d6 d$). (13)
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Here,
N-1 N-1
TI (#*sin 6 dr d6 d$) = ]I risin 0;dr; d6,;d¢;;
=

this convention will be adapted hereafter. The angu-
lar integrations in Eq. (13) can easily be carried out.
First, expand P,(cos ®) in terms of the spherical
harmonics

Pi(cos ©,) = 4m

2041 7=1

i—1» ¢3 1)
(14)

i

Then use the orthogonality relation

f f Y2%(0, $) Y26, 4) sin 0 d6 dp = 6,6, (15)

to obtain
N N—-1
f TT {21, + DP,(cos ©,)} T] (sin 0 d0 d¢)

N-1 1
= (4m)"oy, I_T1 Orspaty 2 YiHO", $)YIO', 4).
(16)

As a result, for each quantum number /, the radial
and angular contributions to the propagator are
separable; that is,

K(r", 0/;’ ¢I/ ’ 0/ ¢’;T)
=3 3 K IV, Y0, ), (1)

with the radial propagator of the / wave
K", 75 7)

= lim (4m)N¥ A4, H {R(r;, ri_1)} H (r*dr) (18)

N-w
remaining to be evaluated, contingent on specification

of the potential. The normalization factor, so chosen
that the total propagator (17) may be unitary, is
Ay = (2mie/m)~*V. (19)

The Hamiltonian Path Integral

It has been shown® that in Cartesian coordinates

Ay f exp [i f L dt:l T @an N

= @my f f exp [i f @ —H) dr} TI @ TT @,
(20)

where p is the momentum conjugate to r. This implies
that the Hamiltonian path integral in phase space is

8 H. Davies, Proc. Cambridge Phil. Soc. 59, 147 (1963); C.
Garrod, Rev. Mod. Phys. 38, 483 (1966).
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identical to Feynman’s Lagrangian path integral as
far as particle systems described on the Cartesian
basis are concerned. Since we are interested in the
approximation (6), corrections higher than the first
order in € are unimportant. If the approximation

cos d a1 — }82 1)

is valid for angular changes ¢ in the time interval e,
then one can express (20) in polars. However, the
approximation (21) is not relevant, as Edwards and
Gulyaev have pointed out.* This may be compared
with the situation that the simple procedure of re-
placing p by —i(9/dq) is not reliable in polars. The
irrelevance arises from the fact that even if the changes
in Cartesian variables are of the order of €, the
corresponding changes in angular variables are not.

In order to take all contributions up to first order in
e into account, we utilize the asymptotic form of
I(u/e) for small e,

)
I, (E) ~ (2L“) exp [ﬂ S T L 0(3)],
€ € u

€

(22)
and replace Eq. (10) by
© 2 _
exp [E cos 6} ~ = > exp [ivé +E- (v———i)—eil
€ U v="co € 2u
(23)

Use of this approximation formula and the identity
Im(Ar)? = pAr ~ eptim + de(p — mArjeim  (24)
enable us to derive

. 2
exp [iS(rj, Y1) — —lf—(p,- _ mAr,.)]
2 € ‘

m
ie

(sin 8, sin t9,_1)é

B 2mmrir; 4
. 2 . 1
X 3 exp [ip,Ar, + iulAb; + ivAd; — fe(p” —2)
Y 2mrr;_y
- 2 -
IE('V. i) — ieV(rj)]. (25)
2mryr;_ysin 6;sin 0,_,

Integrating both sides of (25) over the entire range of
p; and dividing by the constant factor resulting from
the Fresnel integral on the left-hand side yield

exp [iS(l’,' s r;’—l)]
B
(2:-r€m) (rjrj-18in 6, sin 014)4

ie(W’ — P
2mr;r;_y

x 3 [exp [ip,Ar, + uhb, + ivAg, —
wy

i — 1)

2mr;r;_ysin 0,sin 6,

_ ieV(r,.):I dp,. (26)

D. PEAK AND A. INOMATA

On substitution of (26), the path integral turns out to
be of the Hamiltonian form, analogous to that in Eq.
(20); namely, for N large,

Ay f exp [i f L dt:l T ¢ sin 6 dr d0 d9)
= QmyV f exp [i f (pF + pol) + P — H) dt:}

N N-1
x T1(dp dpy dpy) 1 (dr d6 d4), 27

where we have made formal replacements
B> Pss ¥V Py (28)

PP+ (W2 — Dirt + (2 — P[(r¥sin® 6)
+ 2mV(r)—> H, (29)
and

2 2

H1Bg "By V1V2' VN

— (r'%r"sin 0’ sin ")

x f f TT(dp dpy). (30)

There is an essential feature of the representation in
polars due to the premise that the system has rota-
tional symmetry. Because of the periodicity associated
with rotation, the angular momentum assumes only
discrete values, so that the propagator may remain
single-valued. In this regard, the replacements (28)-
(30) are literally formal. It may be worth noting that
if the system is bounded by a finite cubic box, the
representation in Cartesians also requires each com-
ponent of the linear momentum ‘to take discrete
values. Then integrations over the momentum variables
in Eq. (20) must be treated as summations over
possible discrete values. The difference of sym-
metries assumed for the system is the main source of
the difference between the features of the representa-
tions in Cartesians and in polars.

In fact, the angular motion is solely determined by
the rotational symmetry, and much involved calcu-
lations are unnecessary. What remains to be deter-
mined is only the radial motion. It is therefore more
practical to develop the Hamiltonian path integral
for the radial propagator than to handle the formal
expression (27). In the following, we shall derive the
radial propagator for the l-wave in the Hamiltonian
form. With the approximation formula (22), the
radial function (12) is given by

Ryr;, riy)
ie exp [im(zAr,-)2 _ iel(l + 1)
€

— ieV(r j):l .
(31)

2mr;r;_y 2mr;r;_,
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In the same fashion as Eq. (23), we write the radial
function as

% ©
Ryrssriy) = i(z‘:‘lﬂ) (rsrf—l)ﬂlf €Xp [iP;'A?';'
—_ li p% — if..l(_l.""_l) — ieV(r,.)] dp;. (32)

7
2m 2mr;r;_y

Equation (31) shows that the radial propagator for the
! wave is

N
K;(?'”, r:; T') — (rlrlt)—l lim (_m_)

N-w \27rie

X f exp {i f [%mi'a ~AED_ V(r)] d:}ﬁ(dr),
(33)

which coincides with the results of Ozaki and of
Edwards and Gulyaev* for ¥(r) = 0. On the other
hand, use of expression (32) leads to the Hamiltonian
path integral

N
K", r';m) = (") lim (—m-—)

N-oo \2i€
X f f exp [i f (pF — H) dt} IEn T@n, (4

where

H = ;_Tf;[p + K‘—;LQ] + VD). (35)

1. APPLICATIONS
The Harmonic Oscillator

For the harmonic oscillator having spring constant
k = ma?, the Lagrangian is .
L = {m(i? — w??)

(36)

and, hence, the partial action in the time interval At; is
given by

S(r;,15_0) = $(mje)(r; + rip

— (mfe)r;r;_; cos O, — Jema’r3.

(37

The corresponding radial function reads
ire :lé
2mrr;_y

X exp [-22—’2 3+ 3D+ %iemwzrﬂ
€

R(r;, Fio1) = [

m
X IH&(-{: "1":‘~1)s (38)

with which the radial propagator of the / wave can be
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put in the form

K, r's) = () lim (—if)Y exp BiBGr + 9]
N-w©

X f exp lia(ri 4+ 73 4+ - + %]

N

X L g(—iprory) - -+ L (—iBry_yra) T1 (r dr),
39

where
B =mle, a=p(1~ }awie). (40)

As is shown in Appendix A, the formula

f " exp (i) (—iar)] (—ibr) r dr
0

- E%exp [——————_ i(“:: bz)}'v(—-i ‘;—Z) (41)

is valid for Re () > —1 and Re (x) > 0. Repeated
use of the above formula yields

f exp [ia(r + -+ + P )L (—iBror) - -

N-1 N-1g g
I(=ifrysr) [Trdn=T1] (_._)
. i=1 \2a;
Nlgdo 2
X exp { "i["zga% + %}}Iv(—-iﬁmorl),
42)

where o, and f; are coefficients to be determined by
solving the following algebraic equations:

2

Gg=a oy=a-—-—, for j>1, (43)
&5

Br=F Bra=BIIA-, for j>1. (a4)
k=120,

The multi-integral formula (42) enables us to complete
the radial integrations in Eq. (39); i.c.,

K" 737 = —i(r'r'y H lim ay
Now
X exp (ifyr"® + igyr" ) y(—iayr's”). (45)

Our problem reduces to determining the factors

ay =[] L (46)
F=1 &'.f
N—-1 p2
fo=tp-7 38 @1
i=1 ch
2
=110, 8)
XN

As is seen in Appendix B, the coefficient satisfying
Eq. (43) can be given in terms of a polynomial so that
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the factors ay, fy, and gy defined above are express-
ible in series form. However, what we are interested in
is the limiting value of each factor for N — co. In
Appendix B, it is also shown that as N tends to
infinity

ay — mo csc (w7), (49)
fy — 3mo cot (w7), (50
gn — tmo cot (w7). (51)
Therefore, the radial propagator becomes
K", r'; 1) = —i(r'r"ytmo csc (wr)
x exp [imo(r’? + r"®) cot (w7)]
X Iy [—imor'r” csc (o)) (52)

As a particular case, the propagator of the two-
dimensional oscillator can be obtained:

mw imw
: exp
27i sin (wT) {2 sin (wT)
x [(*"* + r"®) cos (w1) — 2r'r" cos (¢” — qS’)]}.

K(r", ¢"; rr, ¢I’ T) =

(53)
For the one-dimensional oscillator,
K@, r';7)
3
= (ﬂ—) exp [Limw(r'? 4 r"®) cot (wr)].
27i sin (w7)

(54)

In the limit where o vanishes, the propagator (52)
reduces to that of a free particle in three dimensions. In
the same limit, the propagator (54) leads to the one-
dimensional free-particle case

Ko(#"',7';7) = (EL"_)% exp [g - r’)2:|. (55)

T,

From Egs. (33) and (52) follows the useful relation

2 __ 1 2%
fexp {zf [%miz - v—zz - m—C: - %mw2r2j| dt}ﬂ)r
r r

= —i(r ”)%mw csc(wr) exp [dimw(r'® + r'¥)cot(wr)]

x I[—imwr'r” csc (wT)], (56)

for Re () > —1.

The Charged Particle in a Uniform Magnetic Field

The Lagrangian for a particle of charge e moving in
a constant uniform magnetic field B, which is applied
along the z axis, is

L = im[i* + 20(xp — yx)], &Y))

D. PEAK AND A. INOMATA

or, in cylindrical coordinates (r, 6, z),

L = }m(i2 + r262 4 20r20) + mz2,  (58)

where }eB/m = w is the Larmor frequency of the
charged particle. Introduction of a new angular
variable ¢ such that

=10+ ot (59)
and )
62 + 200 = ¢2 — @?
casts the Lagrangian (29) in the form
L = m(f* + r’¢? — w?r?) + tmz2.  (60)

The corresponding partial action in the time interval
€is
S(r;, v,y = dm(r} + riple

— (mfe)r;r;_y cos (¢; — $;1)

— }emw’r} + tm(Az,)fe.

(61)

It is clear that the motion of a charged particle in a
uniform magnetic field is equivalent to a combination
of two-dimensional harmonic oscillation and free
motion perpendicular to the plane of oscillation.
Correspondingly, the action in a given time interval
can be separated into contributions from the harmonic
oscillation and the free motion. Thus, the propagator
for this system is a product of the propagators for a
harmonic oscillator in the (r, ¢) plane and a free
particle in the z direction. That is,

K(r”, ¢”, Z”;rl, ¢I’ zl; T)
= K0, ¢";r', ¢'s K2, 25 7). (62)

The propagators on the right-hand side of Eq. (62)
have been expressed in Egs. (53) and (55). Trans-
forming the variable ¢ back into the real angular
variable 6 by Eq. (59) leads to the desired propagator

K(rll’ 0”, Z”; r!’ 0/, ZI; T)
3
_({m¥ or
2wif sin (wr)

X exp {——(——)

—2r'r"cos (0" — 0 + wr)] + ;ﬂ(z” - z')2;.
T

[(r"* + ) cos (wr)

(63)

It is well known that the simple replacement of =
in the propagator by —i(kT)™', where k is the
Boltzman constant and T the temperature, enables
one to write down the density matrix in statistical
mechanics. Following this procedure, we obtain the
density matrix for an ensemble of charged particles
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in a uniform magnetic field as

3 I P

mk wk™T

" T) = ’ —imkT
Pt 1 T) (271' sin (wk™*T) exp{ bm

X l:il—T r'r"sin (6’ — 6") + (r’2 + %) coth (kT)

(64)
which is of the same form as that derived by Sond-
heimer and Wilson.?

The Rigid Rotator

The expression (33) for the / wave is more con-
venient than (16) for evaluating the propagator of a
rigid rotator. Let r, be the radius of the sphere on
which the rotator is constrained. Then let 6(r; — ro)
take the place of exp [—ie¥(r,)] in the radial propa-
gator (33); that is,

> }
K,(ry; 7) = ry?lim (—’"—)

N—-w 27TlE
N .
X 1;[1 {exp [%ne- (r; — r;)?
- ’—’(’—‘”—)} r, — ro)}ﬁ(dr).

L]

(65)

After integration, the following simple form results:

K(win) = retep [ D) 60
2im
Thus Eq. (15) gives, for this rotator,
K(e/l, ¢”; 6/, ¢I; T)
. < L l l+ 1 n ” 7" ng ! !
— 'S S exp [’——( : )}Yl O, $YIE, ).
1=0n=— 2imr,
(67)
The Particle in an Inverse-Square Potential
For a particle in an attractive potential

V(r) = k?/r?, (68)

the derivation of the propagator is a trivial matter
when one utilizes relation (56), setting w = 0 and
replacing /+ % by [(/+$?+ k*E. To see the
situation in more detail, we start with the radial
function (31), which now takes the form

) =

Ri(r;, r
(ry,r 2mrr_1

ie[l(1 + 1) + K*]

2mryr;_y

X exp {Z (Ar,)? — } (69)
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Within the approximation adopted, the asymptotic
expansion formula (22) enables us to rewrite the
radial function as

: 3
ime
Rfr;, ry0) = (2mr . )
-1

s (2 2
X exp l:lm(r:‘ + "i—1)j|ll(m"f'ra'—1)’ (70)

2e i€

where
M = [+ H* + K1 @y

Since the radial integrations are independent of A(J),
there results from Eq. (70) in much the same manner
that Eq. (33) comes from Eq. (31) the radial propa-
gator for the / wave

K@, 1’3 7) = (r'r" ) (—im/r)

x exp [$im(r’® + r"®)[7IU (—imr'r"[7), (72)

with 4 defined by (71). By Eq. (15), the propagator for
a particle in the potential (68) is

K(rfl’ 0// ¢II . rl BI ¢I. T)

= () ep | 204 9]
x 3 3 (") e eomie #). 0
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APPENDIX A: DERIVATION OF FORMULA (41)
Consider the contour integral

3€ eI (az)l,(b2)z dz (A1)
r

for Re () > —1 and Re («) > 0. As is shown in
Fig. 1, I' is a closed contour consisting of a path from
A to B along the positive real axis, a circular arclike
path from B to C, a path from C to D along the line
with arg (z) = 3=/4, and a small circular arclike path
from D to A about the origin. The integrand is
regular in the z plane cut along the negative real axis.
As a consequence, the integral (Al) vanishes. Since
the contributions from the two arclike paths dis-
appear when the appropriate limits are invoked, we
have

if eI (az/i)1(bz/i*)z dz
0

+ f eI (za)l (bz)zdz = 0. (A2)
0
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Im(z)
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Fic. 1. Contour I taken in Eq. (Al).

Thus, by Weber’s formula’
®© -2 &
f e""”zlv(az)lv(bz)z dz = 1 exp [a asll ]Iv(gé),
0 20 4 2
(A3)

we obtain our formula (41), after replacing a by afi?
and b by b/it.

APPENDIX B: DETERMINATION OF THE
COEFFICIENTS a, f, AND ¢

Let 4; be 2a,/f and define the finite product of
it
k

Ak = H 2;1.

j=1

(B1)

Then the coefficients defined in Eqs. (46), (47), and
(48) are all expressible in terms of § and A;:

ay = fAn_1, (B2)
N-1

fN = %ﬂ(l - E AjAl—l)’ (B3)
j=1

gy = 3801 — Ay/Ax_y). (B4)

? See G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press. Cambridge, England, 1962), 2nd ed.,
p.395.

D. PEAK AND A. INOMATA

Now consider a series

Lo (ki 1)
X, =2 (1Y Bi+1, BS
=30 () (85)
By induction, it is straightforward to show that
Xen + Xon = XX, (B6)
It is apparent that
e = Xl Xaa (B7)
satisfies the relation
hopr + Xt =4y, (B8)

which coincides with Eq. (43) for 4; = 2a,/. From
(B7) it immediately follows that
Ay = XX, (B9)
where 7 is we,
Let N and # be such that N remains finite for all
N. Then

X, — sin (kn) (B10)

as N goes to infinity. To see this, compare the sum of
the first n terms of X;_,,

Sk k + j) .
T,=Y (-1 RARA B11
PAC AT (B11)
with that of the series for sin (kn),
n<k ) 27+1
Se=3 (- By
=0 2j+ D!
that is,
IT, — S| < [n(n + Dy/k]sinh (ky), (B13)
from which the convergence (B10) is obvious.
Accordingly, we have
ay — fn csc (N7), (B14)
fn — 47 cot (Nm). (B15)

It is also clear that (A A,_;) converges uniformly to
72 cse [(k + 1)7] csc (k#) in the same limit. Therefore,
we may write

N—1

Ny
lim Y (AN )™ = nf csc®xdx  (B16)
n

N-w j=1

and determine the limiting value of g as

gn — 3 cot (Ny). (B17)

In Eqgs. (B14), (B1S), and (B17), let 85 = mw and
Ny = o,
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Inverse Functions of the Products of Two Bessel Functions
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Special cases of the inverse function of the product of two spherical Bessel functions have been found
recently by other writers as 1 F; hypergeometric functions. We give the general expression as the derivative
of a product of spherical Bessel functions. These results have also been found in the classical literature.

A recent article! considers the problem of finding
the inverse function of the product of two spherical
Bessel functions. The results are given in terms of ,F,
hypergeometric functions. Define the inverse function
by the equation

ijz(kr)jz+m(kr)gz,m(kr') dk = (r —r). (1)

Then Ref. 1 gives formulas in terms of ,F, functions
form = 0, 1, 2, and explicit results for gy 9, g1,0, &2,0>
801> and gy .. They conjecture that the higher-order
inverse functions can be found by their methods.

This problem has been treated in the classical litera-
ture. The inverse function g, o was found, in a form
differing by an integration by parts, by Bateman,? and
the higher-order forms by Fox.? All these results are
available in a standard text.* The general and quite
simple formula is

@

where n,(x) denotes the spherical Neumann function.
Equation (2) reduces to all the special cases treated in
Ref. 1 except for g5, for which it differs by a con-
stant. Since it may be easily verified that j; and j,,,
are themselves orthogonal over the range, the inverse
function isnot unique toan arbitrary additiveconstant.
Furthermore, if the spherical Bessel functions are
replaced by the corresponding expression in cylindrical
Bessel functions, Eq. (2) is valid when / is not an
integer.

To demonstrate the result of Eq. (2), the method of
Ref. 4 will be followed. If two functions f(x) and
g(x) satisfy the relation of Eq. (1), then g(x) is given

2
d
g, m(x) <X nl(x).] l+m(x)a
7 dx

* This research is supported by the United States Air Force under
Project RAND. Views or conclusions contained in this abridgment
of RAND Memorandum RM-5886-PR should not be interpreted as
representing the official opinion or policy of the United States Air
Force.

1 H. A. Mavromatis and K. Schilcher, J. Math. Phys. 9, 1627
(1968).

2 H. Bateman, Proc. London Math. Soc. 4, 461 (1906).

3 C. Fox, Proc. London Math. Soc. 29, 401 (1929).

4 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals
(Oxford University Press, London, England, 1948), pp. 212-216.

in terms of the Mellin transform of f(x) by®

= ["agra -9, @
2 c—i0
F(s) =J;wx“'1f(x) dx. 4

The path of integration in Eq. (3) must lie in the strip
where both F(s) and F(1 — s) are analytic. In terms
of cylindrical Bessel functions, using f(x) from Eq.
(1), the result is obtained:

R =9 =7 [ "dsma ™ )

This integral is a standard form® and yields

Fl—5s)= 23+2

I'(s+ DI'(I4+3m + § — §s)
F(&s +im+DIGEs+ 1+ im+DGs—im+1)
(6)

Thus, g; ., is given by

8 m(X) = § i f ds

zzsl“(s + %m +D)IG+I+im+I)(s—3m+1)
*Ts+ DI +3im+31—s) ’
M

+ where s of Eq. (6) has been replaced by 2s, and the

abscissa of integration lies between — 4 and 0. Regard-
less of the parity of m, the poles of the first two gamma
functions in the numerator are canceled by the poles
of I'(2s + 1) in the denominator. The path of integra-
tion may be closed by a large semicircle in the left
half-plane and the integral over the semicircle tends to
zero. The third factor in the numerator has poles at
s = —n—1+ }m, where n takes on all positive

5 Reference 4, p. 214.

¢ G. N. Watson, Treatise on the Theory of Bessel Functions (The
Macmillan Company, New York, 1948), p. 403.
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integer values and zero. Those poles, for which
0<n<¥m—1, lie to the right of the integration
path and do not contribute to the integral. Those
poles, for which $m < n < m — 1, have vanishing
residues. The residues of the remaining poles may be
evaluated and the reflection formula I'(z)I'(1 — 2) =
7r/sin 7z may be used to simplify the expression. Thus,

gl,m(x) © 'n
= 4x2(_ 1)l+m+1 Z (_1)
m n!

9 I'Q2n 42 — m)(Ex)2™
n+1—ml'm+3—1—mIh+i+2)

®)

e,

» T'2n + m 4 2)(Ex)*+™
Tn4+m+ DI+ —DTn+1+m+3)
9)

Now we have the general formula?
Ju(x)J (%)

_ i (=D)"TQ2n + p + » + 1)(Gx)FHe+ _

on!'n+u+v+Dln+pu4+DIn+v4+1)
(10)

Setting y = —/ — %, v =/ 4 m + 4, this series be-
comes
I 4 1 mid(%)

=3 (=1)"T(2n + m 4+ D"

A Tm+m+ O +i— D+ I+ m+
(11)

7 Reference 6, p. 147.

WILLIAM SOLLFREY

All the gamma functions in Eqgs. (9) and (11) match
except the one in the numerator. Multiply Eq. (11)
by x and differentiate, and the two series become
identical. Thus,

Zrm(X) = 4"2(‘1)H1d% 4 i (). (12)

The identity N, 4(x) = (=", _4(x) and the
return from cylindrical to spherical Bessel functions
now yield Eq. (2). The analysis may be carried
through in the same manner if /is not an integer. Only
one of the three sets of numerator poles will cancel,
and two series of the type of Eq. (9) result. Both may
be identified as Bessel function products and com-
bined to yield the form of Eq. (2) in cylindrical Bessel
functions.

For large x, Eq. (2) has the asymptotic form

2
e J:_ (—1)* cos (2x - ”‘7”) (13)

which includes all the cases of Ref. 1. For small x,
the result is

_ (m+ DI + Hxm*?
2"+ m+3)

81, m(X) > (14)
Since this vanishes for x = 0, the calculation of the
potential from the phase shift, as discussed in Ref. 1,
becomes much more practical. The structure of Eq.
(2) makes it clear that the inverse function g, ,(x)
can always be written in terms of algebraic and trigono-
metric functions when / and m are both integers. If
mis an even positive integer, an arbitrary constant may
be added to g; .
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A group-theoretical scheme is introduced to classify the states of an atomic system having two open
shells. States labeled according to this scheme may be written

[y + 1)2Q(SL) s X BOR(SEL g, QMJIM ),

where the quasispins Q , and Q are coupled together to form a total quasispin Q. Although these states
are, in general, mixtures of different configurations /%/¢, it is found that they serve as a convenient basis
for the calculation of matrix elements in (/4 + /z)¥. The matrix elements of operators between the states
of two configurations are obtained from these matrix elements by means of a unitary transformation.
As an example matrix elements of the Coulomb interaction within (f 4- p)¥ are calculated.

I. INTRODUCTION

In 1958, Elliott! showed that it is possible to classify
the states of mixed configurations according to the
representations of certain continuous groups. More
recently, Feneuille*3 has chosen a particular group-
theoretical scheme which is useful in the general case.
He has also expressed the Coulomb interaction within
the configurations (d + s) as a sum of seven oper-
ators, which have well-defined transformation prop-
erties under the operations of these groups, and he
has tabulated the matrix elements of these basic
operators.

The particular groups which Feneuille chose to
classify the states of (I, + /)N are not compatible
with Jj coupling between the shells, which is often the
“best” coupling scheme. However, this is not a dis-
advantage in those cases for which it is necessary to
form and to diagonalize the entire energy matrix.

The purpose of this paper is to consider two other
possible choices of continuous groups—each of which
is compatible with Jj coupling. Operators are intro-
duced which have well-defined transformation prop-
erties with respect to these groups and in terms of
which any scalar interaction within (/, + Ig)" may be
expressed. It is found that all of these basic operators
may be written as a sum of operators of the form
{TPROYE KRN where, for instance, T 4 is an oper-
ator acting only within the 4 shell having quasispin
rank P and rank in the total spin-orbital space K.
T, and Ug are coupled together to form a scalar
operator with a total quasispin rank of R.

* This work was partially supported by the United States Atomic
Energy Commission.

t Present address: Argonne National Laboratory, Argonne,
Illinois.

1 J. P. Elliott, Proc. Roy. Soc.(London)A245, 128 (1958).

2 S. Feneuille, J. Phys. 28, 61 (1967).

3 S. Feneuille, J. Phys. 28, 315 (1967).

II. CLASSIFICATION OF STATES

The first group-theoretical scheme which we shall
use is, in part,

R(8L, + 815 + 8) © SU(2) x SP(4l, + 4lz + 4)
> SU(2) x SP(4l, +2) x SP(4lz +2). (1)

Because the relevant irreducible representations of the
rotation group R(8/, + 8/p + 8) are all of the type
(4, %, £%), the irreducible representations of
SU(2) x SP(4l, + 41z + 4) may be simply denoted
by (@, v), where Q is the total quasispin and » the total
seniority. Similarly, the irreducible representations of
SP(4l, + 2) and SP(4lz + 2) may be denoted by
v 4 and vy, where, for instance, v , is the seniority in the
A shell. The scheme is completed by the reductions

SP4l, 4+ 2) x SP(4iz + 2)

> (SUQR) x RQRI4 + 1) x (SUQ) x RQIz + 1))

2 (SU2) x R(3)) x (SU(2) x R(3)

> R(3) x R(3) > R(3). 2

A state of (I, + I5)" can be described in this scheme
by writing
(L + 15)VQu(v w4 4(S4L )T 4

X vpwpTE(SpLp)p), IM), (3)

where the usual spectroscopic notation is used.
According to the reduction (2), the spin and orbital
quantum numbers in the A4(B) shell are coupled
together to form J4(Jg). J4 and Jp are then coupled
together to form a total J.

Although states labeled according to this scheme
have a definite total quasispin, in general they are

mixtures of different configurations /%4/%¥#.4 For in-
stance, the states of (f+ p)®> which have a total

4 R.D. Lawson and M. H. Macfarlane, Nucl. Phys. 66, 80 (1965).
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quasispin 7 and seniorities 2 and 1 in the f and p
shells are linear combinations of states of f%p and
f?p%. We shall find, however, that the states of this
scheme serve as a very convenient basis for the calcu-
lation of matrix elements of operators acting within
(I, + Ip)". The matrix elements of operators between
the states of a single configuration or joining the states
of two different configurations may be obtained from
these matrix elements by means of a unitary trans-
formation.

In order to define this unitary transformation, we
introduce a second group-theoretical scheme for which
the representation labels are compatible with the
configuration labels N, and Np. We write

R8I, + 8l +8)> R8I, +4) x R8BIz + 4
> (SUQ2) x SP(4l4 + 2))
x (SU2) x SP(4lg + 2)).
Irreducible representations of
(SU2) x SP(4l4 + 2)) x (SU(2) x SP(4lp + 2))
are denoted by (Q,,v,) X (Qp, vg), where, for in-
stance, (Q4, v4) is the quasispin and seniority in the

A shell. We again complete the scheme with the re-
ductions (2) and label our states

|E[4152Q 404 47 4(S4L4)J 4
X QpvgWpTR(Splp)g, IM). (5)
The generators of the continuous groups which

appear in these two schemes may be found elsewhere.?
For eigenstates of the first scheme,

N is thus related to the azimuthal quantum number of
total quasispin. Similarly, for eigenstates of the
second scheme,

M4 = —}QL +1 - N,

The phases of the eigenstates of the first scheme can
be chosen so that the two sets of states are related by
the equation
1Ly + 1YY Q04w m(S4L)J 4

X vpwpTR(SpLp)Jp), IM)
= 3 (Q4M50sMT | Q4050M )
MoA Mg®

X |L4150 40w a(S4La)T 4

X QpvpWpTp(SpLp)/p, JM). (6)
We can thus pass from one scheme to the other by
either coupling or uncoupling in the quasispin space
of A and B particles. Accordingly, we shall hence-

)

® B. R. Judd, “Group Theory in Atomic Spectroscopy,” in Group
Theory and Its Applications, E. M. Loebl, Ed. (Academic Press Inc.,
New York, 1968); H. T. Wadzinski, thesis, The Johns Hopkins
University, 1968.
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forth label a state within the first scheme as

1(a + 1)Q 404w 47 4(S 4L 4
X QpvpwpTe(SpLlp)e, OMoIM,),

thereby making its quasispin structure explicit.

The idea of coupling quasispins was first introduced
by Kerman et al.® in dealing with a nuclear pairing
interaction. The simplified pairing Hamiltonian which
they used could be written in terms of the quasispin
generators and so the technique was very convenient.
However, atomic interactions or more realistic nuclear
interactions, which involve position, momentum, and
spin operators, do not seem to have been dealt with
in this way.

M

III. CLASSIFICATION OF TENSOR OPERATORS

We denote by af and b} creation operators for /, and
Iy electrons, respectively. Following Judd,” we intro-
duce special absorption operators 4, and by, where,
for instance, d, is related to the adjoint of 4’ by the
equation

~ — t t
Aingm; = (_)S-HA ™ m'(a—m,—m;) '

The operators a} and d, have a spin rank of s and an
orbital rank of /. They transform according to the
(10 - - - 0) representation of SP(4/, + 2) and

SP(4l, + 4lp + 4)

and according to the (0---0) representation of
SP(4lg + 2). The operators b} and b, have analogous
transformation properties.

Having assigned ranks to the a’s and 4’s, we can
form other tensor operators by coupling them to-
gether in various ways. In particular, we can write

W, 1) = —(a’ @)™,
W(Kk)(la, lb) _ _(aTE)(xlc)’
W(Kk)(lb, 1) = _(bTﬁ (xk)’
W(Kk)(lb, 1) = _(bTE)(Kk).

The transformation properties of the operators
Weo([, 1) and W*(J,, ) under the operations of
the groups SP(4l4 + 2) x SP(4lg + 2) and SP(4l, +
4lg + 4) are easily obtained. They have been given,
for instance, by Judd.® Since the operators W*¥([, 1)
and W® ([, 1) are both bilinear in the a’s and &’s,
they transform according to the (10 - - - 0) x (10- - 0)
representation of SP(4l, + 2) x SP(4lz + 2) and we
can introduce linear combinations of them which also
correspond to definite representations of SP(4/, +
4lp + 4). We write

U(Kk)(la, I,) = _{(aTE)(xk) + (ﬁbT)(Kk)}, (8)

G(Kk)(la, I) = _{(aTE)(xk) _ (de)(xk)}. 9)

¢ A.K.Kerman,R.D. Lawson, and M. H. Macfarlane, Phys. Rev.
124, 162 (1961).

" B. R. Judd, Second Quantization and Atomic Spectroscopy (The

Johns Hopkins Press, Baltimore, Md., 1967).
8 B. R. Judd, Physica 33, 174 (1967).
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TaBLE I. Classification of tensor operators.

SP(4l4 + 2) X SP(dlz + 2)

Representation
SP@4l,+ 4l +4)

Operator

Wk, 1) (x + k even) 10 -
Wb 1) (e + k odd) 20 --
WEB( L) (e + k = 0) ©-

WE (L, 1) (x + k even) ©:--
Wk, 1) (k + k odd) ©:--
W, L) (e + k = 0) ©o---
U(Kk)(lar lb) (10 =t
G"R(l,, 1) 1o---

0) X (0---0) (110 - - - 0)
0) x(0---0) (20---0)
Q) X (0---0) ©---0)
0) x (110 - - 0) 110+ -+ 0)
0) X (20 -+ 0) (20---0)
O x(0---0 ©---0)
0) x (10--0) 110 - - - 0)
0) x (10---0) (20---0)

The operators U*® are linear combinations of the
operators a'b, — bid, and, hence, belong to the
antisymmetric part of the direct product representa-
tion (10---0)® (10---0) of SP@l, + 4l + 4),
which is (110---0) + (0-- - 0). Since it is not pos-
sible to construct a scalar with respect to SP(4/, +
4l + 4) from the U*®), these operators transform
according to the (110---0) representation of that
group. Similarly, the G*® transform according to the
symmetric part of the direct product representation,
and hence belong to the (20 - - - 0) representation of
SP(4l, + 4l + 4).

The anticommutation relations between @ and b
lead to expressions for U** and G**¥ in terms of the
WeR ([, 1) and WB([, 1 ):

U(Kk)(la , lb)
— W(Kk)(la, lb) + (_)ZA+13+K+kW(Kk)(lb, la)a (10)

G(Kk)(la , lb)
_ W(Kk)(la, lb) _ (_)lA+IB+K+kW(Kk)(lb’ la). (11)

If I, and Iy have the same parity, U**(] , ) and
G*) (], 1,) are identical to the operators WH<® ([ )
and W-*® (/) introduced by Feneuille.® The com-
plete classification of the operators WW*® (], L),
WO L), URR( L), and G¥(/,, 1) with respect

to the groups SP@l, + 2) X SP(4lz +2) and
SP(4l, + 4/5 + 4) is given in Table I,

1V. DECOMPOSITION OF TWO-PARTICLE
SCALAR OPERATORS
Of the possible coupled products which we can
form with pairs of tensor operators, the products

{W(kk)(la , Ia)w(x'lc')(la , la)}(u)o
and
{W(Kk)(lb , lb)w(x'k')(lb , lb)}(ttm

act entirely within a single atomic shell. Since methods
for resolving operators of this kind into group-
theoretical parts are already available, we shall not
consider them here. Of the other possible products,

{U(Kk)(la , lb)U(K'k')(la , lb)}(tt)()
and
{W(Kk)(la s la)U(K'k')(la s lb)}(tt)o,

with « + k even, odd, or zero, are typical examples.
Each of these sets transforms according to a direct
product representation of SP(4l, + 2) x SP(4lgz + 2).
It is these representations that we wish to resolve into
their irreducible parts.

We make use of a theorem of Racah? to factor the
appropriate Clebsch-Gordan (CG) coefficients into
two parts:

<(anasula X vbwbsblb)Kk’ (ﬁa -a§al-a X ﬁbwbjbl-b)K,k” i, Ol VaVVa(Kaka)K X VbWb(Kbkb)Ka 0>
= (((sala)(s51p))xk, ((jal.u)(jbib))K,k,a i, 0 l (Sa5a)"a(lal-a)kas K; (Sb5b)Kb(lbib)kb, K;0)

X ((vawasala + 5awa5aia I VaVVaKaka)(vbwbsblb + 5bwb5bl—b I VbWbekb))-

The first part, which is itself a CG coefficient for R,

(12)

X Ry, may be expanded as a sum of products of 3-f

symbols. The resulting expression can then be simplified using the graphical techniques of Jucys ez al.!° to

obtain

<((sala)(sblb))"'k, ((jul-a)(ibl-b))",kl’ t, 0 ' (saja)"a(lal-a)ka’ K; (Sbs-b)Kb(lbI-b)kb’ K; 0>

= (= 1)"”*"““{“{[K][k][K’][k’][t][Ka][ka][Kb][kb][K]}*{

S 8 k|fl, L, k
:‘ Zb 1t< } 5. 5 ML LK) (13)
b Ta K, Kk, t)\k, k, t

We can now form operators which are linear combinations of the {U*® (I, ,)UX*([,, 1,)}*"* and which

® G. Racah, Phys. Rev. 76, 1352 (1949).

10 A. P. Jucys, L. B. Levinson, and V. V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for

Scientific Translations, Jerusalem, 1962).
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correspond to single representations of
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SP(4L, + 2) x SP(4lp + 2).

We write

(k) K, (kok) K, 0) = SA((sL)(sp)k, ((sLo)(slp)e’k'y 18, 0 | (ss)a(Lul )k, K5 (ss)ey(IplB)ks» K5 0)

K’k
t

Using Eq. (8) for the U** and explicitly carrying
out the recoupling, we obtain expressions for 7 in the
following cases:

(1) i, + k, and «, + k, both even:

n((Kaka)K’ (Kbkb)K’ 0)
= _(g)& {AQeaka) OBk K2y 20) _ (%)%
% {A(I(Kaka)K)B(l(K»kb)K)}E)%O); (15)
@) «, + k, and x, + k, both odd:

n((Kaka)K’ (Kbkb)Ka 0) — {A(O(K“k“)K)B(O(Kbk”)K)}g)om;

(16)
(3) «, + k, and «, + k, of opposite parity:
N((kk)K, (k:kp)K, 0) = 0; 17)

@) x, =k, = 1, = k = 0:

L(VW(kk)K, (10 - - - 0)*(10 - - - 0)I5K, 0)

x {UB(1,, L)UR*I,, 1)}, (14)

n(z)((Kaka)K’ (Kbkb)K’ 0)
= —( %)1} {AQOOO A0 (20

-3 )% { A (000 (1(00)0) }5)%0)

— (VDN — (L J/UaDEN5 + (LIs),
n(l)((Kaka)K’ (Kbkb)K7 O)

= (Up)ILEN, + (/DN (18)

Here A‘P*) js identical to the X'P*¥([ , [) used by
Feneuille,? and B¥** is identical to X‘**¥'(],, /). In
cases (1) and (2), % is a pure two-body operator.
However, for «, =k, =, =k, =0, n has both
one-body and two-body parts. We have denoted these
as 7'V and 5®.

Similarly, we form those linear combinations of the
operators, {W"O(l YU (L L)} with « + k
even, which correspond to definite representations of
SP(4l, + 2) x SP@lz + 2):

= > ((110--- 0wk + (10 - 0)%(10- - - 0)I, | VWx,k,)

k+keven

x 2 {((kk)(00)sck, (sL)(sIp)r'K’, 18, O | (rs)ry(kLo)ks, K (05)s(0lp)lp, K; O)
Kk

t
X {W(Kk)(la, la)U(x'k')(la, lb)}(tt)o'

(19)

Again, using Eq. (8) and carrying out the recoupling, we obtain

UVW(kk)K, (10010 - - 0)[3K,0) =

k-+k even

S (110 - Oywik + 14 {] VWi,k,)

x [(%)é {( Auxk)a)(%(xaka)x)b(iK)}(%o) _ (%)% {( A(lxk)a)(‘}(lcaka)K)b(i‘K)}:)%O)]. (20)

a,,, denotes the triple tensor whose m, = +1
component is a! and whose m, = —} component is
d, . Similarly, b#X) is obtained from the triple tensor:
b, s by coupling the spin and orbital components to
form a tensor of rank X in the total spin-orbital space.

For the special values «, = §, k, = [, { has a one-
particle part given by

£O(10 -+ - 0)%(10- - - 0)1 K, (10~ - - 0)%(10- - - 0)I 5K, O)
= 3 (xIk)/sNLDH(I0 - - - Oywrck

Kktkeven
+ L {l V2WIA){aT(K)5(K)}(0)'
For all other values of «, and k,, { is a pure two-body
operator.
A similar analysis may be applied to the cases

k + k odd and « + k = 0, and to all other possible
coupled pairs of tensors. Hence, any scalar two-body
operator within (/, + I5)" can be expressed as a sum
of operators of the form {TYXK'UYEIKNED iy
addition to certain one-body operators which may be
easily dealt with.

V. MATRIX ELEMENTS
We have seen that it is possible to label the states of
Uy + Ip),
(g +18)0Q (S L) 4 X POB(SpLe)p, QMoIM ),

and to express operators as linear combinations of
tensors of the type

{TJ(APB)Ug”K’)}(RT).
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A generalization of Eq. (7.1.5) of Edmonds™ yields
((Ls + 19)2Q4(S4L) 4 X PQp(SpLp)p, QI (T HUFHYED
X (g + Ip)'QU(S4Li) 4 X B'Qp(SeLp)p, Q')
0 04 P\(Li Ju K
= () {QURIQIITIV I Cs Q5 P'({Js 5 K
0 @ R J J T
X (0Q (S4LDJI 4| TFE o' QL(SULINI ) (B (SELE) 51 UG " 18/ Q5(SELp) %), (21)
where x is equal to the number of creation and absorption operators in TZX?,
The reduced matrix elements of a#&) and APUREK for p, > v, are given by the equations

(LaQA(SAL)T 4 18] L' Q(SLLIT )

S4 Si %
= —r o [SALAVAKIVA Ly L Lo (12008 Ly {I 1172 QUS4LL), (22)
Jg Jy K
(LieQ(S4LDT4 |APPEN L' QU(SLL )T )
SA S:{ K
= (—) QUKL Ly Ly k(500,08 Ly IW*) 1o’ QSLLLY), fork + k 0, (23)
J, Jy K
(L2Q(S4Lo 4 [ACCOO) ] 0’ Q (S4L )T ) = —2{Q (04 + 204+ D(Q2J 4 + D21, + 1)}%, (24)
where The reduced matrix elements of the UZX) may, of
.= (QA 1 QA,) and s — (QA P Q) ) course, be obtained from these equations also.
0. 3 —0Q4 0, 0 -0,
All of the other operators Tﬁ‘K’,whlgh we encountered VI. COULOMB INTERACTION IN (f + p)¥
in the previous section, were obtained by coupling
together the operators a?X) and APMEK) Their  As an example of the theory, we consider the
matrix elements may be evaluated by the usual tensor Coulomb interaction in the (f+ p) shell. The
methods. Coulomb Hamiltonian is given by

H =3 {14F(NWL (L 1) - W (4 )

+ 6F ()W (p, p) - W™(p, p) + 2021)}F (£, p)

X (WO£, £) - WP(p, p) + W (p, p) - WPO(£, 1))

+ 168F,(IWPD(f, 1) - WEP(f, £) + 12F(p)W*(p, p) - W'2(p, p)
+ 28(1FF,(f, DXWIR (S, £) - WP2(p, p) + W(p, p) - WOH(F, £))
+ 308F, (/)WL f, 1) - WS, £) + 1848F ()

x W1, 1) - WEOf, £) + 126G(f, pUP(f, p) - US2( £, p)

— 56G,( , YUL(F, p) - UP(f, p) — 4Q2DEHL(f, p)

x (WO2(£, FYULA(f, p) + USP(F, p) - WED(£, 1))

— 6(6)Ko(f, WO (p, pYUL(f; p) + UL (£, p) - W (p, p)

— 4EDPHL(f, YOWSV (S, 1) - UL(f, p) + U, p) - WO, ),

where we have used the integrals F, and G, defined by H contains terms which act entirely within one

Condon and Shortley!? and in addition set atomic shell and also terms of the kind
_ wior) . . W(jOr) . p),
F(f,p) = FO(, p), WS - W, p)
Hy(f.p) = R fp)25, S UL p) - U, ),
(25)

1t A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1960).

Hy(f, p) = R(ff, fp)/297,
12E. U. Condon and G. H. Shortley, The Theory of Atomic

Kz(f ’ P) = Rs(fp » PP)/25. Spectra (Cambridge University Press, New York, 1935).
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and

S WL UP(S, P

i>g

Using Egs. (13) and (14), we find that the second of
these “interaction” terms is related to the #’s by the
equation

z_Ui"”(f, p) - U (f, p)
1 Nk 3 3 k
= () 3 (UKD { - }
x 71 ((xk)K, (kk)K, 0). (26)
Similarly, Eqs. (13) and (19) yield

3 W) - UL, p)
=-orf} ;1)

x (110 - - - O)'r + £ {| VWZP)%([K])%

x ('P(VW?PK, (10 - - - 0)*PK, 0), for r even.
(27)

The operator 3., WO (f, f) - W) (p, p) is itself the
two-body part of an operator having definite trans-
formation properties with respect to SP(4/, + 2) x
SP(4lg + 2), and it may easily be expressed as a sum
of operators of the form {APEKIBPKILED,

To illustrate our method in detail, we calculate the
matrix elements of 3, , U2 (f, p) - U\ (f, p) between
the states |f'p3*Hg X 12Pg, ) and | f?p*33Hg X
12Pg, 43%) for which Q4 = § and Qp = 1. According
to our method, we will relate these states to states of
definite total quasispin, carry out the calculation of
matrix elements within the total quasispin scheme,
and, finally, obtain the desired matrix elements by
means of a unitary transformation.

The transformation equations relating the two sets

Cle ko K) = (= 1y apaaknif 50
2 2 2

Doo (P, R) = (=123 11 - 13{[Q][R][Q’]}*<Q

tofoe

The matrix elements of the 7’s may then be written

(& Q| n((«<k)K, (xk)K, 0) [(§ DQ"
= C(x, k, K)Egq(P), for x+ k0, (31)

where P is the quasispin label of # in the fand p shells.

J. C. MORRISON

of states may be written
I(f + P)3PHe X 1°Py, § — 3 5%
=G —31—1]31% - DIfpPH, x 1P, 3¢
+ (- $10[$15 = ) 1/P8H,s x 1°Py, 49,
(28)
((f + P&Hs X 1Py, 5 = $58)
=G —31-1|31%—23)|/*p3H, X 12Py, 4>
+ (G —310[513 =9 fP°°Hs x 12P, 10,
(29)
We shall, henceforward, denote the original states
simply as |1) and |2), respectively, and make the
quasispin structure of the new basis states explicit by
denoting them as|($ 1)3) and [($ 1)%). Then, Egs. (28)
and (29) become simply

(6 Q) = 3 Ugp P, (30)
where - ,
(e —®
U‘(@)% (%)%)'

The matrix elements of 3., U (f, p) - U}*(f, p)
in the total quasispin scheme are obtained from the
corresponding matrix elements of

{A(P(xk)K)B(P(Kk)K)}‘()ﬁi’o)

by using Egs. (15), (16), (18), and (26). This calculation
is greatly simplified if the matrix elements of
{AP k) EIBP (ki) KDV (B0)

for « + k # 0 are immediately factored in the
following way:
<(% 1)Q| {A(P(Kk)K)B(P(Kk)K)}%i’O) ‘(% 1)Q’>

= C(k, k, K)D oo (P, R), for i + k0.
The Wigner-Eckart theorem together with Eqs. (21)

and (23) yield the following expressions for these
quantities:

TN (R RN
3}{;%é}55k11k,
6 6 k)12 2
N[z s P
e e
—3 o /%0 =Ylo -

For « + k even (P = 1), the two-by-two E matrix is
obtained from [D(1, 2)] and [D(1, 0)] by carrying out
the addition (15):
[E()] = =D, 2] — BR[DA, 0)).
For « + k odd (P = 0),
[E(0)] = [D(0, 0)].
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Similarly, for the case « + k=0, the matrix
elements of % can be obtained by using Egs. (21), (24),
and (18). The contribution of the single-particle
operator

— () ILA*N . — (L) UsDINp + ([LlgD?

may be easily evaluated using the transformation Eq.
(30). We write

(& DRI P ((xk)K, (xk)K, 0) (5 1)Q")
= Ay, for k=k=0. (32)

According to Egs. (26), (31), and (32), the matrix
elements of >, UB(f, p) - U'¥(f, p) in the total
quasispin scheme, which we shall denote My, , are
given by the equation

(G DQIZUM™(f, p) - U(f, ) I3 DQ)
= &0 40 + B3 (=KD
3 3 k
x {1 1 r}C(K, k, K)Ego(P).

In this way [M] is found to be

L[ - -0
[M]’(— 20 —(@9) )

The matrix elements of >, U2 (f, p) - UL (f, p)
between the states | f*p3H, x 1°Py, ) (]1)) and
| f2p252Hs X 1°Pg, %5*) (]2)) are obtained from [M]
by means of the unitary transformation

%%)(10)%)_

—55
84

—11
Y
Each of these matrix elements was also calculated by
the conventional method that seemed most convenient.
The (1,1) element was calculated by fractional
parentage, the (2, 2) element was calculated by Slater
determinants, and the off-diagonal elements were
calculated by a method recently developed by Shore.?
Complete agreement was obtained.

The calculation of these four matrix elements was
easier and more straightforward by our method than
by the conventional methods. This was true even
though the states which we chose correspond to a

“stretch’ case for which the conventional methods
could be simplified considerably.

UHM]U = (

13 B, W. Shore, Phys. Rev. 139, A1042 (1965).
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Our method has the useful feature that it provides
general equations which may be applied directly. The
equations do not contain sums over dummy indices
or sums over magnetic quantum numbers which re-
quire further simplification.

V1. CONCLUSION

We have found that by coupling together the
quasispins of 4 and B particles, we may produce states
having a total quasispin label which serve as a con-
venient basis for the calculation of matrix elements
within (I, + /5)". Since these states have a total
quasispin value, the Wigner-Eckart theorem may be
used to factor the N dependence from the matrix
elements, and the resulting reduced matrix elements,
which are independent of N, can be factored into A4
and B parts. Thus the matrix elements of an operator
acting within the (/, + Ig) shell can be calculated
from the matrix elements of other operators acting
solely within 4 or within B. This factorization of the
matrix elements of (/, + ) should be very convenient
for the study of complex configurations such as
(f+ p)V. It is also hoped that it will provide some
insight into these more complicated problems.

This method of evaluating matrix elements can
obviously be extended to deal with matrix elements
between configurations having several open shells.
The basic operators and states could then be formed
by coupling three or more quasispins.

Throughout the above analysis there has been an
equivalence between quasispin labels and representa-
tion labels of the symplectic group. For instance, in
the case (f + p)¥, the first term on the rhs of Eq. (15)
transforms according to the (11110 - - - 0) representation
of SP,, and the second term transforms according to
the (220---0) representation of SP,. Thus the
quasispin labels 2 and 0 are equivalent to the sym-
plectic labels (11110 - --0) and (220 - - - 0). The idea
of coupling quasispins, however, is much more lucid
than the idea of combining representations of
SP(4l4 + 2) x SP(4lz + 2) to form a representation
of SP(4l, + 4z + 4).
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1t is shown that a completeness relation for the eigensolutions of a non-Hermitian operator H can be
derived even if the resolvent operator R(H) of H is allowed to have poles of higher order than just simple
poles, as required by Fonda, Ghirardi, Weber, and Rimini. A class of operators satisfying the require-

ments of this note is cited.

In describing a physical system by a Hamiltonian
H, it is important to know whether or not the eigen-
solutions of the Hamiltonian H are complete in the
carrier Hilbert space. Recently Fonda ef al! have
shown that the eigensolutions of a non-Hermitian
operator H are complete in a Hilbert space if the
resolvent operator R(z) [= (zI — H)™'] of H has only
simple poles at points of the point spectrum o ,(H)
(among other assumptions). The purpose of this note
is to point out that the above assumption can be
relaxed as follows: The resolvent operator R(z) of
the non-Hermitian operator H has a Laurent expan-
sion of finite order about any points E,, E,, E,, *
of the point spectrum o,(H). The idea that such a
relaxation is possible is principally motivated by the
mathematical properties of compact (completely
continuous) operators? and a recent study on the
spectral properties of a class of non-Hermitian
operators by the author.®> Compact operators possess
spectral properties that mimic those of matrices,
and the class of non-Hermitian operators of Ref. 3
possess point spectra with properties like those of
compact operators and a continuous spectrum that
is real. These properties coincide almost completely
with the assumptions of Fonda et al.! in their proof
of the completeness of the eigensolutions of H.

Since our intention is to relax only one of the
conditions of Ref. 1, we state a modified version of
their assumptions as follows:

(1) The resolvent operator R(z) = (zI — H)™* is
defined on an everywhere-dense set D in a Hilbert
space, such that for all ¢, v in D the function
(¢, R(2)y) is analytic in z except for jsolated poles of
finite order and for cuts. The function (¢, R(z)y) has

* Work performed under the auspices of the U.S. Atomic Energy
Commission.

! L. Fonda, G. C. Ghirardi, T. Weber, and A. Rimini, J. Math.
Phys. 7, 1643 (1966).

% A. C. Zaamen, Linear Analysis (Interscience Publishers, Inc.,
New York, 1953).

8 J. Wong, J. Math. Phys. 8, 2039 (1967).

a Laurent expansion about any of its isolated poles:

o0

(¢, R(z)y) = Em(z — E))"(¢, By),

n=-y

»(b) = (order of the pole E,) < o0,

(¢m@=%{@—&Wﬂ¢mmwa
i Jr,

¢y

where the contour I', encloses only the singularity
E,. Since ¢ and y are arbitrary functions belonging
to a dense set D, it is meaningful to speak of the
B,’s as operators with domain D. We assume that
the range of any of the operators B, is in D, so that
the operator product B, B, makes sense. The function
(¢, R(z)p) has a branch cut lying along the real axis
Ey < Re(z) < . The “projection” operators p’s
are defined by the following formulas:

%jWﬂ@wa=%&m=wmm
Tl Iy
and
@gﬁwmw+mw—wmw—mm
= (b P(EYp), Eo<E< . (2)

The operator P(E) has the usual meaning of a
projection operator associated with the continuous
spectrum.*

Remarks: In case that (a) the operator H is closed,
(b) (zI — H) has a range dense in the Hilbert space,
and (c) the inverse operator R(z) = (zI — H)! is
continuous, then R(z) is guaranteed to be analytic in
the resolvent set p(H).>

(2) The function (¢, R(z)y) has only a finite
number of poles and none of the poles fall on the
branch cut E; < Re (z) < .

4 See, e.g., N. I. Akhiezer and I. M. Glazman, Theory of Linear
Operators in Hilbert Space (Frederick Ungar Publ. Co., New York,
1963), Vol. 1I.

® See, e.g., A. E. Taylor, Introduction to Functional Analysis
(John Wiley & Sons, Inc., New York, 1964), Chap. 5.
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(3) Asymptotically, the function (¢, R(z)y) —
z71(¢, Iy) as |z| — oo for all z differing from the cut
E, < Re(z) < oo.

The modification occurs in assumption (1) in
allowing a Laurent expansion of finite order about
any pole E,, rather than just a simple pole.

The product B,B, of two operator coefficients
B,, and B, can be computed with the aid of the
operator identity

(z' — z)R(z)R(z') = R(z) — R(z"), z and z' € p(H),
(3)

1 —m—1
BB, = dz| dz'(z — E,)™
(2mi)? f ry JIy ( »

X (2’ — E,) ™" 'R(2)R(z")
1

’ _ —m—1
i) frbdzﬁb’dz (z — E,)
X (z/ — E)y ™z’ — 2)'[R(z) — R(z")]

= [1 — 6(m) — On)]Bpini1, m,n 2 v(b),
where
6m)=1, if m>0,
=0, if m<O, 4)

and for ease of computation, one contour (say I';)
should be placed completely inside the other contour
(T,). By letting m and n assume various admissible
integral values, relations between various B,, can be
deduced:

B_, = (B—1)2a or P, = PE,
B_,,=(B_y)" " =Ny,

a projection operator,
m =2,3,"',’V(b),

(N)'™® =0, a nilpotent operator,
B” — (_)nB[’r)l+1, n= 0’ 1’ v, @, (5)
and

BOB—I = B—IBO = PbBO = 0,
BoB_2 = B_2B0 - NbBO == 0.
By a method of computation similar to Eq. (4), the

B ;B ;= BB ;= P,N,=N,,
(6)

product of two operator coefficients 4,, and ‘B,

associated with two distinct isolated poles E, and E,
vanishes for m and » less than zero:

A,B, = B, A, = %f dzf dz'(z — E)y ™!
Q2w Jr, Jry

x (z' — Ey) " R(2)R(z")
1 ’ _ —m—1
2wmi)? f r,,dzf rb'dz (z = Eo)
X (2 — E)y™" (2’ — 2)'[R(z) — R(z")]
=0, mn<0.

1439

In particular, we have the following important
identities:
A——lB—l =Pan=PbPa= 0,
A_B_y = P,N, = N,P, =0, @)
A_gB_l = Nan = PbNa = O.

It should be noticed that the properties of Eq. (7) are
those of projection operators. With the definition of
Eq. (2) and with the operator identity Eq. (3), the
operator product P,P(E) and N,P(E) can be shown to
satisfy the following projection operator identities:

P,P(E) = P(E)P, = 0,

N,P(E)= P(E)N,=0, E,<E<o. (8)

The completeness relation of the projection opera-
tors P,, P,, P,, - - -, and P(E) can be derived with the
assumptions (1), (2), and (3) by equating two analyti-
cally identical expressions (as was done in Ref. 1):

0= f dz(b, R@p) = 3 (4, Py,
Tl I b

1 [+
0=L f 2 ROV = () ondE(qs, P(EYY),
©

where I'; is a counterclockwise-oriented contour
encircling only the poles of (¢, R(z)y) and I'; is the
analytic deformation of I'; = (1) a counterclockwise-
oriented circle at |z] =~ oo and (2) a contour wrapping
around the cut E, < Re (z) < . Equating the two
expressions of Eq. (9) and dropping the arbitrary
functions of ¢ and ¢ of an everywhere-dense set D,
we arrive at the completeness relations
>Pp, +f dEP(E) = I. (10
v Eo
The remainder of the discussion on the completeness
relation should be the same as that of Ref. 1 except
for their Eq. (13) because of our Eq. (6). We have
instead

H =Y (E,P, + N, +f EP(E) dE. (11)
3 Eo
Hence,
P.H=HP,=E,P, + N,. (12)

But this should present no difficulty as far as the com-
pleteness relation is concerned.

Now we cite a class of physically reasonable
operators that are special examples for this note.
The class of operators discussed in Ref. 3 possess
compact operator properties for their point spectrum
and selfadjoint operator properties for their contin-
uous spectrum. They can be easily shown to satisfy
all the assumptions (1), (2), and (3). A completeness
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relation for them can be written down readily with the
biorthonormal sets of eigenfunctions {¢,} and {y,},
where

Hy, = Eyyp,

H'$, = EXdy, ($u, vs) = dup. (13)

Furthermore, the eigenmultiplicities »(b) of the
eigenvalues E, and E; must be the same because, in the
proof of Theorem A of Ref. 3, the eigenspace of E,
is the null space of T(z) — I, where T(z) is a compact
operator. With the help of the outgoing-wave boundary

JOURNAL OF MATHEMATICAL PHYSICS

JACK WONG

condition for the unrenormalizable eigenvectors
T, p* (see Ref. 1), we write a completeness relation

S Womo) Bomel + fE dE v (b3l = I,
m(b)=1.£,-~~.v(b) i (14)

where {¥, )} and {@y .} span the associated
eigenspaces of E, and E;, respectively, and can be
chosen such that

(Do, mr6) > Po.me) = Oo60memymip) -
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This paper contains results on the logarithmic asymptotic behavior of certain partial sums of photon

self-energy graphs.

I. INTRODUCTION

The question of obtaining logarithmic asymptotic
estimates for renormalized Feynman integrals, in
particular, those arising from the vacuum polarization
graphs of quantum electrodynamics, has been con-
sidered in Refs. 1 and 2. In Ref. 1, techniques were
developed enabling one to obtain rigorous logarithmic
estimates for a single Feynman graph. The problem of
summing different graphs was not considered there.
In Ref. 2, renormalization-group arguments were
used to obtain logarithmic estimates on the sum of all
the photon self-energy graphs of a given order.

In this paper, we use the result of Jost and
Luttinger®* and the techniques of Ref. 1 to obtain
logarithmic estimates on certain partial sums of
photon self-energy graphs. All of the notation and
terminology used in the following is described in
detail in Ref. 1.

II. SUMMING GRAPHS

The analysis of sums of graphs using the results of
Ref. 1 seems, in general, to be a difficult problem.

* Supported in part by the U.S. Atomic Energy Commission
under Contract No. AT(30-1)-3829.

1]. Fink, J. Math. Phys. 9, 1389 (1968).

2 J. Fink, Phys. Rev. 170, 1580 (1968).

3 R. Jost and J. M. Luttinger, Helv. Phys. Acta 23, 201 (1950).

4J. Bjorken and S. Drell, Relativistic Quantum Fields (McGraw-
Hill Book Company, New York, 1965).

ol Spon ool o on e

FiG. 1. Fourth-order photon self-energy graphs.

For a special collection of graphs, however, we can
determine upper bounds on the logarithmic asymp-
totic coefficients of their sums.

We begin by considering the three fourth-order
photon self-energy graphs shown in Fig. 1. Each
graph has logarithmic asymptotic coefficient 2,! but
in summing these graphs the log? (¢%/4%) terms cancel
so that the sum has logarithmic asymptotic coefficient
1.3.4

Consider now any three nth-order photon self-
energy graphs which can be pbtained from the fourth-
order graphs in Fig. 1 by inserting the same m
irreducible insertions into each one. For example,
the eighth-order graphs in Fig. 2 are obtained from
those in Fig. 1 by inserting first the irreducible inser-
tion shown in Fig. 3(a) followed by the irreducible
insertion shown in Fig. 3(b).

ol o sl T

FiG. 2. Eighth-order photon self-energy graphs.
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FiG. 2. Eighth-order photon self-energy graphs.
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{a) (b)

F1G. 3. Irreducible insertions added to the graphs of Fig. 1
to obtain the graphs of Fig 2.

Each of the three nth-order graphs so obtained has
logarithmic asymptotic coefficient m + 2.! Hence,
the logarithmic asymptotic coefficient of their sum is
less than or equal to m + 2. Using the known
cancellation in the sum of the fourth-order graphs in
Fig. 1, we can improve this upper bound.

Let p™, n >4, be the logarithmic asymptotic
coefficient of the sum of three nth-order photon self-
energy graphs obtained as described above. We know
that

ﬂ(4) =1,
/3(”) <m+ 2.

Furthermore, since the dimension of the Feynman
integral corresponding to an nth-order photon self-
energy graph is 2n, we obtain! from that

2n
ﬁ(n) = z D — 2n,
=1

where the dimension numbers p; are defined explicitly
in Ref. 1. Thus,

2n

/3(”) = lei —2n
2-4 2n
=3p—24+ 3 p—(@Qn—2-4)
i=1 i=24+1
2n
=ﬂm+ Z pi—2(n—4)
i=2a+1
<14+ m

Here we have used the fact that 5 = 1. The estimate
on the remaining terms is derived in Ref. 1.

1441
We have, therefore, proved the following theorem:

Theorem 1: Let G be the sum of any three nth-order
(n > 4) photon self-energy graphs obtainable from
the three fourth-order photon self-energy graphs by
inserting the same m irreducible insertions into each.
Then G has logarithmic asymptotic coefficient
G <m+ 1.

Two corollaries follow immediately.

Corollary 1: Let G be a sum of nth-order (n > 4)
photon self-energy graphs consisting of sums G,,
i=1,"++,k, of the type described in Theorem 1.
Let m;, i=1,---,k, be the number of irreducible
insertions added to the fourth-order graphs in order
to obtain G;. Then G has logarithmic asymptotic
coefficient

B(G) £ max {m;} + 1.
=1,k

The second corollary follows by observing that the
maximum number of irreducible insertions that can
be added to a fourth-order photon self-energy graph
in order to obtain an nth-order graph is (n — 4)/2.

Corollary 2: Let G be the sum of three nth-order
(n > 4) photon self-energy graphs as described in
Theorem 1. Then G always has logarithmic asymptotic
coefficient §(G) < in — 1.

III. CONCLUDING REMARKS

Corollary 2 gives one hope that perhaps these
techniques can be used to show that the highest
power of the logarithm cancels when all the graphs
of a given order are summed together. This result was
derived in Ref. 2 using renormalization-group argu-
ments, but it does not follow from the above results
as they stand.
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We have obtained an appreciably simplified derivation of the expansion in inverse range of the
thermodynamic functions of a system of particles with short-range repulsion and weak long-range attrac-
tive interaction. We assume all properties of the system with only the short-range repulsive interaction to
be known and consider this system as a reference system for the purpose of a perturbation expansion.
We derive corrections to the van der Waals equation and to the Maxwell construction. The terms in our
expansion are integrals cver products of the modified Ursell functions of the reference system only and
factors which are the transformed long-range potential. A simple rule is given to determine the order, in
the inverse range of the attractive potential, of each term in the expansion. The simplification of the
derivation is achieved by avoiding the expansion and subsequent resummation of any functions per-
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taining to the reference system.

SECTION 1

Because of the tremendous mathematical difficulties
of calculating the thermodynamic functions of systems
of interacting particles, even in the classical limit and
with pair interactions only, it is natural to look for
perturbation methods. In such a method, one has to
start from a reference system whose properties are
assumed to be known. Expansions in number density
or fugacity use as reference system the ideal gas, and
their limitations are well known.

For the case of the Ising model of the ferromagnet,
it was suggested first by Brout! that one should con-
sider as perturbation a long-range, weak interaction
with the reciprocal effective number of neighbors as
expansion parameter, because it was surmised that
the Weiss theory of ferromagnetism would become
exact in the limit of infinitely weak, infinitely long-
range integrable interaction potential.

For the fluid, the corresponding procedure of
using as reference system a system of particles with
strong short-range repulsive interaction and as a
perturbation a weak long-range attractive interaction
has been used by many authors.? The attractive part
of the potential energy of interaction is usually taken
to be of the form —9*®(y |r, — r,|), where » is the
dimensionality of the space and the parameter y1is a
measure of the range of the attractive force. It is now
established that for a wide class of repulsive potentials
and for a wide class of functions @, in the limit

* Program at Northwestern University .supported by Office of
Naval Research and National Science Foundation.

1 R. Brout, Phys. Rev. 118, 1009 (1960).

2 See J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6, 1282
(1965), and references given there.

y — 0, the equation of state is determined by applying
the Maxwell construction to the van der Waals type
equation

P(P) = pu(p) — vop®

where p is the number density, p(p) and p,(p) the
pressures of the system and the reference system,
respectively, and v, = [ ®(x) d"x.? Corrections to the
van der Waals equation, in the form of expansions in
powers of y, explicit to order y**, have been obtained
by several authors: »* by Hemmer,* y*—* by Zit-
tartz,® and p** by Lebowitz, Stell, and Baer.2 The last
authors also develop a method of obtaining the
expansion to all orders of y.

We are aware of the objections to the expansion in
powers of p. It fails in an obvious manner at the
critical point of the van der Waals theory, and it
predicts a phase transition of the one-dimensional
model for y 5 0 which, from the exact calculation of
Kac, Uhlenbeck, and Hemmer,® is known not to
occur. It is not known whether partial resummation of
the expansion can remove these shortcomings. The
expansion may, however, be valid, at least as an
asymptotic series, for the two- and three-dimensional
fluid in single-phase regions including the first-order
phase transition at any fixed temperature above or
below the critical temperature for sufficiently small
y. For this reason, and because of the desirability of

8 For the one-dimensjonal system of particles with hard-rod
interaction and @(x) = e, this was established by M. Kac, G.
E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4,216 (1963). The
general result was obtained heuristically by N. G. van Kampen,
Phys. Rev. 135, 362 (1964), and made rigorous by J. L. Lebowitz and
O. Penrose, J. Math. Phys. 7, 98 (1966).

4 P. C. Hemmer, J. Math. Phys. 5, 75 (1964).

5 J. Zittartz, Z. Physik 180, 219 (1964).
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having the expansion in a transparent form, facilitating
attempts at resummation, we have reconsidered the
expansion and a possible modification.

In the present paper, we derive corrections to the
van der Waals equation and to the Maxwell con-
struction. Our derivation is made comparatively simple
and straightforward by avoiding any expansion and
subsequent resummation of functions pertaining to
the reference system. The terms in our expansion are
given as integrals over products of the modified
Ursell functions® of the reference system only and
factors which are the transformed potential of the
Debye type, but of long range. This potential is
obtainable by Fourier inversion from the Fourier
transforms of the two-particle correlation function of
the reference system and the original attractive
potential. We give a simple rule for determining the
order in y of any term in the expansion.

We use the method of random functions, originated
by Kac.” In Sec. 2, we introduce our notation and
state restrictions on the potential in order to use the
method of random functions in its most convenient
form. In Sec. 3, we write the grand partition function
of the system as an average over random functions
(function-space integral) and motivate the expansion
of the integrand. In Sec. 4, we carry out the expansion
and the average over the random functions. The terms
of this expansion are conveniently written as diagrams.
While our diagrams consist of circles (hypervertices)
and lines, like those of Lebowitz, Stell, and Baer,2? the
interpretation of these diagrams is different. Our
circles represent the modified Ursell functions of the
reference system and are independent of the long-
range part of the potential. In Sec. 5, we show how to
determine the order in y of any term in the expansion.
In Sec. 6, we obtain the correction terms to pressure
and number density and to the Maxwell construction
in the grand canonical form and give the formal
perturbation expansion of the Helmholtz free energy
as function of the density. Section 7 contains a sum-
mary and discussion of our results.

SECTION 2

We consider a system of particles in a »-dimensional
cube of volume V. The interaction potential is taken
to consist of a hard-core® interaction and an attractive
pair potential —u(r) < 0. We restrict our considera-
tions to functions »(r) which can be represented as the
covariance of real-valued Gaussian random functions

8 J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 1495 (1963).

7 M. Kac, Phys. Fluids 2, 8 (1959).

8 By “hard core” we mean any repulsive potential which satisfies
the conditions of Lebowitz and Penrose, Ref. 3.
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é(r) with
<¢(r)>a,v ¢ = 0 (2.1

<¢(r)¢(r,)>a,v¢ = ﬁv(r - l"), (22)

where f = (kT)™! with k£ Boltzmann’s constant and
T the absolute temperature. The restriction to real-
valued random functions requires that the eigenvalues
v, of v(r —r’), considered as a kernel, are positive
and that »(0) is finite.® An explicit representation of
the functions ¢(r) can be obtained by expanding them
in the eigenfunctions of v(r — r’) in the volume V,
ie.,

and

$(0) = 3 ¢ (Bv,)u (o),

g

2.3)

where
f d’r'o(r — 1)u,(r') = v,u,lr). -
v

In (2.3) the random variables c, are defined by the
probability density

11 ((j:;% e—w) '

For convenience, we make the interaction po-
tentials (both hard-core and attractive parts) periodic
in space with period V', and impose Born-von
Kéarman conditions. In this case, the eigenfunctions
u,(r) are simply the trigonometric functions and we
have, for the largest eigenvalue v, and corresponding
eigenfunction uy(r),

(2.4)

o =va(r) d'r, (2.5)

uy(r) = V1. (2.6)

While the assumption of periodicity makes v(r) volume
dependent, for finite volumes, it is generally accepted
that the correct thermodynamic functions are obtained
in this way in the thermodynamic limit.

We are interested in the case where the attractive
potential is weak and long range, and we introduce a
reciprocal range y by assuming that for the infinite
system the potential is of the form —y"®(y |r, — ry)).
The potential v(r) is then defined by making this
potential periodic.

We take ®(r) to satisfy the conditions of Lebowitz
and Penrose.® These guarantee that the equation of
state of our system, in the limit y — 0, approaches the
van der Waals type equation!® with Maxwell con-
struction.

? The restriction to real-valued random functions could easily be
avoided, but we need the positivity of the v, and the finiteness of
v(0) for carrying out the estimates of Appendix B.

10 By *““van der Waals type” we mean the van der Waals equation
with the van der Waals approximation to the hard-core pressure
replaced by the exact hard-core pressure.
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SECTION 3

We denote by Sy(ry, * - -, ry) the Boltzmann factor
for the hard-core? potential alone. The Gibbs integral
for our system is

Zy(B, V) = deersN exp [-%—ﬂigjv(r,. - r,)], 3.1)

and introducing the random functions defined in the
previous section, we obtain the well-known representa-
tion

ZN(B, V) = exp [—$Npu(0)]

{Jsson o)

av ¢

(3.2)

which is easily verified by using the representation
(2.3) and carrying out the integral over the vari-
ables c, .

The grand partition function at fugacity z, defined by

@ ZN
0(z) ENE_O ?\7_' Zy, 3.3)
becomes
e—%ﬂv(o))N

(e
Q(z) = \E

f d"VrSy exp [gf’s(r ]>¢

® (Ze-éﬂv(o))zv

f IH((zw)* )1\/z=0 NI

x LvarsN exp [Z c,(ﬁv,)*ua(ri)}. (3.4)

For the extrema of the integrand, one has the set of
equations
.} 0 (Ze—%ﬂv(o))N
="y ——+—
dc, N=o N!

x fvvarSN exp LE c,(ﬂu,)*u,(r,.)}. (3.5)

Carrying out the differentiation explicitly, one finds
that these equations have some simple solutions,
namely,

=0, for 7#0, (3.6)
and ¢” given by the roots of the equation
co (Bra¥ )t = pi{z exp [—3B0(0) + colBro/ V)11,
3.7

where p,(y) is the density of the hard-core system at
fugacity y. This equation becomes more transparent
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Ph(Y)

Iny

FiG. 1. Hard-core density vs In (fugacity), schematic.

with the notation

Iny =1Inz—3po(0) + co(fro/ V)t = p, (3.8)
pr(y) = Palp), (3.9)
Inz — }fv(0) = &, (3.10)
so that
colBoo VIt = p — & (3.11)
We then have
(1 — &)[Bre = pr(p). (3.12)

pn(u) is a nondecreasing nonnegative bounded func-
tion and, from any of the known approximations,
one expects the shape indicated schematically in Fig.
1. The possible values of u and, therefore, of ¢ are
thus obtained by the construction familiar from the
Weiss theory of magnetism. Choosing that root of
Eq. (3.12) which maximizes the integrand in (3.4), this
construction is the grand canonical form of the Max-
well construction applied to the van der Waals type
equation. The construction is discussed in Appen-
dix A.

With this as motivation, we separate ¢ into its
spatial average and its spatially inhomogeneous part
y(r), defined by

p(x) = $(1) — colBro/ V)2,
Equation (3.4) then becomes

A
0(z) = I\ >

N=o N!.

(3.13)

[ d"NrSN

x e[ 3 w(rz->}>w > L1

where y is given by (3.8). For y(r) = 0, we obtain
0(2) == Qu(2) = (exp [BVPA(MDav o> (3.15)

where P,(y) is the pressure of the hard-core system at
fugacity y. According to the preceding arguments,
this gives the van der Waals equation with Maxwell
construction.
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Quite generally, the representation (3.14) can be
written in the form

0(z) = (exp [BVP(y) + VA )Dav c,5
where h(y) is defined by

(3.16)

h(y) = V—lln/ z'y f d"VrSy

X exp [gl w(ri)]> — BPy(y). (3.17)

It is now convenient to introduce a functional A{y}
defined by

Ay} = lné %—fd””rsﬁexp [fw(r,.)]

i=1
~1In Z d”NrSN, (3.18)
N=s N
so that (3.17) can be written in the form
h(y) = V' 1In {exp A{¥Dav - 3.19

We have seen that setting y(r) = 0 gives the van der
Waals type equation of state. Thus, it is natural to
expand the functional A{y} in a functional Taylor
series about p(r) = 0. This expansion is well known
to be

A{w}
n~1 n‘f dvrl f d rn'u"(rl’ REL ‘Y)w(rl) '(p(rn)a
(3.20)

where the functions p,(r, , * * * , T, | y) are the modified
Ursell functions for a hard-core system at fugacit)i >
They are defined in Ref. 6 and denoted there by ¥
In terms of the Ursell {or correlation) functions for a
hard-core system F ,(ry, - *, T, [ ), the first few are
given by
(T ‘)’) = Fi(r f)’)a

s(ry, Ty IJ’) = Fo(ry, Iy fJ’) + Fi(ry [}’)5(1'1
ps(ry, T, Iy ‘)’) = Fy(ry, T, 13 })’)

+ Faolry, 1y !}’)5("2 —13) + Fulty, 1y ! »o(r, — 1y)

+ Folry, 1y ly)é(u Y

+ Fi(ry !J’)a(fl — T)0(ry — 1y). (3.2

Because of the Born-von Karman conditions, all
the functions u, are translationally invariant and, in
particular, u;(r, | ») is independent of r, . In the fluid,
the range of u, will be of order n times the range of the
repulsive potential, which will be used later. Since
fy w(@) d*r = 0, by definition, the term linear in y
in (3.20) vanishes. Keeping only the term quadratic in
w in (3.20) and writing out the average over y as a

- 1'2),

144!

multiple mtegral over the random varjables c,
introduced in Sec. 2, we obtain

In <exp A{wbavw = “’%agoln (1 - 5"0[42.«), (322:

where the coefficients u, , are defined by

[ e | ) @ = o). 323

The result (3.22) was obtained by Zittartz.® The result
of Hemmer* may be obtained from (3.22) by replacing

Hs,q DY #50 Where
Hao = PrOpnlOBPy. (3.24)

Equation (3.24) is a special case of the general
fluctuation theorem
R { y)

[ar- [ arm.
v v
= RO D (329)

Zittartz’s result contains all contributions to A(y) of
orders 7" through y*'~ inclusive. (It also contains, in
general, higher-order terms.) Hemmer’s result gives
the terms proportional to y* exactly, because the
coefficients #, decrease rapidly while the coefficients
M, , decrease slowly in Fourier space.

In order to obtain terms of higher order in y, we
make a transformation in function space similar to the
one which turned out to be useful in the case of the
Ising model.’? We introduce a function x(r — r'),
periodic with period ¥V, and its expansion

X(r - rl) = z Xaua(r)ua(r,)'
This function is arbitrary except for the restriction

1 — Box, > 6, 3.27

where 6 is a fixed positive number which we impose.
Starting from the form

sy =jwjn () ew |13

@m?

(3.26)

{ oot () }] (3.28)

where the prime indicates exclusion of ¢ we add
and subtract in the exponent
13 2Bvx. (3.29)

1t Under the assumption of Born-von Karmin conditions, the
function gy, v | ) depends only on the relative vectorial distance
r — r’, so that its eigenfunctions are also the trigonometric functions

g(r).
12 A.J1.F, Siegert and D. J. Vezzetti, J. Math. Phys. 9, 2173 (1968).
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and obtain

(e ev f f Ir ((277)%)

X exp [— 23 21 — fo,z)

Ay cupetue) =4 3 cﬁﬂu‘,x{l.
(3.30)

We now introduce new variables b, defined by

b,=c,(1— ,Bvaxd)%

(3.31)
and obtain

(@ avy =IT'(1 = 5“0"”)-%] f Ir ((2 )i)
X exp [— %; bs

po.__\}
e
a 1 — IB a'xo'
z b2 ﬂvo'Xa' ]
[4 1- ﬁv,xg
Introducing new random functions ¢(r) defined by

w0 =30 ﬂ; ,,xa)“"(')’

where the random variables b, are defined by the
probability density
_gbﬂs)

db,
I ((zw)‘*
we can eliminate the explicit representation and write
(3.32) in the form

@), =TI (1 - ﬁv,x,>-*<exp [4(3)

(3.32)

(3.33)

(3.34)

%f d'ry d'ryP(r)g(r, — ra)P(r 2):‘>

(3.35)

The functions (r) are Gaussian random functions
with mean value ($(r)),,; = 0 and covariance

avy

PEOPE Yoy = B, ¥ | ), (3.36)
where
o, r | B)=1dr—r | B) = X' s u,(mu,(r’) (3.37)
with ’
b, =v, /(1 — Pv,x,) (3.38)
We note that the function
b —r|B) =8 ~r|f) +&/V (339
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satisfies the integral equation
Bi(r —r' [ 7)
= —r)+r de"r”K(r — )i —r'|7), (3.40)
where
K(r—1r" =de“r’v(r — )y —r"). (3.41)

This transformation thus extracts from the average a
factor of the form of Zittartz’s approximation (3.22).
For the special choice of the arbitrary function g,
namely y = u,, this factor becomes identical with the
result of Zittartz.

This factor can be expressed in terms of the function
o(r | 7). Since

9 A =)
67- a

=313"0,x, Vf dri(r | Tx(r), (3.42)

we have

B
~3>'In(1 — Boy,) =4V f dr f d'ri(r | T)x(0).
a 0 14
(3.43)
With these results, we may now write 4(y) in the form

B
h(y) = %J; deVdvrﬁ(r [ g
+ V7' /exp [A3{1/7} + %f d’ry d'ry
\ v
X P(r)(pe(ry, T2 I y) = x(rs, l'2))’7’("2)]> B

(3.44)
where
A7)
=3 L] e @, DER) 9
(3.45)

Before we proceed to a systematic expansion of
h(y), we note that we can quickly derive the next-
order result, which includes the result of Lebowitz,
Stell, and Baer.? With the above-mentioned special
choice of yx(r;, r,), we expand the logarithm of the
average in (3.44) in a cumulant expansion, i.e.,

In (€4 P)ay 4
= <A3{w~}>av¢ + %[<A§{¢}>av¢ - <A3{¢}>§,v.p] + -
(3.46)

and retain only the first nonvanishing term in each
cumulant (the term with g, in (4;) and the terms with
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two uy’s in [(43) — (4,)%]). We then have, as we will
show later, all terms which contribute to A(y)
through order »*~1. This may be shown to contain
all contributions to the free energy through order
y®~1 and thus includes the terms through order y®
which have been calculated explicitly by Lebowitz,
Stell, and Baer.

SECTION 4

We now proceed to a systematic evaluation of 4(y)
with the special choice y = u,. Defining 4V(y) by

€™, 5, (4.12)

thm(v)
we have

thm(v)

had n r k4 T 3 rn ) . -~ vR

= (T exp [ 1o T e )
\n=3 14 n! j=1 av g
(4.1v)

Expanding each factor of the product, we obtain

e

- < 1L
m3—0 m4—0
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4=3 myymy, - - n=3 M, (n 1)s
X , ﬁ(/“n)(mn)<n 1})(1' )>av 'pdvar,

where the prime indicates the restriction

@
> nm, =«
n=3

SIE Y

n=3 M, av ¢

(4.2)

(4.3)

and where
I_I3 ()™

is the product of my; factors us, m, factors u,, etc.,
with the arguments r; (j = 1, * * -, «) in natural order.

The average in (4.2) is zero if « is odd. For « even,
we have

<1I~’(l'1) e ¢(ra)>an

= z ﬂv(ril - 1,2
(pairings)

i, , — 1) (4.4)
The sum is to be taken over all different ways of pair-
ing the variables, that is, over all different ways of
choosing /2 pairs (i3, &), (i3, 4), - -+, (-1, &) from
the numbers 1, 2, - - -, . Two ways of pairing count
as different only if they cannot be made the same by a
permutation of the pairs and a pair is defined regard-
less of order.

The terms resulting from substituting (4.4) into
(4.2) can now be associated with labeled diagrams.
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The diagrams are defined as follows: A circle con-
taining n points r, ,* -, r, represents u,(r;, ",

+,| »)- A line connecting pomts r, and r, . represents
/fi’v(r“c —r, ). Each integral in (4 2) 1s therefore
associated with a diagram consisting of § circles (S >
1) containing the appropriate number of points, these
points labeled 1, 2, - - -, «, and «/2 lines connecting
these points such that each point is connected to one
and only one other point by a line. By observing the
order in ¥V or by the usual diagram arguments, it
now follows that

vhy) =3 3 H oo ) 10 ()™
a=4 mg,my, - =3 M, (n') » n=3
X z ﬂv(ril - 12 ﬁv( Za 1 ria) d"ar,
(pairings)
4.5)

where the prime on the last sum indicates that only
such pairings are permitted which result in a connected
diagram.

Many of the integrals have of necessity the same
value, because they arise from different ways of
labeling the variables of integration. It is therefore
sufficient to take into account in Eq. (4.5) only a
subset § of the original diagrams obtained by selecting
only one diagram G from all the connected diagrams
which give the same value, I, for the integral. Thus,
we have

Ky =v! 2 M

e s m '( ‘)m NGIGa

(4.6)
where N’y is the number of integrals in (4.5) which
have the value /;. The number N’ can be obtained as
the product of the total number of permutations of the
points in each circle times the total number of per-
mutations of the circles with the same number of
points divided by the number Sj; of such permutations
which give the same pairing. The first number is just

@
LI m,! (n))™
n=3

and cancels the denominator in (4.6). We can thus
write (4.6) in the form

K2y =V 3 Ig/Sg. 4.7
G<8

The symmetry number Sy can be written as follows:
Consider the graph G with the circles labeled from
1 to 3, m,, and the points unlabeled. Let #;, be the
number of lines connecting circle i and circle j (z,; i

not necessarily zero). The matrix ¢;; characterizes the
graph with labeled circles and unlabeled points
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2 3
(a) (b)

F1G. 2. Example of diagram.

uniquely. Then
S¢ = 11 ;! T1 @S5,

i<j

(4.8)

where Sy is the number of permutatlons, including the
identity, of the labels 1, 2, - _g m,, which leave
the matrix f,; invariant. T he factor precedmg Sgis just
the number of ways of labeling the points in each
circle which all give rise to the same pairing.

As an example, we calculate the coefficient of

Ig= Vv fv"“(l’ 2,3, 4)us(5, 6, (8, 9, 10)

x B*3(1,2)5(3, 5)i(4, 10)5(6,9)8(7,8) d*r, (4.9)

which corresponds to the diagram in Fig. 2(a). To
evaluate the coefficient by (4.8) we label the circles as
indicated in Fig. 2(b) and obtain t;; = tj, = t;3 =1,
t,3 = 2, all others being equal to zero, and S = 2,
since only the identity and the permutation (123) leave
the ¢,; invariant. Thus Sg = (21)(2Y)(2) = 8.

To evaluate the coefficient from (4.6) we note that
my =2, my=1. To obtain N, the number of
pairings, we note that the re-entrant line of circle 1
can be chosen in (3) ways and the two lines connecting
circles 2 and 3 can be chosen in (§)*-2 ways. The
remaining point in circle 2 can be paired with either
of the two remaining points in circle 1, giving another
factor 2, and we obtain N3 = 216 and

I 1 _ 1 REINCD S 1
m ()™ ¢ 2111 (3N% 2D Q21 8’

(4.10)

in agreement with the value obtained from (4.8). It is
clear that (4.8) is more convenient than (4.6), espe-
cially for more elaborate diagrams.

SECTION 5

Having defined the diagrams and determined the
symmetry numbers S, we will now estimate the order
in y of any given diagram. The range of the factors
¥(r;, r;) is at least of order %, while the range of u,
is independent of y by definition and is of order n
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times the hard-core diameter. For purposes of esti-
mation, we can then replace each u, by

l‘n(l’1,"',rn|y’)
~ H a(rl - rk)f;un(rla"'ﬁrnly) dvrz'”dvrn
a"BPh(.V)
= ITo - 520 (5.1)

The order in y of any integral I is then the order of

II

1<i<ji<

V“‘(ﬁ(O))Sf a’ry- - d'rg [v(r =), (5.2)
v

where 8 = >, 1;, and where the matrix #,; was defined
in Sec. 4, and §'is the number of circles in the diagram.
For v(r) = y*®(yr), we find, using (5.1) in (3.39)-
(3.41) with y = u,,

o(r) = y'f(yr). (-3)
The exact form of u, would contribute to # only terms

of higher order in y. Introducing new coordinates
X; = yr;, we obtain from (5.2)

o'f (0))8deVx2 e dxg S T

1<{<j<8

Y f(x—x)1",
5.9
where 8 is defined as after Eq. (5.2). If f(0) and

f dxg - d'xg H
14

1<i<ji<
are finite even for ¥ — oo (the proof and discussion
are in Appendix B), then (5.4) is of order

[f (x; — x)]%

yv[8'+1—S]

8= > ;.

1Si<i<8

(5.5
in y. Here,

The sum in the bracket is just the number of lines in
the diagram which we will denote by B. We can
summarize by writing, for a diagram with B bonds

o =0

(12)

D

(8)

Fic. 3. Diagrams
needed through order
y*¥-1, The last of
these diagrams gives
a contribution of
Zero. Symmetry num-
bers are shown in
parenthesis.
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2 =0

(48) (48)

S (12) Z S (16) :

L dh
0P

(16) (24)

F1G. 4. Diagrams needed through order y*V-1. Symmetry numbers
are shown in parenthesis.

and S circles, the dominant contribution is of order

14 (5.6)

In this manner, each diagram in the sum we are con-
sidering may be classified according to its dominant
order in y, and the sum of diagrams may be ordered
accordingly.

From (5.6) we can prove that each term in AV(y) is
of order at least »2*. This is seen as follows. Since each
circle contains at least three points, we have B > 4.
The expression (5.6) then shows that all diagrams with
S circles are of order at least *5/2+1], For § > 2, we
obtain terms of order %" or higher. If § =1, then
B > 2, and (5.6) then gives 92" or higher. Q.E.D.

In order to obtain all terms whose dominant
contributions are of order y*¥, we simply write

B+1-S=M (5.7)

and consider the various B(>2) and S(> 1)
(B = 3S5/2) which can give this M. To obtain the
expansion through order y"¥, only diagrams with not
more than 2(M — 1) circles need to be considered.
(Since the next dominant term is of order y*™+V, this
actually gives all terms through order y*M+1)-1)

For instance, for M = 2, we have to take diagrams
with S =1, 2, i.e., the diagrams in Fig. 3. The last

v[B+1-8]
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of these diagrams has the value zero. The first two
diagrams of Fig. 3 are all that we need in order to
compute the thermodynamic functions through order
y®-1, since the remaining diagrams contribute %
and higher. These two diagrams include the result of
Lebowitz, Stell, and Baer.2 To compute the thermo-
dynamic functions to order p**' we need those
diagrams whose dominant contributions are of order
y¥. For M =3, we need S =1, 2, 3, 4. The only
ones of these diagrams which are not necessarily zero
are shown in Fig. 4.

SECTION 6

We have shown how to evaluate the function A(y)
as an expansion in y. Combining our results to this
point, we have

B
h) = § f dr de“rﬁ(r | e | 9) + KVG), (6.0)

where AV(y) is given by the diagram sum (4.7).
To determine the thermodynamic functions of our
system we must evaluate the pressure given by

BP(z) = lim ~1n f dc"&
VooV J-w (27)

x exp [—4c2 + BVP,(») + VAL, (6.2)

where y is given by (3.8). The saddle-point approxi-
mation gives

BP(z) = max [— 2 4 8R0) + h(y)} 63)

The extrema are the roots of the equation

=V ai [BP,(3) + h(»)].
Co

_a_=(é?9"’_a_
oc, V)alny’

the extrema are the roots of the equation

(6.4)

Since

(6.5)

Iny — In (ze @) = ﬂvo[ph(y) + Z’%} ©6.6)

where p,(y) is the density of the hard-core system at
fugacity y,
9BPy(y) .

SIn) (6.7)

pr(y) =
We then have

_ [ln y* —In (ze—-ﬂv(o)/2)]2
2fv,
+ BP,(y*) + h(y®), (6.8)

BP() =
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where y* is that root of (6.6) which gives the largest
value of P(z).

To obtain the density p(z), we differentiate (6.8)
and get

dpP(z) 0 dlny* @
= = P
p2) dlnz |:8 Inz dlnz dln y*:,ﬂ (=)
* _ —Bul(0)/2
_ Iny In(ze )’ (6.9)
Bro

since the second term in the brackets does not con-
tribute because of (6.8). Using (6.6) once more, we

have «
o2) = p(y®) + 207

Y (6.10)

and
BP(z) = PP, (y*) — 3Bvep?(2) + h(y*). (6.11)

Equations (6.6), (6.10), and (6.11) constitute our
formal result. For (y) — 0, this result approaches the
van der Waals equation with Maxwell construction in
the grand canonical form as discussed in Sec. 3,
starting with Eq. (3.8).

In order to compare our results with those of pre-
vious authors who have given the Helmholtz free
energy as a function of density (p) through order y?’,
we have to eliminate the fugacity from our equations.
We first change variables from y* and z to p, and p
by the definitions

p(z) = p, (6.12a)
Piy™) = B, (6.12b)
P() = PE(p) = plp), (6120

Py(y*) = P,(y*(pr)) = pilp),  (6.12d)
h(y*) = n(ps), (6.12¢)
Bh(y*)[2 In y* = m(py). (6.120)
Equations (6.10) and (6.11) then become
q Br(p) = Bpa(pn) + n(ps) — 3Bvep®  (6.13)
an
p = pu + mlpn) (6.14)

Eliminating p, from these equations, we obtain p(p).
This is conveniently done by using the relation between
Helmholtz free energy per particle A(p) and the
fugacity z:

BA(p) =Inz ~ fP@Ip(2).  (6.15)

Using (6.6) for In z and (6.13) and (6.14), we obtain

BA(p) = BA(py) + $Bv(0) — $Bvy(ps + "71(Ph))2
Bop)napn) — pan(ps) = F 6.16
prlen + 11(pn) = Flew, (6.16)

BAn(pa) = In y* — BP(y*) pa(y™)

with
6.17)
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and 4,(p,) is the Helmholtz free energy per particle of
the hard-core system at density p,. Using (6.14), we
can express the left side of Eq. (6.16) in powers of
M

BA(p) = PAGoy + (o)
= pAGp) + 3 DOV L g4 (618)
=1 n! dpy

Inserting (6.18) into (6.16), we sece that we have
completely eliminated the variable p. Thus p, takes on
the status of independent variable, and we can rename
it p. Hence, we obtain

pap) = Fp) — 3 L gy
=1 n! dp
= F(p) — 4BA(p), (6.19)

where the last line defines the (differential) operator

g. Solving this equation by iteration, we obtain the
final result

BAG) = 3 (—4\'F(p). (6.20)

By this equation, we have succeeded in expressing

the free energy -in terms of the hard-core functions

A, and p,, which we assume are known, and the

function #, . The equation of state follows from (6.20)
in the usual manner:

Br(p) = 2= BA(p) = o' = 3 (=4 F(p). (62D
P =

For reference purposes and for our future use, we give
A(p) explicitly to third order in #:

BA(p) = Bay(p) — $Pvop + 3Bv(0) — [n(p)/p]
1)’ 10 (;02(71’(;0))3

PN 4 oGy,
2 Boip)  6p9p (ﬂp;’,(p))z) +00r)
(6.22)

where the prime indicates differentiation with respect
to p. The terms explicitly exhibited in (6.22) are
sufficient to obtain the Helmholtz free energy to order
y*~1. Evaluated to order ¥, this equation gives the
results of Lebowitz, Stell, and Baer,? which in turn
contains the results of Zittartz’ and Hemmer.4

Since our result in its grand canonical form includes
the Maxwell construction, it is understood that this
construction in its appropriate form is to be applied
to these equations.

SECTION 7

In this section we summarize and discuss our results,
first in a special form, then in a more general form.
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The pressure P(z) and number density p(z) of the
system described in Sec. 2 are obtained in the form

BP(z) = BPy(y*) — 3Brop’(@) + h(y*), (T.1)

(y*)

7.2
7in (7.2)

p(@) = p (V") + -

where y* is that root of the equation

Iny — In (ze ) = ﬁvo[ph(y) + Z’;"’)] (13)

which maximizes the pressure P(z). Here P,(y) and
pn(y) are the pressure and number density of the
hard-core system at fugacity y and v, is defined by
Eq. (2.5). The function A(y) is given by

W) = 4 f "ar de"nxr | Pl | 1)+ KOG) (7.4)

and AV (y) is a diagram series defined as follows. Draw
S circles (S > 1) labeled C,,- -, C;, -+, Cq, each
containing n; > 3 points such that 35  n;iseven. Con-
nect these points by lines such that each point is con-
nected to one and only one other point. (Lines
connecting two points in the same circle are permitted.)
Disconnected diagrams and diagrams which would
become disconnected upon removal of one line are
excluded. With any diagram G, we associate an
integral I in the following way. Label the points
in circle C; by 1;4, T2, ", T;,,. For each circle
C; write a factor u,, (T2, ", ¥y, y), where y,, is the
nth modified Ursell function of the hard-core system
at fugacity y, defined in Ref. 6 and denoted there by
&, . For a line connecting points r; , and r;. . write a
factor po(r;, — r; ), where ¥ is defined by Eqgs.
(3.38)-(3.41) with the special choice

2r =) = ps(r, v’ | ).

I,; is then the integral over all coordinates of the
product of these factors. With any diagram G, we also
associate a symmetry number Sg. Let #;; be the number
of lines connecting circles C; and C; and let S, be the
number of permutations of the labels of the circles
which leave all ¢,; invariant. Then

SG = H(tt:a !) H 2t,,Sl

i<j

(1.5)

We call two diagrams G and G’ equivalent if the
integrands of Iy and /g are the same, except for
the labeling of the variables of integration. Divide the
class of diagrams described above into subclasses of
equivalent diagrams. Select one member from each
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subclass to form the class §. Then

hOG) = V™3 TelSa- (7.6
Ge8
We have shown that a diagram with B bonds and
S circles cannot contribute any power of y less than
y[B — S + 1] and that the coefficient of y"1B-5t1 ig
finite provided that

— By N aph(y) ’ 7

where § is any fixed, positive number. The meaning of
this condition is explained more fully in Appendix B,
Egs. (B5)-(B6). The requirement is a direct con-
sequence of the condition (3.27) imposed on the
arbitrary function x(r,r’) and the special choice
%(x, ') = p,(r, ¥’ | ). This condition can be weakened
by not making this special choice of y. We hope to
exploit the freedom of choosing x in a future paper
and for that reason have kept the present development
general except for the diagram series and the estimates
of the individual terms. The diagrams for the case
1 # uo are of the same type, except that now circles
with two points are permitted and are interpreted as
[us(x, ¥’ | ) — x(xr, )], and the bonds are interpreted
as B(r —r'|§), defined by the original equation
(3.37). The estimate of these diagrams is not difficult
if condition (3.27) is satisfied. However, the introduc-
tion of y # u, may be expected to lead to interesting
results only when this condition is relaxed to the extent
of having 1 — Bv_x_ (for some o) go to zero for y — 0
though not as strongly as 1 — Boyus .

With y = u,, for temperatures below the van der
Waals critical temperature, our method can yield £(y)
only outside an excluded interval of y values as dis-
cussed in Appendix B following Eq. (BS5). For small
enough y, the value of y* given by Eq. (7.3), with
0h(y)/d In y determined by truncating our expansion
at a finite order in y, will not fall in the excluded
interval. This means that our result predicts a phase
transition to any finite order in y, and therefore cannot
be used to decide whether a phase transition occurs,
In fact, Kac, Uhlenbeck, and Hemmer® show that
their one-dimensional model has no phase transition
for any ¥ > 0, but that the expansion of their exact
result in powers of y exhibits a phase transition to any
order in y. In the context of our work, this can be
understood physically because the Kac, Uhlenbeck,
and Hemmer model has, for small y > 0, even well
below the van der Waals critical temperature, instead
of a phase transition, a very high compressibility in
the region near the van der Waals first-order transition,
and therefore has very large density fluctuations in that
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region. It is then inappropriate to consider the
spatially inhomogeneous part of the random functions
as a small perturbation. If, however, a first-order
phase transition occurs for y > 0, as is expected for
the three-dimensional case, and if the compressibility
is not abnormally large, then it is physically reason-
able to treat the inhomogeneous part of the random
field as a perturbation, because under those conditions
large density fluctuations occur only in the coexistence
region which does not enter into the calculations in the
grand canonical formulation.

Our y expansion is not subject to the objection—
raised by some of the previous authors against their
results—that the two-particle distribution function
does not vanish when the distance between the two
particles is less than the hard-core diameter. The
two-particle distribution function obtained from our
result by functional differentiation with respect to the
repulsive potential vanishes in the hard-core term by
term, when the repulsive potential becomes a potential
with hard core. This will be shown in detail in a
forthcoming publication.

APPENDIX A

The van der Waals theory with Maxwell construc-
tion takes the following form in the grand canonical
formalism. In Fig. 5, we have p,(y) = p,(u) plotted
versus u =Iny. To solve (3.12) graphically, we
draw on this graph the straight lines (u — &)/Bv,.
When

max 9p(p) < _1__

, Al
w ou Py (A

there is only one solution u for any &; otherwise there
is a range of values & for which three solutions occur.
The critical temperature 7, = (k) is thus deter-
mined by

B _ 0 1
ﬂcvo

A2
v dlny (A2)

Aly) =3 (u)

slope ( Bg,)"'

1 1 1 1
€ Iny Lny, Iny, Adny, Iny=p

Fi1G. 5. Maxwell construction (without correction) in the grand
canonical formulation.
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Taking only the maximum of the integrand in (3.4),
we have

BP(z) = lim V'1n Q(2)
V-

2
cao)

2V
O

Since at the extrema

= max {— + P,

Dl ﬁ‘vf) = BooBlw), (Ad)
we have
BP(z) = max [BPy(y) — $fvepi(»)],  (AS)

ie., the pressure is obtained by taking that solution
p* = In y* for which the expression in brackets is
largest. One then shows easily that

0BP(z
o) = L2E = .
dlnz
It is also easily shown that an extremum y, obtained
from (3.12) is a minimum if
1

(aPh(J’))
—_ > ,
dlny/,  Pu,
so that the intermediate solution in Fig. 5 is never of
interest.

The value of z at which the transition occurs can be
obtained by application of an equal area construc ion

in Fig. 5. The two maxima obtained from solutions
Y, and y; are in fact equal if

Iny; 1 -1 —380(0)
| [y - Qo= lnze Jaiy =0, 7

ny, ﬂvo
since the integral is equal to

(A6)

_(Iny—1In 2¢Oy,
(67 T ]
= (BPy(y) — %ﬂ”oPﬁ(J’z)) — (BPy(y,) — %ﬂvopizt(.)’g))-

(A8)
APPENDIX B
We have seen that we can obtain the order in y of
any diagram if the factors in Eq. (5.4) are finite, even
for ¥V — co. To establish this, we shall work directly
from expression (5.2). First, using (3.27), (3.37), and
(3.38), we have

1 1 v
N ==N3 3
O=52% V2 T fouge
=0—1( O_ﬂ])’
v(0) V

where 0 is a fixed, positive number. Thus #(0) is finite,

0—-1
<__ ’
14 ; b

(B1)
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since v(0) is by assumption. Further, since v(0)/y” is
nonzero as y — 0, we have
lim §(0) = Ky
V=
with K constant and independent of .
We next show that our choice x(r, ') = p,(r, ' | )
is permissible. Since u,(r | y)is noteverywhere positive,
the Fourier components u,, are not necessarily
smaller than g, o, which is known to be

Opa(y)/0(In y) = pn(y)-
Since, however, u, , is of course independent of p,
while v, decreases very rapidly in Fourier space for
sufficiently small y, we have

IUa,uz,J < Uols,0 (B3)

for sufficiently small y. For the purpose of our esti-
mate, we therefore need only

1 - ﬂvo/«tz,o =1- .Bvof’h(}’) > 0. (B4)
The critical temperature T, = (kB,)~* of the van der
Waals approximation is given by

Bevo max A(y) = 1.
14

(B2)

(B5)

For T > T, our estimate requires, therefore, only that
T — T, is bounded away from zero. For T < T,,
however, an interval of values of y has to be excluded,
namely, the interval where

A(y) > (1/Brg)(1 = 0). (B6)
Our estimate therefore is valid for T < T, only if
y < y1—e€ory 2y, + ewith y; and y, indicated in
Fig. 5, and e positive.
Next, we have to show that the factor

g=v- deVrl---dVrs T G —r) (B7)

1<i<j<8§
is bounded. To do this, we first draw a diagram
representing (B7), which consists of points representing
r;, -, Ig and lines representing &(r; — ry). Select a
point from this diagram which is not an articulation
point. Call this point r;. Let the points connected to
r, by 7 bonds be labeled r, ,, 1y, -, 1, ;. Then

lgl SV d'ry - - drg |#(r; — x)|™
- J

1<i<j<8§8

IT 130 — )™

2<i<i<S

x f &'ry [65(6 — £y )[te
14
S V_lf dvrz ctt dvrs ]_—_[
14 2<

<i<j<§

= V‘lde“rz v d'rg
* |i(r, — l'1,7c)|t1’1"
[5(r; — )l

X max
(P1,000 2 sr1,1)d 7

d'ry [3(ry — r,0)|" % -

|8, — 11,01 . (B8)
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The last factor in (B8) has a finite upper bound which
we can establish as follows. Clearly,

R CRR Y It

f 2y 152, — £y,0)[%

371, )
' bt~
< [max o] [arir. @0
(r) 14

From (3.40) and (3.41), with

(rl a

Ph(Y)

n 6(1-) = p(»)8(r), (B10)

20 = po(r | y) = 5

we obtain
Byt — 1) = o(r — 1)
+ ﬁphfvﬁl(r —rpo(r, —r)d’r,. (B1l)

Iterating this equation, we find

B — 1) = o = ¥) + 3 B — 1) (B12)
with 1
v'""(r —r) =J‘Vd”r1 e dr,
X v(r — rv(r; — ry) « - o(r, ~ ).
(B13)

Now using

(i ~1) = f aro(r — )" (@, — 1)
v
< [max v‘"‘l’(r)}f d’ro( —1,)
v

(r)

= l:max v‘”“”(r)] Vo

B14
(r) ( )

and

v —r) =de"rlv(r — r)u(r, ~ 1)
< l:n}gx v(r):| va(r —r)drn

= [max u(r):lvo, (B15)
(r)
we obtain by induction
0(r) < vg[max v(r)] (B16)
(r)
Then, from (B12),
5 < o + | maxo)| 5 Gy
<[ maxow]a - prapd. @1)
Next, using
b,(r) = 0(r) + 5,y/V, (B18)
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we find

|8(r)| =

. v
o(r) — _V_o

< Dy(r) + %

< [max o) + ”—V-"]a — Buop)™. (B19)
(x)
We also have
f [5(r)] d'r < f [51@) + ’Q} d'r
14 14 |4

= 26y = 20y(1 — Bupn) ™"
Inserting (B19) and (B20) into (B9), we obtain

(B20)

max
(LS VPR W Y]

< [( max u(m) + vf/—“)(l - ﬁvop,,)—l]

X 2001 — Boepr) ™ (B21)

We can now use the bound (B21) in (B8). We continue
the process by choosing from among the points
Iy, ', Iy another point which is not an articulation
point of the diagram containing ry, * * -, rg. In this
manner, we successively reduce the number of inte-
grations in (B8) until we have integrated over all

J. ary |o(ry — rl.a)|t““' o, — rl.k)‘tl'l"
14

b1+l
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points but one. This last integral then gives a factor V.
Our final result is then

S
max v(r) + %
Iq, S (r) V (
1 — Bvopa

where 8 here is defined as

§=31t;,—S+1,
i<j
which shows that [g| is bounded provided 1 — fo,p, >
0, i.e., provided that we are not at the critical point of
the van der Waals approximation.
Taking the limit V' — oo of (B22) and setting

S—-1
20 ) , (B22)
1 — Boopy,

max o(r) = K'y?
(r)
with K’ a finite number independent of y, we obtain

lgl < K"y, (B23)

with 8 defined as above. Combining this with the
bound (B2) on #(0), we have then that the expression
(5.2) is bounded by the quantity

8 —8+1
K’”})v = Kmyv(B S+ )’

with 8 as defined after Eq. (B22).

(B24)
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By employing coordinate transformations, a generalized WKB quantization condition is derived which
includes a modified WKB quantization rule and the related higher-order integrals. It is observed that
a necessary condition for the first-order integral to give an exact quantization rule is the vanishing of the
higher-order integrals. When this condition is satisfied, the resulting quantization condition is of the form
of all previously known exact-quantization rules. The higher-order integrals are shown to vanish for
certain cases of interest. An error in Paper I [C. Rosenzweig and J. B. Krieger, J. Math. Phys. 9, 849
(1968)] is noted and an examination of the higher-order integrals shows that a proposed quantization

rule given there is not exact.

L. INTRODUCTION

In a previous work® (hereafter referred to as I) the
method of Froman and Froman® was employed to
prove rigorously the exactness of WKB or modified
WKB quantization conditions for all potentials for
which such rules were known to be valid.® The
advantage of the method of Froman and Froman lies
in the fact that exact quantization rules are proved
without recourse to a comparison with exact analytic
solutions of the Schrodinger equation. Thus this
method has the potential of providing exact quantiza-
tion conditions even for potentials for which no
analytic solutions are known to exist. The dis-
advantage of this method lies in the fact that it
requires a detailed examination of the potential in the
entire complex plane and, furthermore, it does not
provide a means to determine whether a proposed
quantization rule is not exact, i.., either one can
prove exactness by some clever choice of contour,
or else no definite conclusion can be drawn about the
correctness of the proposed quantization condition.

A second method to determine exactness of a
quantization condition proceeds by showing that all
additional higher-order correction terms to the
WXKB integral vanish for the given potential.*®* This
condition is not rigorously sufficient, however,
because it is well known that the WKB approximation
is valid only asymptotically as #— 0 so that it is
still possible to have correction terms of say O(e1l/%),
which would have an asymptotic expansion consisting
entirely of zeros. The condition is necessary, however,
because if the correction term of O(#") is not zero,
then the terms having an asymptotic expansion
entirely of zeros cannot cancel it. It should also be

1 C. Rosenzweig and J. B. Krieger, J. Math. Phys. 9, 849 (1968).

2 N. Froman and P. O. Froman, JWKB Approximation; Con-
tribution to the Theory (North-Holland Publ. Co., Amsterdam,
1965).

3 P. B. Bailey, J. Math. Phys. 5, 1293 (1964).

4 J. L. Dunham, Phys. Rev. 41, 713 (1932).

5 P. N. Argyres, Physics 2, 131 (1965).

noted that, although the condition that the higher-
order WKB integrals vanish is only a necessary
condition for exactness of the WKB quantization
condition, there is no known potential for which
both the second- and third-order integrals vanish
for which the first-order WKB integral does not
provide an exact quantization rule. In I, however, it
is pointed out that there are known cases for which
the WKB integral does not give rise to the exact
eigenvalues (the second- and third-order terms are
not both zero here), but a modified WKB integral
does. In these cases it is not clear what “correction”
terms we must show to be actually zero. In this note
we report a method which employs a generalized
Langer transformation® and which gives a necessary
condition for the validity of modified WKB quanti-
zation rules. We also point out an error in the proof
of Case VIII of I and demonstrate that the quantiza-
tion rule proposed for that case is incorrect.

II. MODIFIED WKB QUANTIZATION
CONDITIONS
If E is the energy eigenvalue of an equation of the
form
4 2
T A T a8 X(x) — q°(x, E)X(x) = 0, 1)
2m dx

where X(x) — 0 for x — £ co and X is single-valued
and finite, then a generalization of Dunham’s* deriva-
tion yields the result that the WKB quantization
condition, through the third-order integral, may be
written as’

2 2 4
3§qu - [i(:f)] g dx — —2

64m dx 8192m?
< § o[£ @] 1o @[ a]a) ax
INGET VI

@mt

¢ R. E. Langer, Phys. Rev. 51, 669 (1937).

7 J. B. Krieger and C. Rosenzweig, Phys. Rev. 164, 171 (1967).
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where the integrals are taken about a contour that
includes the two real zeros of ¢ and no other singu-
larities. This quantization condition cannot always
be directly applied to problems of interest because
the boundary condition on X may be different from
those required by Dunham’s derivation, i.e., in radial
problems the radial wavefunction U(r), where
w(r) = [U@)/r]Y,,(6, ¢), satisfies the boundary con-
ditions U~ 0 for r -0 and r — oo. One can also
consider cases for which the wavefunction vanishes
at two points for which x is finite.!'* Furthermore,
even in those cases where the wavefunction vanishes
at + oo, Eq. (2) may not be the most convenient form
from which to prove exact quantization rules because
the higher-order integrals may not vanish.
We consider the following transformation:

z = z(x),
with a singled-valued inverse,
x = x(2),

such that, if Eq. (1) is defined in an intervala < x < b
with X(a) = X(b) = 0, then —o0 < z < o0,
Defining

X(x) = 4(2),

we immediately obtain the result that ¢ satisfies
B {dqu + d_zﬁ[d2z/dx2:\ N (Vix(2)] — E)¢
T omldz® | dz|(dz/dx)? }

(dz/dx)*
with the boundary conditions

3)

#(z) -0, z—> £ 0.

Equation (3) is not of the same form as Eq. (1), so that
it is not yet possible to employ Eq. (2) as the quanti-
zation condition in the new coordinate system.
However, if

d*4(2)
d 2

¢>

+ p(z ) + r(2)$(z) = 0,

then, defining

#(2) = f(z) exp —} f p(2) dz,
we find “

& (z
L2+ [0-we - L@ =o
z
so that Eq. (3) may be transformed into an equation
of the form of Eq. (1). The result is

B d?
—2—d—2—Q( ,E)f=0,

J. B. KRIEGER

where

E—-V) HR[i/z’V 1d/Z"
n=E50 LA
7 E) z’? 2m|4\z"?) = 2dz\z"? @

Substituting Eq. (4) into Eq. (2) (where the integra-
tion is now over z) and transforming back to x as the

integration variable, we obtain

[E — V(x) — S(x)z*]F dx

AR -

x {E — V(x) — S(x)z%}~ dx

4 4
- s $ (ol @)
8192m? dx| z'®

x {E —V — S(x)z%%

- -

[t
X {E =V = Sz} dx
where = (N + Dhrjem)t, ()

o= ST -l o

We note from Eqs. (5) and (6) that if the trans-
formation has made the new second- and third-order
integral zero, then the quantization condition becomes

¢ [zm(Eh -0 Sz/z]* dx = (N + P,

where Sz'2 is a function of x but not of E, which is
precisely the form of all known exact quantization
conditions given in I. Furthermore, we observe that
even if the transformation has not made the second-
and third-order integrals identically zero, it will often
be possible to reduce their value, leaving the first-
order integral as a better approximation to the
energy than it would have been if the transformation
had not been employed. Finally, although the second-
and third-order integrals appear incredibly compli-
cated, we show below that by using the technique of
contour integration, it is often easy to demonstrate
that they are identically zero.

III. POTENTIALS FOR WHICH UNMODIFIED
HIGHER-ORDER INTEGRALS ARE ZERO

The references below to Case I, etc., refer to the
case numbers in I. Since the unmodified WKB
quantization condition is employed here, z = x and
all potentials are defined for — o0 < x < 0.



EXACT QUANTIZATION CONDITIONS. II

Case I: V(x) = kx* (simple harmonic oscillator).
The higher-order integrals have previously been shown
to be zero.®

Case VII: V(x)= Ae® — Be™*, 4, B>0
(modified Morse oscillator). The second-order integral
is proportional to

§[E%/—2V?dx=

Making the change of variables

(2aAe™® — qBe™®)?

X.
[E — Ae—2am + Be—ax]%

—ar __
e =),

we obtain

§ 146 dx = 56 (2aAy* — aBy)® dy .
[E— Vit [E — Ay* + By}t y

As y — 0, the integrand — y and thus the only singu-
larities of the integrand occur at the zeros of the
denominator which are the two classical turning points.
Deforming the contour to a large circle with center
at the origin, we see that as y — oo the integrand
— 1/y%, and hence evaluating the integral along a
circle of radius R gives zero as R — 0.

Similarly, making the same change of variables in
the third-order integral, we find that as y — 0 the
integrand — »® and hence the only singularities are
at the two classical turning points. Furthermore, as
y — oo, the integrand — 1/y*, and hence evaluating
the integral along a circle of radius R again gives zero
as R — oo,

Case VIII: V(x) = Ae*** + Be~***, The proof given
in I that the unmodified WK B quantization condition
is exact for this case is in error. The argument pre-
sented there is incorrect because, unlike Case VII, the
quantity F,, is not real here, since ¢ is real on the
contour instead of imaginary as asserted there.
Furthermore, the fact that the eigenvalue for the
ground state for 4 = Bis the same to three significant
figures as the eigenvalues calculated by the quantiza-
tion rule! is not a convincing argument of the exactness
of the quantization condition because for a particle
in the ground state the potential between the classical
turning points is essentially parabolic and hence
corresponds to a simple harmonic oscillator for which
this quantization rule is known to apply.® In fact,
expanding the potential about its minimum and
keeping terms to O(x?), we find, by applying the rule

8 J. B. Krieger, M. L. Lewis, and C. Rosenzweig, J. Chem. Phys.
47, 2942 (1967).

9 The above observations are due to Professor G. Wannier
(private communication).
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in Case I, that the eigenvalue is the same as that given
by the result of numerical integration for the exact
potential to three significant figures. Thus, from the
above considerations it is not clear whether the
quantization rule is incorrect or a rigorous proof,
different from that previously given, can be constructed
to justify it.

However, by investigating the higher-order WKB
integrals we have been able to show that the second-
and third-order integrals are not zero and thus the
proposed quantization rule is not exact.

1V. POTENTIALS FOR WHICH MODIFIED
HIGHER-ORDER INTEGRALS ARE ZERO

Case II:
|4 bh? n I+ DA

V=-— , 0<r < .
r + 2mr? 2mr?
Case 111:
2 h2
V = tkr’ + bh2+l(l+12) , 0<r< oo

mr 2mr

Cases IT and III correspond to the effective radial
potential when the Schrodinger equation is separated
in radial coordinates for the case of the coulomb
potential plus degeneracy-breaking term and the
harmonic oscillator with degeneracy-breaking term,
respectively. The wavefunction U(r), which is the
eigenfunction of the effective radial equation, is
related to the radial part of the wavefunction R(r) by

R(r) = U@)/r,

and thus U(r) — 0 as r — 0 at least as fast as r. If we
let® r = ¢*, then r =0 and r = oo correspond to

z = —oo and z = 4 o0, respectively, and
R 1
S(rz?=——.
®) 2m 4r®

Hence, the quantization rule becomes

2m 17t
$o E=1 =] dr=v+pm
provided that the second- and third-order integrals
are zero. The proofs that these higher-order integrals
are zero for Case II and Case III have been given
previously? for the case b = 0. Since letting b # 0 is
equivalent to changing the value of I/, the same
arguments as in the case b = 0 are valid here and
will not be repeated.

Finally, we observe from Eqs. (5) and (6) that it is
trivial to test whether or not a given transformation
suffices to make the transformed higher-order integrals
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zero. However, given a conjectured exact quantization
rule, i.e., given S(x)z'%, it is not a simple matter to
determine precisely what are the higher-order integrals,
since this requires knowing S(x) and z'? separately.
In fact, given a choice for S(x)z'%, we may obtain z’
by solving a second-order nonlinear differential
equation obtained by multiplying Eq. (6) by z'%. We
have not yet been successful in finding the appropriate
z' for Cases IV, V, and VI, and thus cannot explicitly
demonstrate that the higher-order integrals are zero
in these cases also.

V. DISCUSSION

Using the method of coordinate transformations,
we have derived a generalization of the usual WKB
quantization condition through the third-order inte-
gral. Since a necessary condition for the first-order

JOURNAL OF MATHEMATICAL PHYSICS

integral to give an exact quantization condition is the
vanishing of the higher-order integrals, this method
leads to the possibility of finding exact quantization
conditions in those cases where the usual first-order
integral in the original coordinate system is not
sufficient. Furthermore, even in those cases where the
transformed higher-order integrals are not zero, the
technique is still useful in providing a means of
reducing the size of these terms and hence increasing
the accuracy of eigenvalues computed from the
first-order integral alone.
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I. INTRODUCTION

The use of explicitly time-dependent invariants in
applications of quantum theory has received little
attention, if any. Presumably, the reason for this lack
of attention has been the dearth of examples in which
the use of such quantities was both possible and fruit-
ful. Recently, a class of exact invariants for time-

* Work performed under the auspices of the U.S. Atomic Energy
Commission.

dependent harmonic oscillators, both classical and
quantum, was reported.! The simplicity of the rules
for constructing these invariants and the instructive
relation of the invariants to the asymptotic expansion
of adiabatic invariant theory have stimulated an
interest in using the invariants for solving some
explicit quantum-mechanical problems. We discuss

1H. R. Lewis, Jr., J. Math. Phys. 9, 1976 (1968); also, H. R.
Lewis, Jr., Phys. Rev. Letters 18, 510, 636 (1967).
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two systems in detail: the time-dependent harmonic
oscillator and a charged particle in a particular type
of time-dependent, classical electromagnetic field.

In Sec. II we consider the theory of explicitly time-
dependent invariants for a general quantum system
whose Hamiltonian operator H(t) is explicitly time-
dependent. Of course, such a system is not closed,
in the sense that some external influence, which need
not be specified, may change the parameters of the
system, alter its total energy or angular momentum,
etc. The semiclassical theory of radiation provides a
well-known example. In that case the quantum system
is taken to be an atom or molecule which undergoes
radiative transitions, and the explicitly time-dependent
term in the Hamiltonian operator is the interaction
with the classical radiation field. The usual approxima-
tion techniques for treating such a system are
time-dependent perturbation theory (in which the time-
dependent term is considered small), the adiabatic
approximation (in which the time scale of variation
of the time-dependent term is long compared to all
of the characteristic periods of the system), and the
“sudden” approximation (in which the external
changes are fast compared to the shortest character-
istic period). The results of the adiabatic and “sudden”
approximations will be deduced as limiting cases of
rigorous results that are presented in this article for
the time-dependent harmonic oscillator.

The central feature of our discussion of general
systems is the derivation of the relation between
eigenstates of an explicitly time-dependent invariant
and solutions of the Schrodinger equation. A time-
dependent phase transformation can be found for
each eigenstate of an invariant such that the cigenstate
becomes a solution of the Schrédinger equation, and
the phase is determined by solving a simple, first-order
differential equation. Later in the article, for the two
special systems that we discuss in detail, we derive
explicit formulas for the eigenstates and eigenvalues
of the invariants and for the phases. Also, in these
examples, we evaluate all physically relevant matrix
elements elegantly by operator techniques.

To provide a specific well-posed application of these
ideas, we consider a Hamiltonian which settles into
constant operators in the sufficiently remote past and
future, and we assume that each of these two limiting
operators has a known complete set of eigenstates
and eigenvalues. The time dependence of H(t) for
intermediate times is to be at least piecewise con-
tinuous, but otherwise arbitrary, and we calculate
the transition amplitude connecting any initial state
in the remote past to any final state in the remote
future.
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The first special physical system to which we apply
the general results, in Sec. III, is that of a time-
dependent harmonic oscillator, that is, a system whose
Hamiltonian has the form of the Hamiltonian of a
simple harmonic oscillator, but for which the fre-
quency parameter is allowed to vary with time.?
To begin with, we derive a class of exact invariants
for this system by means of a method different than
that used previously.! Then we calculate the eigen-
values and eigenstates of these invariants, and we also
calculate the appropriate time-dependent phase
factors that make the eigenstates solutions of the
Schrodinger equation. Finally, as in Sec. II, we
specialize to the case that the Hamiltonian is a
constant operator in the remote past and future and
calculate explicit formulas for the transition amplitude
between arbitrary states at these times. Using these
exact formulas, we discuss the adiabatic and “‘sudden”
approximations and deduce the usual formulas for
those limiting cases.

In Sec. IV we consider a charged particle in the
classical, axially symmetric electromagnetic field
consisting of an arbitrarily time-dependent, uniform
magnetic field, the associated induced electric field,
and the electric field due to an arbitrarily time-
dependent, uniform charge distribution. The dynam-
ical variables of this system are simply related to those
of the time-dependent harmonic oscillator by a
noncanonical transformation. We use this non-
canonical transformation to derive a class of invariants
for the particle system from the invariants for the
oscillator. These invariants for the particle system are
not Hermitian. However, it turns out to be possible
to derive from them a class of Hermitian invariants
that are formally identical to the Hamiltonian for a
particle in a uniform, time-independent magnetic
field. Using operator techniques, we derive the
eigenstates and eigenvalues of this class of Hermitian
invariants, and we find the phases for which the
eigenstates are solutions of the Schrodinger equation.
The results are a generalization of the solution®4 for
a particle in a uniform, time-independent magnetic
field.

2 The two special systems that we consider in Secs. III and IV
have been treated along different lines by M. Kolsrud: (a) “Exact
Quantum Dynamical Solutions for Oscillator-Like Systems,”
Institute for Theoretical Physics, University of Oslo (Norway),
Institute Report No. 28 (1965); (b) Kgl. Norske Videnskab. Selskabs
Forh. 31, No. 5 (1958); (c¢) Phys. Rev. 104, 1186 (1956).

3 L. Landau, Z. Physik 64, 629 (1930).

4 R. B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952).

5 L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-
relativistic Theory (Addison-Wesley Publ. Co., Inc., Reading, Mass.,
1965), 2nd. ed., p. 426. There is an error in this derivation: the
wavefunction is assumed proportional to ™%, but the subsequent
formulas are derived for e~
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II. EXPLICITLY TIME-DEPENDENT INVARIANTS
AND THEIR RELATION TO SOLUTIONS
OF THE SCHRODINGER EQUATION

We consider a system whose Hamiltonian operator
H(t) is an explicit function of time, and we assume the
existence of another explicitly time-dependent non-
trivial Hermitian operator I(¢), which is an invariant.
That is, I(t) satisfies the conditions

dl _ oI

E—E+I—[IH]—O (1)

and
I'=1 %)

The equation determining the time-dependent Schro-
dinger state vector | ) is

m§|>=Hm|» 3)

By operating with the left-hand side of Eq. (1) on
| ) and using Eq. (3), we obtain the relation

m§a|»=Hunx @)
t

which implies that the action of the invariant operator
on a Schrodinger state vector produces another
solution of the Schrdédinger equation. This result is
valid for any invariant, even if the latter involves the
operation of time differentiation. If the invariant does
not involve time differentiation, then we are able to
derive a simple and explicit rule for choosing the
phases of the eigenstates of I(¢) such that these states
themselves satisfy the Schrédinger equation. In what
follows, we assume that I(r) does not involve time
differentiation. The invariants with which we treat
the time-dependent harmonic oscillator, described in
Sec. III, and the motion of a charged particle,
described in Sec. 1V, satisfy this requirement.

We assume that the invariant operator is one of a
complete set of commuting observables, so that there
is a complete set of eigenstates of I. We denote the
eigenvalues of I by 4, and the orthonormal eigenstates
associated with a given A by |4, «), where the label «
represents all of the quantum numbers other than A
that are necessary for specifying the eigenstates:

1(1) |2, <) = 412, ), (52)
k| A, k) = 8,100k (5b)
The eigenvalues A are real by virtue of Eq. (2). They
are also time independent, as we can deduce in the
following simple way. By differentiating Eq. (5a)
with respect to time, we obtain
ol 0
— 14, I=|4,
at' o+ atl =

M >+l |/1K> (6)
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We also operate with the left-hand side of Eq. (1) on
|4, k) to obtain

ih%ll, ky+IH|A ) —AH |, k)=0. (7)
The scalar product of Eq. (7) with a state |1’, ") is

ih(, K| |/1 K+ (X — DX, | H A ) =0, (8)

implying

<zK| |AK>_0 ®
Now taking the scalar product of Eq. (6) with |4, «),
we obtain

=, K| |/1 K) = 0. (10)

8
Since the eigenvalues are time independent, it is clear
that the eigenstates must be time dependent.

In order to investigate the connection between
eigenstates of / and solutions of the Schrodinger
equation, we first write the equation of motion of
|4, k), starting from Eq. (6) and using Eq. (10):

ol

0 .
(4-D Py |12, k) = Py |4, ). (1D

By taking the scalar product with |1’, ") and using
Eq. (8) to eliminate
ol
lls | = Aa ’
&, «| Py |4, rc)
we get

A4 — M)A, «'] 56; (A, k) = (A — XX, «'| H |4, &).

From this, for A’ # A, we infer (12
i (A, K| g; |4, k) = (A, «’| H |2, k). (13)
Equation (12) does not imply
ih (A, «| %M, x) = (A, «'| H |4, «).

If Eq. (13) held for A’ = 1 as well as for ' % 4, then
we would immediately deduce that |4, «) satisfies the
Schrédinger equation, i.e., is a special solution for | ).

The phase of |4, «¥) has not been fixed by our
definitions. We assume that some definite phase has
been chosen, but we are still free to multiply |4, )
by an arbitrarily time-dependent phase factor. That is,
we can define a new set of eigenvectors of I(¢) related
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to our initial set by a time-dependent gauge trans-
formation

|2, k), = ™D |4, k), (14)

where the «,, () are arbitrary real functions of time.
Because I(¢) is assumed not to contain time-derivative
operators, the |4, «), are orthonormal eigenstates of
I(t) just as are the |4, k). For 2" # 4, Eq. (13) also
holds for matrix elements taken with respect to the
new eigenstates. Each of the new eigenstates will
satisfy the Schrodinger equation if we choose the
phases «,,(¢) such that Eq. (13) holds for 4" = 4.
This requirement is equivalent to the following
first-order differential equation for the «,,(¢):

dayy

o a

1 I (A, «'| ik o H |4, x).

In order to satisfy this equation, the states |4, x) must
be chosen such that the right-hand side vanishes for
k' # k. This diagonalization is always possible
because the operator i/i(0/0t) — H is Hermitian. Once
the states have been so chosen, the phases «, () are
chosen to satisfy the simple equation

oy
dt

Since each of the new set of eigenstates of I(z),
|4, x,, satisfies the Schrodinger equation, the general
solution is

A = (4, «| ih% — H A, ). (15)

|t> = Z clkeia;"‘(t) |19 ] t>’ (16)
Ak

where the ¢,, are time-independent coefficients. All
of the state vectors with which we have dealt so far
are time dependent, and we have revised the notation
in Eq. (16) slightly by indicating the dependences on
time explicitly. Now the Schrddinger state vector is
denoted by |¢) and the eigenstates of the invariant
by |4, ;).

We now assume that in the remote past the Hamil-
tonian H(z) settled into a constant operator H(— c0)
having a complete, orthonormal set of time-independ-
ent eigenstates |n; i), n being a label for all relevant
quantum numbers including the energy eigenvalue
and i standing for “initial state.” Similarly, we assume
that the Hamiltonian settles into a constant operator
H(0) in the distant future and that it possesses time-
independent eigenstates [m; /), m labeling the quantum
numbers and f standing for “final state.”” The explicit
time variation of H(z) for intermediate times is
arbitrary except for piecewise continuity; in particular,
we do not exclude the possibility of variations rapid
enough to render an analysis in terms of quasi-
stationary states of H(¢) impossible. Our aim is to
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calculate the transition amplitude T (n — m) con-
necting an initial state |n; i) to a final state |m;f).
Thus we consider the case in which the Schrédinger
state vector | — o) in the remote past corresponds to an
eigenstate |n; i) and, after tracing the exact time
evolution of |¢) into the distant future, we compute
the overlap of [co) with the desired final state |m; f)
to obtain the exact transition amplitude. The super-
position coefficients of Eq. (16) for this problem are
given by

Cop = € RNR ks — o0 | ny ),

(17
from which we obtain
1ty = ;‘exp {iloze(t) = z(— O)I} 4, 15 1)
X (A, k; —oo| nyiy. (18)
The transition amplitude is therefore given by
T (n—>m) = (m; f]| o)
= lZKCXP {i[oa(0) — a(— 0)]}

X (m; f| 4, k5 o)A, x; —o0 | n; i)
(19a)

Our discussion of the properties of I(t) applies
equally well to any operator that is an invariant
corresponding to a given H(t). In general, for a
system of f degrees of freedom, there is an infinite
family of such invariants, the members of which are
functions of a set of f independent invariants. Two
invariants 7;(¢) and I,(t) will, in general, have different
eigenstates, different time derivatives, and different
commutators with the Hamiltonian. In Secs. III and
IV we give examples of this by constructing families of
invariants for our two special systems in detail. Of
course, we must obtain the same physical results no
matter what invariant we use and, therefore, the
choice of which particular invariant to use may be
made on the basis of mathematical convenience. In
order to illustrate explicitly that the physical results
do not depend on our choice of invariant, we give a
simple and direct proof that a transition amplitude
like that of Eq. (19a) is indeed independent of our
choice of invariant.

Suppose that we have two complete orthonormal
sets of states, [v; ¢) and |w; #), all of which satisfy the
time-dependent Schrédinger equation; and suppose
that the states [v;¢) are eigenstates of one set of
operators, whose eigenvalues are labeled by v, and
that the states |w; t) are eigenstates of a different set
of operators, whose eigenvalues are labeled by w.
The transition amplitude T (» — m) can be expressed
as

T (n—m) =2(m;f| v; o) (v; —ooln;i) (19b)
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or as
~T(n—>m) =Y (m;f|w; 0)w; —oo|n; i (19)

We want to show directly that these two expressions
are the same. The completeness of the states |w; )
requires

los ) = [w; w; t| v ).

Operating on this equation with (i4(9/0t) — H), and
using the facts that all of the states satisfy the Schrd-
dinger equation and that the states |w; ¢) are orthog-
onal, we obtain

(20)

§<w;t[u;t>=o. 1)
ot
Thus the quantity (w; ¢ | v; ¢) is independent of time.
We now use the completeness of the states [v;7)
and |w; t), Eq. (21), and the orthonormality of the
states |w; ¢) to rewrite Eq. (19b) as
T(n—>m)=333 (m;f]w; o)w; | v; o)
X (v; — 00 | w'; —oo)w'; — o0 | n; i)
=22 2 (m;f|w; co)w; —o0 | v; — o)
X (v; —o0 | w; —o)Xw'; —o0| n; i)
=Y (m;f|w; o)w; —c0|n;i).  (22)

Thus, Eqs. (19b) and (19c) are the same, as asserted.

We have used the 7 — 4-co0 limits in the above
expressions as if the limits exist. In fact, however, the
factors entering Eq. (19a) are generally undamped
oscillating quantities for ¢ — £ oo [for example, see
Eq. (62), which gives the form of «, (¢) for a time-
dependent harmonic oscillator]. Nevertheless, this
circumstance generates no difficulties in the calcula-
tion of transition probabilities in this limit. If ¢, and 1,
are finite times in the sufficiently remote past and
future, respectively, then it is easily shown with the
argument leading to Eq. (21) that the dependence of
the transition amplitude of Eq. (19) on ¢, and ¢, is
only exp [i(E,t; — E,t;)/h], where E, and E,, are the
initial and final state energies, respectively. The
transition probability does not involve this phase
factor, and therefore we shall continue to use the
limits ¢ — 4 0.

Suppose for simplicity that the eigenstates of I are
nondegenerate, so that the eigenvalue of [ is the only
quantum number required for describing the system.
When this is so, as it is in our discussion of the time-
dependent harmonic oscillator, then it is particularly
convenient to choose an invariant having the property
that it becomes time-independent as f — — o0 so that
the commutator [I(— o0), H(— c0)] vanishes. Then
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the normalized eigenvectors of H(— o0) and I(— o)
are identical to within arbitrary constant phase fac-
tors. Consequently, we may choose the initial state
|n; i) simply to be a given eigenstate of I(— o), say
[A,; —o0). Equation (19a) then reduces to

T (n — m) = exp {i[a,(0) — a,(— ©)[}m; f| 4,3 00},

(23)
and the transition probability is given by
Ppp =T (n—>m)*
= [m;f]4,; o). (24)

As t— oo, the invariant operator I(t) in general
remains time dependent and does not commute with
the Hamiltonian. Therefore, the state |1,; ) in Eq.
(24) is a superposition of eigenstates of H(co); this is
another expression of the fact that energy is not
conserved in our system.

From the structure of Eq. (19a), it is apparent that
we may express the transition amplitude as a matrix
element of an § matrix by writing [keeping in mind
the comment following Eq. (22)]

S = z eialx(‘”) M’ K, OO)M, K -OO| e—ia;,,‘(—oo)’
AK

T(n—>m)=(m;f|Sn;i). (25)
It is easily verified that this operator is unitary:
ST1S=8S"=1. (26)

In the special case that the Hamiltonian operators in
the remote past and distant future are identical,
H(— o) = H(), so that the initial and final states
are the same set, we may define an elastic scattering
operator R in the standard fashion:

S =1+ 2miR. @7)

The operator R describes the nondiagonal transitions
just as S does, but subtracts a noninteracting part
from the diagonal amplitudes so that (u| R |n)
represents a “forward reaction amplitude” from the
state |n) to the same state. The unitarity of the S
matrix implies

1
2 [(m| R |n)[* = = Im ((n] R |n)), (28)
m m
which is a statement of the optical theorem: the total
reaction probability is proportional to the imaginary
part of the forward reaction amplitude.

1. APPLICATION TO TIME-DEPENDENT
HARMONIC OSCILLATORS

A. A Family of Invariant Operators for a Time-
Dependent Harmonic Oscillator

A time-dependent, one-dimensional harmonic oscil-
lator is a system whose Hamiltonian operator is of the
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form

H(t) = (12M)[p* + Q*()q*], (29)

where ¢ is a canonical coordinate, p is its conjugate
momentum, (¢) is an arbitrary, piecewise-continuous
function of time, and M is a real, positive mass
parameter. The variables ¢ and p satisfy the canonical
commutation relation

lg, p] = ih, (30)
and the canonical equations of motion are
1 1
i = —14, H]=— >
§= 7, Hl=—2p
y=Lip =~ 0e, 6D
P D M s

where the dots denote time derivative operators. To
obtain the simple harmonic oscillator in the limit that
Q(¢) is time independent, we would have to require
that Q be a real function. However, our discussion is
equally valid if  is imaginary; all that is necessary is
that Q2 be real, either positive or negative. Therefore
we allow Q2 to be a positive or negative real function.
In order for the usual adiabatic approximation to be
applicable, M and €(¢) must satisfy the criterion

1 1
M7 Q?

dQ

I 32)

for all t. However, except where we discuss the adia-
batic approximation specifically, we do not impose
such a restriction on M and Q(¢).

For such oscillator systems, a convenient repre-
sentation has been derived for the class of invariants
which are homogeneous, quadratic expressions in the
dynamical variables p and ¢.* This representation was
constructed as a result of an examination of the
classical trajectories, and the invariants were normal-
ized in such a way as to reduce to the usual adiabatic
invariant (energy divided by frequency) in the limit
that the inequality (32) is satisfied. Here we present a
purely quantum-mechanical derivation of this rep-
resentation of the quadratic invariants.

We assume the existence of a Hermitian invariant
of the homogeneous, quadratic form

1(t) = #lx()q* + B()p* + y(Dig, p}1i1,  (33)

where «, f, and y are real functions of time, the
multiplicative numerical factor has been chosen for
convenience, and we have used the conventional
anticommutator notation {g, p}, = ¢qp + pq. The time
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derivative of I(¢) is given by

ol 1
==+ =[IL,H
at+m[ ]
| I PR S WP B A B
—2[(<x My)q +(/3+My)p
1 Q?
o+ — o — — , . 34
+(V+M°< Mﬁ){q ph} (34)
In order to satisfy Eq. (1), we demand
PRIt
M
5 2
= — = 35
p u” (35)
1 QF
p = Mot+Mﬁ

It is convenient to introduce another function o(t),
defined by

p@) = o*(v),

where 0%(¢) is a real function of time. The second of
Egs. (35) then becomes

(36)

y = —Maod, 37
and the third equation yields
a = M*® + 06) + Q%% (38)

The first of Eqs. (35) imposes a constraint on o(t)
which may be expressed in the form

o Z‘:} (M?% + Q%) + 36(M* + Q%) =0. (39)

A first integral of Eq. (39) may immediately be
written in the form

M2 + Q% = c/o®, (40)

where c is an arbitrary real constant of integration.
Then Eq. (38) becomes

o = M26* + /o 41

The invariant may therefore be expressed in the form

= (o + (op — MigF], (@)

with Eq. (40) as a subsidiary condition. The arbitrari-
ness implied by the presence of the constant ¢ is
illusory, as may be verified by making the scale
transformation

o(t) = ctp(1), (43)

p(?) being a new auxiliary function of time. After
discarding a constant multiplicative factor c¥, we may
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write Eq. (42) in the form
I'=3[(1/p%¢" + (pp — Mpg)*], (44)
and the auxiliary condition given by Eq. (40) becomes
M35 + Q¥(t)p — 1/p* = 0. (45)

In order to make I(¢) Hermitian, we choose only the
real solutions of this equation.

Any particular solution of Eq. (45) may be used to
construct an invariant operator of the form given by
Eq. (44). We thus have obtained a family of operators
which is in one-to-one correspondence with the family
of solutions of the nonlinear differential equation (45).
Later in this section we shall consider the special case
of a system for which Q is a constant function in the
remote past and in the remote future, and we shall
calculate transition amplitudes connecting states at
these two times. In obtaining these transition ampli-
tudes, we shall need the general solution of Eq. (45)
for constant €2, which we now derive.® The problem is
not quite so trivial as it appears at first glance because
the obvious time-independent, real solution,

is by no means the most general solution. According
to the discussion of Sec. II, we are free to choose the
solution given by Eq. (46) for # — — o if we like. But
then we shall find that the time dependence of (z)
produces a more general solution for p(t) as t — 0.
The above choice for p as #— — oo leads to the
condition [I(— o), H(— )] = 0, which, according
to the discussion preceding Eq. (23), is a particularly
convenient choice.

To find the general solution of Eq. (45) for constant
Q, we note that p is an integrating factor of this
equation and immediately obtain the first integral

M3 4 Q2p? 4 1/p? = 2|Q] cosh 4, 47)

where § is an arbitrary real constant. The right-hand
side of Eq. (47) is the integration constant, which, it
turns out, must be greater than or equal to 2 |Q| if p
is to be real. The integration constant has been
written in this way so that p will be real for all values
of the real parameter 4. Solution of Eq. (47) is
straightforward and leads to the result

p(t) = 1 Q"% [cosh &

+ yp sinh 8 sin (QQ/M)t + )1}, (48)

where y, and y, can each independently assume the
values +1, and ¢ is a real phase constant. The special
® A method for expressing the general solution of Eq. (45) for

arbitrary Q(#) in terms of independent solutions of the equations for
a classical oscillator has been described in Ref. 1.
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solution of Eq. (46) corresponds to the case é = 0.
Whenever €(f) becomes constant, the solution for
p(?) is necessarily of the form given by Eq. (48).
Therefore, the transition amplitudes that we shall
calculate are completely determined by the parameters
in this expression that are appropriate to the limit
t — oo, no matter how complicated or violent the
time dependence of Q(¢) for earlier times. We shall
express the transition amplitudes in terms of these
parameters in Part C of this Section.

B. Eigenstates and Eigenvalues of I(#) and the Phases

The eigenstates and eigenvalues of the invariant
operator I(t) may be found by an operator technique
that is completely analogous to the method introduced
by Dirac’ for diagonalizing the Hamiltonian of a
constant-frequency harmonic oscillator. Thus we
define time-dependent canonical lowering and raising
operators a and a' by the relations

a = (2h)H[(l/p)g + i(pp — Mpg)],
a' = 20 H(1/p)g — i(op — Mpg)l. (49

These operators satisfy the canonical commutation
rule
[a,a"] =1, (50)

so that the operator a'a is a number operator with
nonnegative integer eigenvalues. The invariant opera-
tor given by Eq. (44) can be written in terms of a and
al as

I=h(d'a+1}), (51)
from which it follows® that the normalized eigenstates

|A) of I are the same as the normalized eigenstates
[s) of a'a:
dlalsy=sls), s=0,1,2,"--.

(52)

We specify the relative phases of these normalized
eigenstates |s) by requiring the standard lowering and
raising relations:

als)y =st|s = 1),

a'ls)y= (s + D|s + 1). (53)
The eigenvalue spectrum of I is given by
Ay=(s+ Pk, s=0,1,2,---. (54)

To effect the transformation of Egs. (14) and (15)
we need to calculate the diagonal matrix elements of
the operators H and d/dt. The former are obtained by

*P. A. M. Dirac, The Principles of Quantum Mechanics (Claren-
don Press, Oxford, 1947), 3rd ed. Also see A. Messiah, Quantum
Mechanics (Interscience Publishers, New York, 1962), Vol. .

8 For the present we are omitting the time label ¢ in our notation
for these eigenstates. When it is required for clarity, we shall replace
[s) by |s; ) to denote an eigenstate at time .
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using Eqs. (49) to express H in terms of @ and a' and
then applying Eqs. (53):

h ) 1 +
L H I = (M 4+ 00t + ;2) (sl {a, o'} 1s)

I N Ve Y YU ) YR
7 R pz)(s + P (59)
The Hamiltonian, of course, also has nondiagonal
matrix elements since the representation defined by
Egs. (52) and (53) does not diagonalize this operator.
To evaluate the diagonal matrix elements of 9/0t,
we take the partial derivative of the second of Egs. (53)
with respect to time, and then take the appropriate
scalar product, obtaining

T
G121 =t =12l = 1)+ 57 Xl =1

(56)
The expression for da'/dt in terms of a and a' is
t .
2 . .
%0 _ 1{[— 28 4 iM(pp — pz)}a + iM(pj — pz)a*},
ot 2 P
(57

so that Eq. (56) becomes
0 0 Mo
i =t(s—1|=1s =1 2 (of —
Sl =(—12ls =1 +i% (pf = £

0 . S 2
=0 =04+ i=M(pp — p°). 58
O 5 10) + 12 M(pp — £7) (58)
It is clear that the anti-Hermitian character of 9/0t
requires all diagonal matrix elements of 0/0f to be
purely imaginary. However, no further information
about (0| 9/0¢ |0) can be determined from Eq. (58);
indeed, the choice of relative phases given by Egs. (53)
leaves the phase of a given state, say the state |0),
undetermined. This time-dependent state can, in
general, have a time-dependent phase factor, the
choice of which is arbitrary. A convenient choice,
which we now adopt, is one which makes (0] /0 |0)
vanish in the limit that p becomes a constant, and
which makes a “‘zero-point” contribution to Eq. (58):
0 M
0] =10y = i— (pp — p*). 59
15,10 = i7" (ph — £) (59)
With this convention we can now write the general
diagonal matrix element of 0/0¢ as
d M
Gl 1) =i (pp — £°)s + D). (60)
ot 2
The phases required for carrying out the transforma-
tion of Eq. (14) may be calculated by substituting Eqs.
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(55) and (60) into Eq. (15) to give
do 1
_3=__M2 o a2 Mz.z
ot 2M[ (pp — )+ Mp
+0% 6+ D
P
1 1
=—A—4(S+%);2, (61)

where we have made use of the subsidiary condition
of Eq. (45). Thus the phase functions may be written
in the form

== G+ bfa s @

“ M %)

It is interesting to note that these phases are closely
related to a quantity that occurs in the analysis of
classical time-dependent harmonic oscillators.! In the
classical case, the invariant I can be chosen as a
generalized canonical momentum and the corre-
sponding cyclic canonical coordinate is then equal to
_as/ (S + %)

The off-diagonal matrix elements of H and 0/0¢,
though not required for the purpose of the present
discussion, are straightforward to compute and are
given for completeness. The expression of H in terms
of the raising and lowering operators immediately
yields

(s'| H |s)
= (HA{IM(* — pp) — 2i(p/p)]ls(s — DS, s,

+ [M(5* — pp) + 2i(|p))I(s + (s + 21,41},

s #£s; (63a)
and from Eq. (13) we obtain

'| (% [s) = é(s’l H|s), s #s. (63b)

C. Calculation of the Transition Probability

We assume that the Hamiltonian operator in the
remote past, H(— o), corresponds to a harmonic
oscillator whose frequency parameter , is constant
and positive, and we choose the convenient form of
I(¢) that leads to Eq. (23) by taking

p(— ) = Q7 (642)
from which follows
I(—o0) = (M[Q)H(— 00), (64b)
so that
[{(— ), H(— )] = 0. (64c)

In the distant future the Hamiltonian is to settle into a
harmonic oscillator Hamiltonian H(c0), with a
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constant and positive frequency parameter £, . The
form of the invariant at any time is given by Eq. (44)
or Eq. (51), and, as t — oo, the auxiliary function p
necessarily satisfies Eq. (48) with |Q| replaced by Q, .
The detailed dynamics of the time variation deter-
mines the parameters é and ¢. We assume these
parameters to be known, and we shall express the
transition amplitude of Eq. (23) in terms of them. In
general, specific numerical values for 6 and ¢ can only
be obtained by integrating Eq. (45) numerically.

Let us first suppose that the initial state |n; i) is the
ground state of H(— co). From Eq. (64b) it is clear
that this state, apart from an arbitrary phase factor,
is the same as the “ground state’ |0; — o0) of I(— o).
The Schridinger state vector of the system at all later
times is e**® |0; 1), where «,(¢) is given by Eq. (62),
and this state vector is at all times an eigenvector
(corresponding to the ‘“ground state”) of I(t) =
hla'(H)a(r) + 1]. We seek the transition amplitude
to an eigenstate |m; f) of the final Hamiltonian, and,
according to Eq. (23), this transition amplitude is
given by

T (0~ m) = exp {i[xo(0) — ao(— 0)]}m; [ 0; c0).
(23)
The final Hamiltonian may be written in the form

H(w) = (hQy/M)(®'b + 1), (65)

where

v= () o+ 5

b = (?h)%(q —i g; p), b, b']=1. (66)

The lowering and raising operators of the invariant,
a(c0) and a'(c), may be expressed in terms of the
lowering and raising operators of the final Hamilton-
ian, b and b', by use of Eqs. (49):

a(o0) = ()b + {(w)b",

a'(w) = {*(o0)b + 7*(0)b', (67a)

where
(1) = (4Q)H((1/p) + Qop — iMp),
(1) = (4Qa)#((1/p) — Qup — iMp),

and p is given by the final state form of Eq. (48). The
condition that the transformation of Eq. (67) satisfy
Eq. (50),

(67b)

fnl? — 121 =

clearly is satisfied.
To calculate the matrix element (m; f | 0; o0), we
expand the state |0; co) in terms of the eigenstates
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|n; f) of H(c0):

105 00) = 3 In3£n; £ 05 wo). (68)
By applying the lowering operator a(c) to the left-
hand side of this equation, we obtain zero, while the
right-hand side may be transformed by use of Eq. (67).
After regrouping terms, the resulting equation may be

written as
0 =10;)n(1;f]0; o)
+EMfmm+1Wn+1fM<m

+ n¥n — 15£] 05 0], (69)

In this equation and in what follows, by 5 and { we
mean 7(c0) and {(c0). The orthonormality of the
eigenvectors [n;f) then yields the recursion relations

(1;£]0; 0y =0,
( 1;f]0; ¢ '
"+ Jl,w%——n&+1yn—hfmmm
(70)
which have the solution
@2r + 1;£] 0; ) =0,
2r;f|0; ) = ( g) ey’ 0;1]0;
n/ 27!
(1)

where r is an integer. The first of Eqs. (71) expresses
the usual parity selection rule: states of negative
parity have vanishing overlap with a state of positive
parity. By combining Eqs. (71) with the expansion of
Eq. (68) and imposing the normalization requirement
on the state [0; o), we obtain

TS|
03] 0 o)t = [ . WWJ
§
n
=i, (12)
Il

where we have used the summation formula

2 (2")'

gyt T i

=(1
Therefore,
IT (0 0)] = (0; £ 0; w0)| = ||

2 -1
= (492#[(% + sz) + M2p2]

2 ' 73
—(1+coshé)’ (73)
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where we have used Eqs. (23'), (47), and (67b). This
corresponds to a transition probability

3

2

S
1 4 cosh §

Similarly, Egs. (71) lead to the more general transition
probability

(74)

m/2 2 3
cosh § + 1) (cosh é+ 1) ’

m! coshd — 1
Pom = m 1712
2™[(m[2)!]
m even,
=0, m odd. (75)

By repeatedly applying the raising operator a'(w) to
Eq. (68), we may express any eigenstate |s; o) of /
in terms of the states |m; [, and thus we may compute
the general amplitude T (s — m). The resulting tran-
sition probability is, according to Eq. (24), given by

Py = [(m; f|s; 00|
LIS i1 @b 07y s fons

. | n=0

_ 1(__2__)%
si\coshd + 1

(-5

7=0 2 r!
X (m; f1(£*b + 7*b)" 273 f>

(76)

These probabilities, of course, obey the sum rule
S Pon = 1. This is easily verified by direct sum-
mation of Eq. (76):

2= lmr) 2A0a ()

1)
L [enrem]
rtr'!
X 2r's f| (b + L6)Y(C*b + b)) |2r; f).
On the other hand, to within a phase factor Eq. (68)
leads to

P

Is: oo>=(s!)—’*(c————oh26 " 1)
x i( ‘:) (@O oy 4oy s ),

r=0 2ﬂ r!

so that we obtain

S P,y = (s; | 53 )

m=0

=1.

Of course, P,,, vanishes unless the initial and final
states have the same parity.
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The case 6 = 0 corresponds to a situation in which
lim p(t) is equal to the constant O3, so that 5 = 1,

t—©

and { = 0. Eq. (76) then yields
Py, (6 =0) = o, (77)

which also is the result given by the adiabatic approxi-
mation. We conclude that the rigorous transition
probability coincides with the adiabatic transition
probability whenever the continuous time evolution
of the auxiliary function p(z) leads to a final form
p(0) = Q3% starting from the initial form p(— o) =
Q. Tt is clear that only a restricted class of Q(z)
functions will produce such a result, but the members
of this class need by no means satisfy any adiabaticity
requirement. The time evolution of such systems,
while leading to Eq. (77), will in general be non-
adiabatic.

D. The Adiabatic and Sudden Approximations
In the adiabatic limit,

M2 = g,
QXr) dt
it has been shown for the classical theory! that the
leading term in the expansion in powers of 6 of the
invariant of Eq. (44) is the usual adiabatic invariant,
energy divided by frequency. In the quantum theory
this statement becomes the assertion that the quantum
number remains constant, implying Eq. (77). This
equation, of course, holds independently of any
particular representation for p(t); however, the
choice p(—o0) = Q7 is especially convenient, and
with this assumption the adiabatic condition implies
¢ = 0. For the sake of completeness we furnish an
outline of a simple proof of the adiabatic theorem.
We let the frequency parameter (f) evolve con-
tinuously from an initial value €, in the remote past
to a final value €2, in the distant future, such that Eq.
(78) remains valid for all times —o0 <t < .
Since, according to Eq. (78), the frequency cannot
change sign, we take £, and €, both to be positive
constants. Eq. (45) may be formally integrated to yield

00 L 1, (78)

M2 + Q¥0)p* + %
r 2 ’ Q
= 2(2 -F 2J~ dt/)(t)()(t);aj

=20, += f dr o ()QXE)O(E), (79)

Q% We make the ansatz
QA + »(0)],

provided that p(— o) =

p(t) =

»(— o) = 0. (80)
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In the limit that 0 vanishes so that Q(#) becomes
constant, the function »(¢) also must vanish. Hence, if
6 is an infinitesimal quantity, so is ». The essence of the
adiabatic theorem is that » is a higher-order infinites-
imal than 0. By differentiating Eq. (80) with respect
to time, we obtain

p = —(12M)Q6(1 + ») + QH, €3))

which implies that # is an infinitesimal of the same
order as f. To see that » is of higher order than 0,
we substitute the ansatz of Eq. (80) into Eq. (79),
retaining terms only up to first order in 6:

Q[(l G i v)z]

¢
=2Q,+2 f dr’ ‘;—? [1 4 »(t)]% (82)

Since the left-hand side of this integral equation has
no first-order contributions in #, it follows that the
solution to first order in 8 consistent with the con-
dition Q(—o0) = €, is

(1) =0, (83)

establishing the theorem. Equation (80) then asserts
p(o0) = Q;}, leading to = 0 and the result of Eq.
an.

The sudden approximation is used to describe the
time evolution of systems in which the Hamiltonian
operator experiences a rapid change during a time
interval which is short compared to the characteristic
periods of the system. Such a change might be rep-
resented by a jump discontinuity in the function Q(z)
at a specified instant of time. The sudden theory
asserts that the state vector remains constant across
such a discontinuity; the transition amplitudes
bridging the discontinuity are therefore given by
simple overlap integrals of eigenstates of the Hamil-
tonian just before and after the discontinuity. This
result, which is rigorous for instantaneous dis-
continuities, is the basis of the sudden approximation
for “fast,” but not instantaneous, changes in the
Hamiltonian operator.

The rigorous transition amplitude of Eq. (19)
contains all the features of the sudden theory for (t)
whose time histories involve jump discontinuities. We
may easily derive the result of the sudden theory for
the harmonic oscillator on the basis of a simple
example. The continuity of I(¢) as an explicit function
of time is guaranteed by requiring p and p to be
continuous. The possibility of jump discontinuities
in the piecewise-continuous Hamiltonian operator
H(t) is retained by making g discontinuous.

H. R. LEWIS, JR., AND W. B. RIESENFELD

Our example is conveniently based on a representa-
tion of p in the form

p(f) = G, <0,
= GZ(t)yIQ;&
x [cosh & + y, sinh 6 sin (2Qy/M)t + )P},
t>0, (84)
where G;(t) and G,(t) are continuous functions of
time with continuous derivatives, possessing the limits

lim G,(t) = 1,

t=—w

lim Gy(t) = 1,

=

(85)

and the remaining symbols are defined as in Eq. (48).
Thus p(t) corresponds to a time history with constant,
positive frequency parameters €, and €, in the
remote past and future, respectively, and arbitrary
behavior at intermediate times. We demand that p
and p be continuous at ¢ = 0 and retain the possibility
that §, and thus Q(t), experience a jump discontinuity
at this point that depends on the behavior of the G
functions. For compactness we introduce the notation

g1,2 = G1,5(0),
G,(0)  Gy(0)

A= (86)

dG, dGs . |-
— () —(0
el )
The continuity conditions at ¢ = 0 determine the

parameters ¢ and J, the latter of which, after some
algebra, may be written in the form

2, 2 2A2
cosh 0 = 1(g;Qz + g:QI + i\/I a ) (87)
2080 g1y g4,
It is easily verified that the right-hand side of Eq. (87)
is greater than unity for positive frequencies. Sub-
stitution into the transition probability of Eq. (75)
yields
2 n
(g1Q; — g3Q)* + MW(il
_ (! g
22n(n!)2

0,27 2
(820, + 22Q)* + MW(&)
gs,

4gfg§Q1Q2

2
(830, + g30)* + Mw(g—l)
82

The special case G,(¢) = 1, Gy(¢) = 1 corresponds to a
step-function discontinuity in the frequency Q at
t = 0, from a constant value £, to a constant value
Q, . In this case we have A = 0, and the exact formula
of Eq. (88) reduces to the usual result of the sudden

X (88)
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theory:

(89)

—_ 2n 1
Py au(sudden) = 21! (Qz Ql) 22, 0,)

22 \Q, + Q) QU+ Q

The right-hand side of Eq. (89) is, of course, simply
the modulus squared of the overlap between the
ground state of the initial oscillator Hamiltonian and
the 2nth state of the final oscillator Hamiltonian, in
accordance with the fundamental assertion of the
sudden theory. The more general transition prob-
ability of Eq. (76) can be calculated similarly.

IV. APPLICATION TO CHARGED PARTICLE
MOTION IN A TIME-DEPENDENT ELECTRO-
MAGNETIC FIELD

A. The Physical System

We consider a particle of mass M and charge e
moving in a classical, axially symmetric electro-
magnetic field defined by the vector potential

= 1Bk x r

and the scalar potential

(90a)

¢= —77( )t =~ ——= (0" + y*), (90b)

2 Mc* 2 Ve
where r is the position vector, Kk is a unit vector along
the symmetry axis, r is perpendicular distance from
the symmetry axis, x and y are Cartesian coordinates
perpendicular to the symmetry axis, B(¢) and #(t) are
arbitrary piecewise-continuous functions of time, and
c is the speed of light. The potential ¢ corresponds to
an axially symmetric, time-dependent uniform charge
density equal to —(1/27)(e/Mc*)%(¢). The electric and
magnetic fields are

= - M—n(t)(xl + ) — B(t)k xr (91)

and
B =V x A = B(t)k,

where i and j are unit vectors along the positive x and y
directions, respectively, and k =i x j. Since the
axial motion of a particle in these fields is trivial, we
shall ignore it and treat only the motion perpendicular
to the symmetry axis. The Hamiltonian for this
system is

H——(p——A)+e<p
c

M
e* [B?
2Mc2(4 + ’7)

B
X (x* 4+ y)+ ;—Mc(ypm -

R S 2
—2M(Pm+p,,)+

xp,), (92)
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where the operator p =ip, + jp, is the canonical
momentum of the particle. The only nonvanishing
commutators between the coordinates and momenta

are, as usual,
[xs pa'] = [)",Py] = lh (93)

We introduce cylindrical coordinates r and 6 and
their conjugate momenta p, and p, by the definitions

r=(x*+ yH?
0=tan‘1(z),
X
1/x
pr= 2( pac+pz + = py+p.,) (94)
ih1
—_(xpa:+ypy)_l__5
2r
Po=xPy—J’Px-

These operators are Hermitian, and the only non-
vanishing commutators between them are

[r, p) = [8, p,] = ik. (95)

Expressed in terms of these variables, the Hamiltonian
given by Eq. (92) is

h h
1 (Pa —5) (Po + 5)
H=—|p+

2M r?
e (B? eB
t 2Mc2(4 +’7) M
Because of the axial symmetry, p, is a constant of the
motion, as is clearly evident from this form of the

Hamiltonian, The usual wave equation® can be
obtained from Eq. (96) by substituting

P —zh(a + 1)

(96)

or

which is the standard coordinate representation of
the Hermitian operator p,.

B. Connection with the Time-Dependent
Harmonic Oscillator

The Cartesian operator variables for the particle
can be related to variables that satisfy the same
equations of motion as time-dependent harmonic
oscillator variables by means of the nroncanonical

transformation
=(x4+iy)exp|i— | B(t)dt |,
(x + 1) p[ZMcf *)ar

P=5(p, +1pv)exp[127f3(t)dt:| 97)

e
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It is easily verified that the variables Q and P satisfy

e
Q = M; P,
— 1o 2e, (98)
where Q?%(¢) is defined by
Q1) = 1B(1) + n(0). 99)

Equations (98) are identical in form to Eqs. (31) for
the time-dependent harmonic oscillator. However, we
emphasize that the transformation given by Egs. (97)
18 not canonical, because Q and P satisfy the commuta-
tion relation [Q,P]= 0. Nevertheless, the trans-
formation can be used to obtain an invariant for the
charged particle because the I defined by Eq. (44) for
the oscillator is an invariant as long as ¢ and p
satisfy Eqgs. (31). It is not necessary that the canonical
commutation relation, Eq. (30), be satisfied, nor that
g and p be Hermitian. The invariant that we obtain
from Eq. (44) (and also denote by I) is

C

I = %{p*(x + iy + (MT)

X []\_1/1 p(ps + ip,) — p(x + iy):r}

e t
X exp(i— | B(f)dt'|, 100
[+ [ By ar ] (100)
where p is any particular solution of
(M" G4 QDp— =0, (101

with Q(¢) given by Eq. (99). It is easily verified by
direct computation that the I defined by Eq. (100)
satisfies

ol 1

—+—=[,H]=0

ot h[ ]

with H given by Eq. (92). The invariant 7 is neither
Hermitian nor anti-Hermitian, but we shall derive
from it a Hermitian invariant to which the theory
discussed in Sec. II is applicable.

I=

C. Derivation of a Hermitian Invariant®

We introduce time-dependent Cartesian coordinates
and momenta such that the explicit time dependence
of I(t) is contained solely in a phase factor. These
coordinates and momenta are defined by

X

X, Y =

v OV =
)

Ys

© =

Px

— Mpx, Py = pp, — Mpy. (102)

H. R. LEWIS, JR., AND W. B. RIESENFELD

In order that the new variables be Hermitian, we
choose p to be a real solution of Eq. (101). The
transformation is canonical because the only non-

vanishing commutators between the variables are
[X, Px] = [Y, Py] = ik (103)

Expressed in terms of the new variables, I(¢) can be
written as

1) = % {(X + YR+ (5)2(PX + iPy)z}
X exp [i~e— f tB(t’) dt’:l. (104)
Mc
Because of the axial symmetry, it is also convenient
to introduce cylindrical operators associated with

X, Y, Py, and Py:

R=(x+yyi=1p,
P

f = tan™* (Z) = tan™! (l),
X x

(/X X, v Y
PR=—(—PX+PX—+—PY+PY—) (105)
2 R
(XP + Py~ Bl M

X 7 R PPy — pr,

Do = XPY — YPx =xp, — yp,.-

This transformation is also canonical because, as
before, the only nonvanishing commutators are

[0, po] = i

In terms of these operators, I(¢) can be written as

[R, Pg] = (106)

1) = {exp [21(6 o f B(t) dt )]}(C +iD),
(107)
where C and D are Hermitian operators given by

C=R2+ £2P2_(p0+h)2_%h2
e R = __—‘Rz ’

D=()(p9+h)(PR +1 PR) (108)

Equation (107) can also be rewritten in the similar
form

1) = ¥(C, + iD,) exp [21(0 + ——fB(t)dt)]

(109)

where C; and D, are obtained from C and D, respec-
tively, by replacing (p, + %) by (p, — A).



QUANTUM THEORY IN TIME-DEPENDENT ELECTROMAGNETIC FIELD

From Eqs. (107) and (109) it follows that the
Hermitian operators I/ and II' are invariants that
are independent of # and differ from each other only
by a constant operator depending on p, . Motivated by
results for the corresponding classical system,? we seek
to construct a f-independent invariant of biquadratic
form in R, Pg, and R~ which can be written as a
linear function of I'I:

2 022 B 2 t
[R + (;)PR+R—2] —4l'l 4y, (110)

where f and y are Hermitian constant operators that
may dependon p,butnot on 6, Py, or R. Thenumerical
factor multiplying '/ in Eq. (110) is immediately
obtained from the normalization of I given by Egs.
(107) and (108). Use of the operator II' in Eq. (110)
would merely have changed the value of y. The
solution of Eq. (110) is

f= (2)@ — e + 1),

y = 4(5)2@0 Y (11)

Therefore the operator

1§={R2 +(§)2[P% +(po—%h;gpa+%h)]}2 (112)

is the desired biquadratic invariant. Moreover, direct
calculation shows that the operator I, [defined as the
inside of the curly brackets of Eq. (112)] is itself a
Hermitian invariant, i.e., it satisfies Eqs. (1) and (2)
for the Hamiltonian of Eq. (96).

Finally, instead of working with I, directly, we
define another Hermitian invariant K by

K = H(lel/)I; — $sps

¢ (ps — 34)(pg + %h)}
=—1|P?
4 |e|\: =+ R*
+ ‘f;‘RZ T (113)
where
s = efle]. (114)

The form of K is identical to the form of the Hamil-
tonian for a particle moving in a time-independent
magnetic field [see Eq. (96)]. The general theory
developed in Sec. II is applicable to K, and the
eigenvalues and eigenvectors of K can be found
elegantly by operator methods.

? This derivation is closely related to a derivation of an analogous
invariant for the corresponding classical system. The treatment of
the classical system is given in H. R. Lewis, Jr., Phys. Rev. 172,
1313 (1968).
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D. Eigenvalues and Eigenstates of X

Since the invariant K has the form of the Hamil-
tonian for a particle moving in a time-independent
magnetic field, its eigenvalues and eigenvectors are
known. The usual derivation®? is in terms of confluent
hypergeometric functions. However, it is possible to
derive the eigenvalues and eigenvectors by purely
operator techniques. This derivation, which we
present here, was motivated by the work of Infeld,°
although his method differs somewhat in detail from
ours.

We define operators a, a', b, and b' by

_ %(_SE_)‘*{PR _ ,.ER Lot %h)“,

i R
¢ 1 |elsc ke e . (P + 1h) (113)
b=~ |—) | {P i—R+°—L}},
2[(|el ﬁ)] { ¥ L R
a=>be™ a =%
The commutator of a with 4 is
[a,d'] =s. (116)

In terms of @ and af, the expression for K can be
written as
K = had' — s(py, + 3H)

= hia'a — s(p, — h). 117)
The commutators of K with ¢ and a' are
(K, d] = [K,d'] =0, (118)

which implies that operation with a or 4’ on an eigen-
state of K produces another eigenstate of K with the
same eigenvalue. The commutators of p, with a and a'
are

[p,,al = —ha
and

(75, a") = ha'. (119)

Therefore, a and a' are, respectively, lowering and
raising operators for the eigenvalues of p, .

Since K and p, commute, we can define simultaneous
eigenstates of these two operators. Let |j, n) denote
a normalized eigenstate for which the eigenvalue of
Kis (j + 3)h by definition, and the eigenvalue of p,
is nh, where n is an integer:

<jsnlj3n> = 15
Kljnm={({+baljn,
PelJ, n) = nk|j, n).

10 L. Infeld, Phys. Rev. 59, 737 (1941). Later developments of this
interesting method can be found in the following references: (a)
T. Inui, Progr. Theoret. Phys. (Kyoto) 3, 168, 244 (1948); (b) L.
Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951); (¢) A. Joseph,
ibid. 39, 829 (1967); (d) C. A. Coulson and A. Joseph, ibid. 39,
838 (1967).

(120)
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Because g and a' are lowering and raising operators
for the eigenvalues of p,, the states |j,n — 1) and
|j,n + 1) are proportional to alj, n) and a'|j, n),
respectively. Therefore, the requirement that all
admissible states be normalizable means that the
matrix elements (j, n|a'a|j, n) and (j, n| aa' |}, n)
must be nonnegative:

, . 1, . ,
Gomtalalj,my = 5 (Jynl K + s(ps — $B) | j, n)

—G+D+n—Ps20,
(Gunl aa® [jom) = ;15 Gonl K + s(p + 3B) 1 m)

=(G+PD+m+Ps>0 (121

From this we immediately conclude that j must be an
integer; otherwise, by repeated application of a or a'
we could obtain an unnormalizable state from an
admissible state. The first of the inequalities (121) is
the more restrictive for s = 1 and the second is the
more restrictive for s = — 1. Therefore we can replace
these inequalities by the single inequality

j4+ns 20 (122)

We can restrict the values of j further by expressing
Kintermsof X, Y, Px, and Py as

K= m[(PX 46 Y) + (Py _ ix)j. (123)

Thus we see that
G+ Dhi=(jn K|jnm

is the expectation value of the sum of the squares of
two Hermitian operators and therefore cannot be
negative.

With these results we can write the allowable
solutions of the inequalities (121) as

J=1+ ¥(n| — sn), (124)
where / is an integer that can assume any nonnegative
value (0, 1,2, ). For fixed j and s = 1 the mini-
mum value of # that is allowed is —j, whereas the

maximum value of » allowed for fixed jand s = —1
is j. Therefore the state |j, —j) for s =1 and the
state | /, j for s = —1 are determined by

PolJs —J> = —jhlj, =,

i } fors=1, (125a)
alj,—p=0,
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and
a'lj,jy=0,

fors = —1. (125b)

All other admissible states are obtained by repeated
operation with a' on | j, —j) (for s = 1) or with a on
1j,j> (for s = —1). Finally, by using Eqs. (121) and
making a suitable choice of relative phases for the
states, we obtain the following recursion formulas for
the admissible normalized eigenstates:

lin+1y=(G+n+ )t |jn fors=1,

ljjn—1=(—n+DHaljn fors=—1
(126)
E. Calculation of the Phases
The matrix element (j, n’| ik(9/0t) — H | j, n) van-
ishes for n’ ¥ n because p, commutes with /0t and
with H. Therefore the state e?*=|j,n) will be a
normalized solution of the Schrodinger equation if
we choose a,,(¢) as a solution of Eq. (15):

da,'n
dt

We begin by finding a recursion formula for the
right-hand side of Eq. (15") for s = 1l and fors = —1.
For s = 1 we have

" =<j,n|ih~%~H|j,n>. (1)

. .. 0 ,
(s nl lii—-Hl},n>

)

+ [a,ih-@——H:]}a [jon—1)
= (j nwllihé—Hi' n—1)
’ ot ]’

1, . 0 to.
—{j,n=-1lla,ih— — H ,n— 1)
+j+n<1n i[az o :Ia \jin 3

(1270
Similarly, for s = —1 we obtain

d
.9 ih——H ”
(Jrnli Py P
;L .y 0 ,
=<J9n+1llk5;_HU’n+l>

+—on 41 [a“, inl _ H]a i, n + 1),
J—n ot
(128)
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We only need calculate the commutator [a, i5(0/0f) —
H] that appears in Eq. (127) because the commutator
in Eq. (128) is related to it by

t ., 0 .. 0 jIT
,ih—— H|=—ja,ih——H]|.
[a ih } |:a ih—
To evaluate [a, ifi(9/9t) — H] we use the expressions

for H and a in terms of r, p,, and p,. The expression
for H is given by Eq. (96), and the expression for a is

X {PPr — Mpr — il:iﬁ +p (2o + 41 %h):l}e‘“’.

.
(129)

The commutator may be expressed in the form

0
a,ihi— — H| = —ikd, 130
[ain5 — 1] (130)
where the right-hand side refers to the total time
derivative operator. The evaluation is straightforward
and particularly simple if one uses the Heisenberg
equations of motion in evaluating 4. The result is

[a, inl — H] = ﬂ(’—g - i)a
ot Mc\2 p?

[ohn2 ] = = (B L)y
ot Mc\2  p?
We now substitute the commutators given by Egs.

(131) into Egs. (127) and (128) and use Eqs. (121) to
obtain

(131)

. . O ,
(.]9 nl lh_—'Hl.]s n)

ot
=@n—umi_Hmn_n+£q?_L)
ot Mc\2 p2
for s=1 (132)
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and
Goml 52— H [,y
) at b
. ., 0 eh (B 1
= (j, 11ih— — H|j, D= —[=—-=
Un+|lat ljsn+1) MJZ ﬁ)
for s=—1. (133)

We are still free to choose the phase of |j, —j) for
s = 1 and the phase of | j, j) for s = —1 arbitrarily.
We choose these phases in such a way that the
solution of Eqgs. (132) and (133) is

.. O ,
(Jynlih——H]ljm)
ot
, eh (B 1
=nm+ G+ L] —|-—=). (134
b+ G+ Dl (7 - ) 139
The expression for the phase «,,(¢) that we obtain
by substituting the matrix element given by Eq. (134)
into Eq. (15") is

amo=m+wr+%uifbﬁmw—pﬂ01

(135)

Using Eq. (135), we may construct the time-
dependent Schrédinger state vector according to the
prescription of Eq. (16), and hence we may compute
transition probabilities for processes analogous to
those treated in Sec. III. It should be pointed out that
the definition of Eq. (99) may lead to both positive
and negative values of Q2(¢). The latter situation arises
when the sign of the particle charge is the same as the
sign of the background charge density, provided that
the instantaneous Larmor frequency |eB|/2Mc is less
than the “electrostatic oscillation frequency” (2meq/
M)}, where o is the background charge density. Under
these circumstances the asymptotic form for real p(t)
given by Eq. (48) has to be modified appropriately.
The transition probability formalism of Sec. III is
directly transcribable to the present case of charged
particle motion only if Q*(4 c0) is positive.
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The Mth power of an N x N matrix is expressed via the Cayley-Hamilton theorem as a linear combi-
nation of the lower powers of the matrix. The polynomial coefficients of the lower powers of the matrix
are expressed in terms of polynomials in N variables, termed the generalized Lucas polynomials. The
independent variables in the generalized Lucas polynomials are the traces of the lower powers of the
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matrix.

1. INTRODUCTION

Many problems in applied mathematics require a
knowledge of the Mth power of an N X N matrix.
If purely numerical results are desired, then the well-
known Sylvester interpolation scheme® is probably
the most elegant and efficient algorithm. Unfortu-
nately, the scheme requires a knowledge of the eigen-
values of the matrix under consideration and thus is
not particularly useful for obtaining explicit algebraic
results in terms of the matrix elements. An alternative
method is to employ the Caley-Hamilton theorem,
along with continued matrix multiplication, in order
to exhibit the Mth power of the matrix as a linear
combination of lower powers of the matrix.

We will show in the present paper that the coeffi-
cients of the lower powers of the matrix are poly-
nomials in the traces of the powers of the matrix.
Furthermore, these polynomials (in many variables)
are natural generalizations of the Lucas polynomials
employed in number theory. Various properties of
these polynomials are listed, and the Mth power of an
N x N matrix is explicitly written in terms of these
generalized Lucas polynomials.

2, CAYLEY-HAMILTON THEOREM

If X be an N X N matrix, the Cayley-Hamilton
theorem states that X satisfies its own characteristic
equation

é(—nlqsng-l =0, X'=1, €}

where ¢ is the /th symmetric polynomial formed

out of the eigenvalues of X. Note that ¢{¥ = det X.
Rather than deal with the eigenvalues of X, let us

work with the traces of X!, o' = Tr (X'), where N

* On leave of absence from Itek Corporation, Lexington,
Massachusetts.

! F. R. Ganthmacher, The Theory of Matrices (Chelsea Publishing
Co., New York, 1959), Vols. 1 and 2.

denotes the size of the matrix. It is a well-known fact
that if X is N x N, then a set of invariants of X is
oM (I=1,2,+-, N). Any value of ¢!™ for / > N
can be expressed in terms of the N invariants
oM .. M. The connection between ¢, and o, is
outlined in Ref. 2 and is given by the following
sequence of relations:

¢ = 01,
2¢y = $10y — 0,
3¢5 = ¢y01 — $103 + 0,
4y = $301 — $o0s + $105 — 0y,
5¢s = 401 — 302 + $a03 — P04 + 05,

These equations can be sequentially solved for
vy, 0y, * * * ; the final result is

¢ = 0y,
¢y = §(al — @),
¢s = Ho} — 30,0, + 203),
by = 15201 — 900, + 160,05 + 303 — 120,),
b5 = 5 15(20] — 17030, + 40630, + 270,02
— 600,06, — 40040, + 480;),

We employ Eq. (1) in our quest for determining the
Nth power of an M X M matrix, by continued post
multiplication of Eq. (1) by X. If, for example,

2 H. Weyl, The Classical Groups (Princeton University Press,
Princeton, N.J., 1946).
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N = 3, we easily obtain the sequence

= X2 — X + ¢4,
= (¢ — d)X* + (3 —
XP = (¢} — 2¢1¢5 + $g)X*
+ (—dids + bi1dhs + DX 4 dy(df —

¢1¢2)X + ¢1¢3l,

b2,

We can always express the Mth power of an N X N
matrix (M > N) in terms of a set of polynomials in
the N variables ¢, ¢,, " , ¢y multiplied by X¥-1,
XN_z’ s, )(’ l.

The case N = 2 frequently occurs in a variety of
physical problems (iterated networks, thin films, etc.)
and the special case of unit determinant (i.e., ¢} = 1)
has been exhaustively studied.® The general case,
$P # 0, was treated independently by Herpin* and
Barakat®; they showed that the appropriate polyno-
mials in two variables are the Lucas polynomials.
Extension of the analysis to ¥ > 2 is the subject of
the present note.

3. GENERALIZED LUCAS POLYNOMIALS

Lucas,® in his work on number theory, studied a
class of polynomials in two variables. The polynomial
is termed U, (P, Q) and is defined by the recurrence
relation

Un+2(P’ Q) = PUn+1(P, Q) - QU’nAI(P’ Q) (2)

together with the initial conditions Uy, = 0, U; = 1.
In the special case Q = 1, these polynomials reduce
to the Chebyschev polynomials of the second kind
S,(P), as defined in Lanczos?; in fact,

Un(P’ 1) = S'nvl(P) = {an nG/SIn‘ 0’ Pp=2 COS 9,
sinhné/sinh ¢, P =2cosh¢,
n>1. (3)

The former expression holds for |P| < 2, the latter
for |P| > 2. With Q = —1, the Lucas polynomials
are equivalent to a set of polynomials, termed the
Fibonnacci polynomials,®® which have found some
application in the theory of ladder networks.

3 V. Moweny, IRE Trans. Circuit Theory 11, 232 (1964).

4 A. Herpin, Compt. Rend. Acad. Sci. Paris 225, 17 (1947).

® R. Barakat, J. Math. & Phys. 43, 332 (1964).

§ E. Lucas, Theorie des nombres (Gauthler-Vlllars Paris, 1891).

" C. Lanczos, Applied Analysis (Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1956).

8 E. Jacobsthal Sitzungsber. Berliner Math. Ges. 17, 43 (1919).

? S. Basin, Math. Mag. 37, 83 (1964).
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An explicit expression for U, (P, Q) is

Upu(P, Q) = P* — (" N 1) pr2g

+ ("'2—2)P"‘4Q2+--',

the series terminating when the exponent of P or Q
is negative.

Motivated by the discussion contained in the
previous section, we introduce a generalization of the
Lucas polynomials to a class of polynomials (here-
after termed generalized Lucas polynomials) in N
variables, namely U™ (¢,, 5, - -, ¢x). This func-
tion is defined by the recurrence relation

4)

U:'LI—VF)N(¢15 ¢29 T ¢N)
= ¢1U7(224Y}V—1 ¢’2 +N—2 + ¢3U§Q’_’N_3
— QU N o+ £ UY (5)
together with the initial conditions:
U(N) U(N) [ Ul(l\i)z =0, UI(\flz)l =1.

N =2, of course, is the usual Lucas polynomial
situation. The first members of the polynomials U,
UW, and UY are listed in Table 1. Examination of
Table I and simple induction yields the reduction
formulas

U(nN)(d’la ¢'2> o <‘rl>N—1’ 0)
= U(”]!Il)(tﬁl, b2 s )
U(nN)((ﬁl’ 952’ e ‘?SN—Z’ 0,0)
(75252)(‘/’1’ PN Yy A ()
U("N)(qgl’ 0,---,0,0) = ¢;»—N+1.

Although we were unable to obtain explicit expres-
sions for general N, we found that U® could be
expressed in closed form as

(:-32(9'[’1 » ¢2’ ()63)
= ngz-i)-l((ﬁl > ¢2)

#3307 ) (N7 e,
)

subject to the convention that if any exponents of
&1, b2, Ps are negative, then the term is taken to be
Zero.

A closed form for U™’ is desirable, but it is just as
easy to generate the polynomial via Eq. (5). In fact,
Eq. (5) is ideally suited for programming on a com-
puter using algebraic routines.
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TasLe I. First members of the polynomials US®, Ui, and U,®.

n=3-

,8

UQS) =
U = ¢1 — &
U = 6% — 2412 + 45

Us(a) = 95: - 34”952 + 24’14’3 + 'f’:

U® = ¢i — 4¢1¢a + 34ids + 3y — 26245

uY = ¢° — 5¢1bs + 4¢ids + 641¢3 — 66123 — 63 +
n=4,--.9

Ucm =é

Usm =¢ — $s

U = ¢} — 2¢1¢s + ¢

Uvm = ¢‘ - 3¢§¢2 + 24195 + 4’: — ¢

U = ¢} — 4¢ids + 361ds + 3616} — 2614 — 26265

Um $7 — 5¢ide + 4¢ids + 64167 — 3814, — 6d1dds — B3 + 26us + $5
n=>3, , 10

U;E) =¢

Uem = ‘Isi — s

U," = ¢} — 2¢1hs + ¢5

U(m = 45: - 34’2‘}52 + 2¢14s + 4’2 — ¢
U(S)
Ul(g) = 4’1 - 5‘1’:4’2 + 49614’3 + 64’14’2 -

‘755 - 4¢14’2 + 34’14’3 + 3¢1¢2 - 24’ ¢4 - 24’24’3 + ‘/’5
3ibs —

6d1batps + 2015 — b5 + b2 + 2¢.0,

4. Mth POWER OF MATRIX

Armed with a knowledge of the generalized Lucas
polynomials, Eq. (1), and a large measure of patience,
we proceeded, by a tedious induction, to prove that the
Mth power of an N x N matrix (M > N)is given by

XH = UEIXN1 4 [UW), — $ U XA
+ [¢3UM—1 $U s
()P UG el XN
: (=g + UL
" (E)PNU G sl XV
+ [¢5U<N) — ¢V
(i)¢NU§a¥lN+4]XN‘5
+ o+ [PWUSLI (8)
We have thus expressed the polynomial coefficients of

the lower powers of X in terms of linear combinations
of the appropriate generalized Lucas polynomials.
In the special cases N = 3, 4, Eq. (8) becomes

XM = UGXE+ UG, — S UPIX + ¢UR_ L, (9)
XM = UK + [UR,, — $,UPIX
+ [¢3U(J;14)-—1 ¢4U(4) X — UG, (10)

As an application of these formulas, we have
employed the case N = 3 in a study of the coupled
linear differential equations describing the traveling-
wave-tube parametric amplifier.}® The case N = 4 has
been applied to some problems in the theory of non-
image-forming optical instruments described by
Mueller matrices.!

18 To be published.
11 To be published.
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Functions over cosets are used to obtain Clebsch-Gordan coefficients of induced unitary representa-
tions of noncompact groups. In particular, the Clebsch-Gordan coefficients of the Poincaré group are
obtained using functions over cosets. It is also shown how the Clebsch-Gordan coefficients of other
groups having induced irreducible representations, such as the Lorentz group, may be obtained.

INTRODUCTION

One of the problems which has arisen in the applica-
tions of noncompact groups to elementary particle
physics is the explicit construction of the Clebsch—
Gordan or coupling coefficients defined relative to
some complete set of commuting observables.
In higher-symmetry schemes, such as U(6, 6) and
In SL(6, C),! the Clebsch~Gordan coefficients could
be obtained because finite-dimensional representations
of these groups were used; these groups, however,
were plagued, among other things, by the lack of
unitarity arising from the finite-dimensional repre-
sentations. In working with higher symmetry schemes
it is thus important to obtain the Clebsch-Gordan
coefficients for the unitary (and therefore infinite-
dimensional) representations of noncompact groups.

There are instances where the Clebsch-Gordan
coefficients of the unitary representations of non-
compact groups have been obtained. Jacob and Wick?
obtained the Clebsch-Gordan coefficients for the
Poincaré group, and since their work appeared many
authors® have obtained the Clebsch-Gordan coeffi-
cients of the Poincaré group using different techniques
than those of Jacob and Wick. The Clebsch-Gordan
coefficients for the homogeneous Lorentz group have
also recently been obtained,* at least for the so-called
principal series of representations.

In both of these groups, the unitary irreducible
representations can be written as induced representa-
tions, in the sense in which Mackey® has defined this
notion. Mackey has also shown how it is possible to
decompose the tensor products of induced representa-

1 A. Pais, Rev. Mod. Phys. 38, 215 (1966); T. Fuilton and G.
Wess, Phys. Letters 15, 177 (1965); A.. Salam, R. Delbourgo, and
J. Strathdee, Proc. Roy. Soc. (London) A284, 146 (1965).

2 M. Jacob and G.-C. Wick, Ann. Phys. (Paris) 7, 404 (1959);
G.-C. Wick, Ann. Phys. (Paris) 18, 65 (1962).

3 See P. Moussa and R. Stora [Lectures in Theoretical Physics
(University of Colorado Press, Boulder, Colorado, 1964), Vol. VIIa]
for a list of references preceding their work. See also M. Kummer,
J. Math. Phys. 7, 997 (1966).

¢ R. Anderson, L. R. Raczka, M. A. Rashid, and P. Winternitz,
“Clebsch-Gordan Coefficients for the Lorentz Group. I,”” IAEA
Preprint, IC[67/50, Trieste, Italy, 1967.

8 G. W. Mackey, The Theory of Group Representations (Dept. of
Mathematics, The University of Chicago, Chicago, Ill., 1955).

tions into direct integrals over double cosets of groups
having induced irreducible representations. One of the
difficulties in utilizing Mackey’s theory in elementary
particle physics is that the spaces on which the induced
representations are defined are fairly abstract as far as
the physicist is concerned. In this paper it will be
shown how the use of functions over cosets enables one
to make a connection between the abstract notion of
induced representations and the Clebsch-Gordan
coefficients of the group. Roughly speaking, the
irreducible induced representations of noncompact
groups are defined on function spaces whose functions
have as arguments coset labels of the group. Let [x]
be a set of irreducible representation labels of a group
G and let {x} be a set of eigenvalues chosen from a
complete set of commuting observables of G. Then the
quantity
D(G) = ([x}¥'| U(G) |[x]x)

can be thought of as a function over the group; here,
U(G) is a unitary irreducible representation of G.
For example,

DI(R) = {Ljlm'| U(R) |LjIm)

is a function over the three-dimensional rotation
group, with R a rotation, and DY} (R) a “matrix
element” or a Wigner function.®

In particular, DI¥)(g,) can be thought of as a func-
tion over a coset; here g,, an element of G, labels
right cosets of G/H, with H a subgroup of G to be
specified later. If the direct-integral decomposition
of tensor products of functions defined over cosets is
known, then the tensor-product decomposition of
D3l(g.) can be obtained. But it will be shown that
D¥)(g,) can be thought of as a concrete realization of
the basis elements [[x]x) and the Clebsch~Gordan
coefficients are precisely the coefficients which reduce
the tensor products of basis elements |[x1x:) |[x2]%2).

In Sec. I, the main ideas needed for getting the
Clebsch~Gordan coefficients via functions over cosets

8 E. P. Wigner, Group Theory (Academic Press Inc., New York,
1959).
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will be discussed; in order to present these ideas it will
be necessary briefly to review the notions of induced
representations, tensor products, and double-coset
decompositions. As a simple example, the ideas
sketched in Sec. I will be applied in Sec. II to the
group P,, the Poincaré group involving only one
spatial dimension.

In Sec. III, the Poincaré group involving three
spatial dimensions will be discussed; in particular,
its unitary irreducible representations will be defined
on functions over its cosets. The tensor-product de-
composition for positive-mass representations of the
Poincaré group will be given in Sec. I'V. In this section,
our work will draw on that of Moussa and Stora®
and Rideau,” who have used Mackey’s induced-
representation theory to obtain the tensor-product
decomposition of the Poincaré group. Finally, in Sec.
V, the Clebsch—-Gordan coeflicients of the Lorentz
group will be briefly discussed.

I. REVIEW OF INDUCED REPRESENTATIONS,
TENSOR PRODUCTS, AND DOUBLE COSETS;
THE CLEBSCH-GORDAN COEFFICIENTS

In this section the relevant parts of Mackey’s
theory of induced representations® will be briefly
summarized, in order to see how this theory can be
used to obtain Clebsch-Gordan coefficients. Consider
a group G and let G be decomposed into right cosets
with respect to a subgroup H:

with g, an element of G labeling the right cosets.
Denote a representation of H by J, defined on a
vector space ‘W(JC), and consider that class of func-
tions f mapping G into “W(JE) which have the property
flhg) = X(h)f(g), with h an element of H and g an
element of G; this class of functions forms a new
vector space

V) = {f| flg) € W), fhg) = K(h)f(g),
forall hin H, gin G} (2)

on which a representation called the induced repre-
sentation is defined:

U(go)f(g) = f(ggo)- 3)

Notice that the condition f(Ag) = JE(h)f(g) means
that it is possible to think of f(g) as a function over a
coset, since f(g) = J(h)f(g.). Further, by restricting
f(g.) to those functions which are square integrable
over g,, V() becomes a Hilbert space and U(g,)
becomes a unitary representation.® For the groups

7 G. Rideau, Ann. Inst. Henri Poincaré 3, 339 (1965).
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considered in this paper, the measures needed to get
the norms of f{(g,),

IfI2 = f dg, | f(g)I* < <o,

are given in Refs. 7 and 9.

Consider now induced representations on two
Hilbert spaces ‘U(¥,) and U(J€,). The tensor-product
space U(¥;) @ (K,) is the Hilbert space of functions
F(g,, , g,) with norm

IF|® =fdgcl dg., |F(g,» ge)I* < 0 (5)

and the induced representation on this tensor-product
space is

4

U(gO)F(gcl9 gcz) = F(gclgo’ gcago)- . (6)

Assume that U(¥,) and U(JK,) are irreducible
spaces of G; the problem is to reduce the reducible
tensor-product spaceinto a direct integral of subspaces,
each subspace being an irreducible subspace. Several
techniques will be used in this paper to effect the
direct-integral decomposition; in particular, Mackey
has shown® that a partial decomposition of the
tensor-product space can be obtained via a double-
coset decomposition.

However, assume for the moment that the direct-
integral decomposition is known and that f, ,.(g.) is
an element of the irreducible subspace, with norm

”ﬁl;ﬂ]“z =fdgc |ﬁxr]](gc)lz < CD,

[x, n] are the irreducible-representation labels and the
degeneracy labels, respectively; # is needed whenever
the multiplicity is greater than unity. Then,

T f ALy 1 | fopl® %

is a direct integral over [y, 5] with weight function

dly, nl-
Now let S (the notation is that of Ref. 10) be the

operator carrying functions from the tensor-product

8 Actually, the norm of f,

1112 = f dg. | Ago)|

is only correct when one-dimensional representations of the inducing
subgroup are being considered; in cases where higher-dimensional
representations of the inducing subgroup are used, the definition of
the norm is modified to be

§ de 1 feall3e -

where the subscript J€ refers to the length of the vector £in U(3€). In
the case of the Poincaré group, the representations of SU(2) are of
dimension 2S + 1 and, thus, it is necessary to use the more general
definition of the norm of f.

® M. A. Naimark, Linear Representations of the Lorentz Group
(The Macmillan Company, New York, 1964).

10 M. A. Naimark, Am. Math. Soc. Trans. (2) 36, 101 (1964).
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space V(¥k,;) ® U(X,) to the direct-integral sub-
spaces, that is,

S:F(gcx ’ g"a) —)f[z-'l](gﬁ) = SF(gcl ’ g"z)' (8)

Then, since f},,,,(g.) is an element of the Hilbert space
(4), one can consider the inner product

(f[’x]’f[x,rt]) = f dgcf [’;](gc)f(x,n](gc)
= f 8.8 )ISF(ge,» )] (9)

Up to this point, the functions f(g,) have been
square integrable. Consider, however, as functions
over cosets (which in general will not be square
integrable),

DY (g, = ([xdx'} Ulgy) [x1%), (10)

where [y] denotes a set of irreducible representation
labels and x’, x are eigenvalues of a complete set of
commuting observables. Choose f{,,(g.) to be Di¥(g,)
and F(g,, ,g,,) to be DI (g, ) DI (g.,). Since Dz
can be thought of as a concrete realization of |[x], x),
the Clebsch-Gordan coefficients are proportional to the

“overlap” between DI2)(g,)and S{DI] ( g, Dl (g0}

Lede; | Dradxas Drelxe)
x a(DENg), S{DY (g.) D, (8e)D)

= f dg. D (g)SD (¢,)DE, (g.), (1)

with N a normalization factor. Thus, if it is possible to
find S and calculate D¥)(g,), it should be possible to
get the Clebsch-Gordan coefficients from Eq. (11).

To find the operator S we first decompose F(g,, , g;,)
into a direct integral over double cosets. That is, we
consider the outer product group® of G, the set of
ordered pairs of elements {(g;, go)} = (G;, Gy), with
g and g, arbitrary elements of G. This outer-product
group can be decomposed into right cosets with
respect to the A, and H; subgroups:

(Gl * Gz) = U (Hl ’ Hz)(gq» gcg)'

£14+€2

12

Now a subgroup of (G,, G;) is the “diagonal”
group G itself, consisting of elements (g, g) with g an
arbitrary element of G. We wish to write a double-
coset decomposition'* of (G;, G,) with respect to
(H,, H,) and (G, G):

(Gl 2 Gz) = y (Hl » H2)(ea gD)((;’ G), (13)

11 A double coset is a subset of a group & of the form HygH,, with
H, and H, subgroups of G and g an element of G.

147

where e is the identity element of G and g, is the se
of elements of G labeling the double cosets.

Mackey has shown that the induced representatios
defined on the tensor-product space (6) is equivalen
to induced representations defined on subspace
labeled by the double cosets (13). The inducin
subgroup is given by

Hp = (e, gp)"(H,, Hy)(e, gp) N (G, G)
= (H, gp'H:gp) N (G, G)
= H, N gpH,ep (14
and functions f,(G/Hp) carry the induced representa
tions. Further, Mackey shows what the measure is or
the double-coset labels so that

IFJ? = f d(D)) foll*

Usually the double-coset decomposition does not
result in irreducible subspaces and it is necessary to
decompose further the double-coset subspaces. The
techniques for doing so will vary from group to
group, but the end result will be to have a direct-
integral decomposition of the kind given in Eq. (7).

(15

II. THE CLEBSCH-GORDAN COEFFICIENTS OF
THE TWO-DIMENSIONAL POINCARE GROUP

As a simple application of the technique outlined in
the previous section, we will obtain the Clebsch-
Gordan coefficients for the two-dimensional Poincaré
group consisting of transformations

() = Gy o) C) + () a0

where (%) are arbitrary space-time translations.
Equation (16) can be rewritten as
z coshf sinh g a,\ /z
t') ={sinh B coshB alf¢ {amn
1 0 0 1/ 1\l

and, finally, as a matrix group
A a cosh f§ sinh ﬂ)
= A=
Py {(0 1)} (sinh,e cosh B/’

o= (7).

All of the unitary irreducible representations of P,
can be written as induced representations,’? induced

by the subgroup
I a
= {(o 1 )}

2 See Ref. 5, p. 1651,

(18)

(19)
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(I is the identity matrix of A) having representations

K(a) = e'?e (20)
defined on the one-dimensional vector space U(p).
P+ ais the Lorentz scalar product —p,a, + Fa,, with
P and E having the usual interpretation of momentum
and energy, respectively.

Mackey shows that all momentum vectors p = ()
having the same mass generate equivalent representa-
tions of P, so that it is only necessary to consider a
standard vector chosen to be

A_(O).
p=\,)

that is, p is the “‘rest-frame” momentum vector.
- The right-coset decomposition of P, with respect
to H of Eq. (19) can be written as

o 1= 16 )
0 1/ \o 1/\o 1
so that we consider functions in U(p), Eq. (2), with
the property that

A9 96 )

The functions over cosets f(A) = f(f) have norm

@n

22)

(23)

LFIE = f_ jdﬁ B < oo. (24)

The induced representation is

aasrr=(3 5 )
— f[AAo AaOJ

0 1
(5 )]
(25)

_ I Aao)
-/ [(o 1
= e/ (AAy)
and it is easily seen that U is a unitary representation.
The tensor-product space consists of functions
F(A,, A,)) = F(B,, f.) having norm

IF|* = L Cdp By IF G B < 05 (26)

the arguments of F are obtained from the right-coset
decomposition of the outer-product group:

G0 G =1 )6 %))
(e (5] e

WILLIAM H. KLINK

with the inducing subgroup

G 16 %))
0 1/7\0 1
having representations

361 ® 362 — eiﬁx‘meiﬁg'ag

(28)

on the vector space U(5,) ® W(Fy).
The induced reducible unitary representation on the
tensor-product space is

U(Ay, ap)F(Ay, Ay)

=l )G DG 65D
=L Mo LT DT )
= PrhsogPrAsof(A A, AyAy). (29)

Instead of the right-coset decomposition (27), it is
possible to write a double-coset decomposition with
respect to the diagonal group:

(o 3G P =16 )6 %)
<G -6 G D6 ]

where
_ (cosh D sinh D)
D~ \sinh D cosh D

is a convenient choice of double cosets.
Multiplying out Eq. (30) gives

(BRI R
[ 950 o

so that, with the substitutions

Al = A,
Az = ApA, (32
it is possible to define a new function
fo(d) = F(Ay, Ay, (32)

The fact that D is subscripted rather than being
included in the argument of fis meant to indicate that
it remains invariant under an arbitrary Poincaré
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transformation. To see this, note that
U(Ay, ag) fp(A) = UMy, a)F(Ay, Ay)
= eiﬁl'Axaoeiﬁn‘AaaoF(Ale , Aon)
= ei[ﬁl'Aao+ﬁz'ADAao]F( A Ao, AAA Ao)

= pilfr+Ap T B2l Adg Fo(AA). (33)
Defining
—M, sinh D
=p,+ App. = 2 34
Pp =D+ Appe <M1 + M, cosh D) (34)
gives
U(Ag, a0 fp(A) = €222 (AA), (35)

which has exactly the same structure as Eq. (25) so that
Eq. (35) gives a unitary irreducible representation of
P, induced by the subgroup H of Eq. (19) with repre-
sentation e on Us(pp).

Notice that

M? = pb, = M? 4+ M2+ 2M M, cosh D, (36)

so that the subscript D actually gives the “mass” of the
subspace fp(A) for arbitrary but fixed values of M,
and M,. In fact D labels the direct-integral decom-
position of F(A;, A,), since

i1 =" ap, ag, IFGa.po
~[ Tapapispre

+o
=[ Tap s @37

where
+o
1ol = [ aB 116

Finally, to get the Clebsch-Gordan coefficients of
P, , it is necessary to know the functions DI¥1(A) of
Eq. (10). But it is well known that states |p, E) =
|[M], p), with M? = —p? 4 E%, transform under P,
as

U(Ags ag) |[[M], p) = €A"®|[M], Aop),  (38)
so that
DEXIA) = ([M], p'| U(A, 0) |[M]p)
= (M}, A7p' |[M], p)
= E3(A™'p' — p), (39)

where E = (M2 + p?)? is a standard normalization
factor.1®

We must check that DLYI(A) is indeed a function of
A with the correct transformation properties under

18 See, for example, J. Werle, Relativistic Theory of Reactions
(John Wiley & Sons, Inc., New York, 1966).
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P,, namely, those given in Eq. (25):
U4y, ao) DEHA)

o3 )5 %)

= ([M], p'| U, Aap)U(AA,, 0) | [M], p)
= M DIAA,). (40)
In order that (40) agree with (25), p" must be set equal
to p. But DEMI(A) can be thought of as a concrete
realization of |[M], p), since p is now a fixed vector.™
Thus, in Eq. (9) and Eq. (10), we choose

So(A) = DETXA),

F (A1aA2) = D%%l,](Al)D[Mﬂ(Az)

Bave

(41)
and proceed to change variables in F(A;, A,):
F(Ay, A = Djy(A) DAy

ﬁz?z
= Dy () D (Ap)
= Dy (M) DG (A),  (41)
where pp = p; + AP, was defined in Eq. (34).
Equation (41’) shows that

fD(A) — D[Mll(A)D[Mz]

B1m (pp~P1 )Dz(A) . (42)

The Clebsch~Gordan coefficients are, according to
Eq. (11),
(IM1p | [Mylp:; [Malpy)
= N(D5,(A), Dy (A) Digy i (A))

Ppp 1

mrn

=N f df DEMI'(A) DRE(A) DML, | (A)

=N f dBES(A™ pp — P)ES(A™ By — py)

X EA ™ (pp — By) — po). (43)
We wish to show that the § functions in (43) can be
written as

op — py — 6coshD—ﬂ--&).
r—n Pz)( M, M,

If this is the case, then in the second 4 function we will
have the usual expression for the mass M2 =
(p1 + p2)?, since, according to Eq. (36),
M = M? + M2+ 2M,M, cosh D
= M} + M+ 2M M, p1po/ MM,
= (p, + p)*

14 1t is not difficult to see that D[,{’: ](A) is a concrete realization of
P

(44)

[iM]p), for D[é':] (A) transforms in the same way that |[M]p) does
and further has the same normalization as {{M]p’ | [M]p), so that

aMlp’ | (MIp) = § dBDY"(A)DRIA)

(up to a possible factor involving M).
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Now,
f dBS(A~pp — PINATp, — p)SA ™ (pp — B1) — P

— 5(p— pr — po) f dpd(M, sinh B + p,)

X (M, sinh D cosh f
+ (M, + M, cosh D)sinh f — M, sinh § + p,)
= 0(p — p, — po)d(sinh (D + ) — sinhsinh™ p,/M,)
= 8(p ~ p1 — p)(D — (sinh™" po/M, — f))
=0d0(p — py — P)
X 8(cosh D — (E,Eo/MyM, — p1ps/MiM5))
= 0(p — p1 — PIOM® — (1 + P2)); (43)
mass and energy terms preceding the é functions have
been dropped in these equations. Also, p = (%) so that
p means both the vector and the space component of
the vector; however, the usage should be clear from

the context.
Finally, then, the Clebsch—Gordan coefficients are

(IMlp | IMi)ps; [Ma)ps) = N&(p — p1 — ps)
X O(M? — (p; + p)®) (46)

and gives, as would be expected, conservation of
energy and momentum along one space axis.

III. REPRESENTATIONS AND FUNCTIONS
OVER COSETS FOR THE
POINCARE GROUP

The way in which one obtains the irreducible unitary
representations of the Poincaré group using Mackey’s
theory of induced representations has been given by
Moussa and Stora.? In this section, the inducing
subgroups and their representations will be written in
such a way as easily to obtain the functions over co-
sets needed to obtain the Clebsch—Gordan coefficients
in Sec. IV.

Usually one writes the Poincaré group as

xX'=Ax+a, 47

where x’ and x are space-time vectors, A is a Lorentz
transformation, and a is a space-time translation.
Equation (47) can be rewritten as

()= 9C)

and thus as the matrix

r={(s 1)}

However, in this paper we will be dealing almost
exclusively with the covering group of P, denoted by
P. Now, it is well known® that the covering group of
{A}is SL(2, C), the set of 2 X 2 complex unimodular

(48)
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matrices. Further, the space-time translation a can be
written as a 2 X 2 Hermitian matrix H(a) with

a, — iay)
a—a,)’

a, + a,

49
a, + ia, “9)

H(a) = (

where (a,a,a,a,) are the components of a. Under a

Lorentz transformation which sends a into a’ = Aa,
H(a) is sent into B _

H(d') = AH(@)AT, (50)

where A is that element of SL(2, C) which corresponds
to A.° Further, the length of g, i.e., 42, is readily seen
from Eq. (49) to be |H(a)l.

The question is then: what does P look like as a
matrix ? It is not hard to see that a suitable choice is

A H(@A*

0 AP
where A2 is the inverse matrix and A™ the adjoint
matrix of A. The matrix given in (51) combines
elements in the same way that P in Eq. (48) does.

Thus, if

(Al al) (Az ‘12) _ (AIAZ A102+a1)
o 1/\o 1/ \o 1

QY

_ A, 03)
- (0 “), (52)
then
(7\1, H(al)K;“) (7\2, H(azﬁg“)
0 A 0 At
— (/—\1/—&2, KlH(az)KEH_ + H(al)K;HKEH)
0 [A A
- (Mz, [A,H(a)A} + H(al)HMz]—H)
0 [A A '
(53)

But, according to (50), _/_XIH(az)K;r corresponds to
Aja, so that A H(a)A+ + H(ay) corresponds to
Aa, + a as in (52).

In order to write out the induced representations of
P, it is first necessary to find the inducing subgroups.
This is done with the help of little-group theory,!s
which says that the inducing subgroups which gener-
ate irreducible representations of P consist of all
translations ({Z/@) plus those Lorentz transforma-
tions satisfying Ap = p or, what is equivalent,

AH(p)A™ = H(p). (59
p is a “momentum-energy” vector and arises as an
irreducible representation label ei”® of the trans-
lations mentioned above (p-a = —p-+a + Ea,).

15 E. P. Wigner, Ann. Math. 40, 149 (1939); J. S. Lomont,
Applications of Finite Groups (Academic Press Inc., New York,
1959).
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It is well known'® that there are essentially three
classes of momentum-energy vectors p satisfying (54):

(A)pP=p-p>0 or [H(p)>0; then a con-
venient choice of p is p = (), which corresponds to
H(p) = M@} 9 = MI. Substituting into (54) gives

AMDAY = MI, AA+ =], (55)
which is the definition of SU(2). All other vectors p
satisfying p* > 0 generate equivalent representations
of P.
The inducing subgroup for p? > 0 is thus

SU(2) {H(a)}SU(2))
= 6
7 ( 0 SU(2) ’ (56)
which has representations
Je, = ¢7*DIFI(R), ReSU(2), (57)

where D§§](R) are the irreducible representation
matrices of SU(2) (Wigner functions).
(B) p? = 0; choose

SN
Il
o e O O

as a standard momentum-energy vector for this
class. Then, H(p) = (} 9 and AH(H)A+ = H(p),

since
K=(°‘ 5), ad — By =1,
y 0

G Do o) 5= o
y o0/\0 0/\p* o* 0 0/’
ocy*) _ (1 O)
so that y = 0, « = 1, and thus the set of elements

leaving H(p) invariant is of the form (4 8,4, which
can also be written as

_ i9/2 [ —ip/2
£, = (e pe )

0 o

give
( |c]?
(oxy®)*

(59)
with ¢/2 = a/|«| and 8 = Be~**2 In this form it is

not hard to see that E, is the covering group of the
two-dimensional Euclidean group, that is, the group

of transformations
—sin
7))+ ()
cos @/ \y By

(x') _ (cos @
¥/ \sing

with .
ﬂ = ﬂz + iﬁw
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The inducing subgroup for p-type representations is

w5 {H(ﬁ)}E;“)
0 E"2—1+
The representations of FE, are themselves induced
representations, but, in this paper only, the positive-
mass representations will be considered in regard to
the tensor-product decomposition.
(C) p? < 0; choose

0
A Y
p_ M >
0
then
1 0
H(p) =
P M(o —1)
and
- {1 0\ — 1 0
AM + =
(0 —I)A M(O —1)

shows that the set of Lorentz transformations leaving
(54) invariant is SU(1, 1).

Returning to the positive-mass representations in
order to define induced representations on functions
over cosets, it is necessary to decompose P with
respect to the inducing subgroup H of Eq. (56). This
is equivalent to decomposing the Lorentz group
SL(2, C) into right cosets with respect to SU(2):

SL(2,C) = U SU(2)A,. (60)
The set {A} are elements of SL(2, C) labeling right
cosets; they can be chosen in many different ways, for
example, as rotationless Lorentz transformations?

A, = At (61)

Once the right-coset labels are chosen, it is possible
to write

P=U

[

(SU(Z) {H(a)}SU(z)) (Ac 0

0 SU(2) 0 A;1+)‘ (62)

In the following discussion, the “bar” notation for
the covering groups will be omitted and, in fact,

(5 1) wna (5 ")

will denote the same element unless there is a possi-
bility of ambiguity. The functions over right cosets
are f;(A,) with norm

8
It = 3 [dadmor <o 6

i
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The summation over j comes from the fact that the
representations of H are themselves of dimension
28 4+ 1 (see Refs. 7 and 8). The induced unitary
irreducible positive-mass representations are

UAe, a0)f(A) 1
(0 (5 )]

s 2 L)

+
113 Ay 2 D[S](R) fj ( A )
Pl
with R € SU(2) and A, defined by A A, = RA,.
Finally, in this section, we calculate the functions
over cosets which will be used in the calculation of
the Clebsch-Gordan coefficients. We must calculate

(64)

DIYNA ) = (MSIp’jl U(A,) I[MSlp, o), (65)

where |[MS]p, o) is a nonnormalizable basis element
having mass M, spin S, momentum p, and “spin
component” ¢. Now, the transformation properties of
|[M, Slpo) arel®

U(Ay, a9) |[M, STpo)

= eu\op a0 z D[S](P’ AO) I[Ma S]Aop, 0',>a (66)
where (p, Ay) is a “Wigner rotation” which must be
carefully defined.

Generally one defines (p, Ay) as the rotation
O (Ap)AO(p), where O(p) is a Lorentz trans-
formation from the rest frame of the particle to the
frame where it has momentum p. There are many
ways to choosing O(p), but all choices are equivalent
to a choice of coset representatives. However, be-
cause of the way in which Mackey has defiied an
induced representation U(go)f(g) = f(gg,) Wwith g,
acting to the right of g, the connection between O(p)
and A, is

0(p) = A (p), (67)

where A (p) is that right-coset element which carries
the particle from the frame, where it has momentum
p, to its rest frame, where it has momentum . This
means that in covering-group form

H(p) = A7 () H(PA; (p)
= MA7\(p)A;YH(p),
(9, Ag) = A (AgD)AAL (D). (68)

18 See, for example, Refs. 3 or 13.
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From Eq. (66) we get that
D[MS]( Ay, ap)

v’ jpo

= ([M, Sp'j| e"*o7% Z D[S](p, Ay) [[M, S1Acp, o

— EletAoﬂ aoDElos_'](P’ 0)63(1) — Aop)' (69)

Then f,(A,) is chosen to be DPLSI(A,) and we must
check whether DJS)(A ) transforms properly under

an arbitrary Pomcaré transformation:
U(Ao, ag) D (Ao

Diva
= <[M, S]ﬁ]l U(Ac’ O)U(AO’ ao) ,[M’ S]p0'>
=([M, S]ﬁjl U(R, Aa)U(A,) |[M, Spo)
= ¢ Ao Z DIFXp, R)DSINA.),

i'=—8

(70)

where A,Ag = RA, as in Eq. (64) and D)5, R) =
DISY(R) since (§, R) = A (RP)RA;}(p) = R. But Eq.
(70) has the same form as Eq. (64) so that DYLSI(A) is
a (non-square-integrable) coset function having the
correct transformation properties.

IV. TENSOR PRODUCTS OF POSITIVE-MASS
REPRESENTATIONS OF THE POINCARE GROUP;
EXPLICIT FORM OF THE CLEBSCH-GORDAN
COEFFICIENTS

The tensor-product space of positive-mass repre-
sentations of the Poincaré group consists of square-
integrable functions f; ;, (A, A, ) with norm

+81  +8,
il = 3 E

i1=—8) ig=—8,

dAcl dAcg I.I;u.(Acl s ‘A'Cg), < 0.
(71)

The choice of cosets comes about from the decom-
position of the outer-product group (P,, P,):

16 5 MG "5 )]

-9 )

(e

Ac1 0 Ac2 0
x[(o A:”)’(o A-”)]’ (72)

where A, and A, are both of the form given in Eq.
(62). The representations of the inducing subgroup

C1c2

[ (S U2y {H(a)}S U(2)1) ,
0 SU(2),
(SU(()Z)Z {H(?c)f}(i)imz)]
are

tﬁl alD[Sl](R )e’ﬁ“ aaD[Sz](Rz)’

Uy Y
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so that the induced representation on the tensor-
product space is

U(Ao ao)f;pg(Acl ’ Ac,)

{l:( ; A_1+) (Ao A:O,”)]
y [ (A H(ao)Ao”)’ (Ao H(ao)Az”H}

—1+ 0 Aal+

111”{[(Rl AclH(ao)A ), (It; Ac,H(;‘;)A;:Rz)jI

<0 Af’w)’ (e )

+
= P Aclaoeiﬁz Acytlo z z D[Sﬂ(Rl)

211
ig’=—83 &1'=—8)

X DE;?:](Rz)f;l 'ig’ (Acl Acz )9 (73)

where A, Ag = RiA, , and A, Ay = RyA,,. as before.

It is also possible to decompose (P,,P,) into
double cosets with respect to the induced subgroups
given in Eq. (72) and the diagonal subgroup

=l “) 3 ")
(5 "2 5 )

105 "5 ]
<[ 90 2

<[lo ") )]
(74)

Here Ap is a Lorentz transformation labeling the
double coset; a convenient choice is

Ap = (1; 1;)1))

with D real. In the form given Ay consists of pure
Lorentz transformations along the “z” axis.

Once the form of Ap has been chosen, it is necessary
to find the group Hp of Eq. (14) which is the subgroup
that induces representations in the subspace of the

tensor-product space labeled by the double coset D:

o= (9 S 0 (3 )
(5 "SI
(e
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since

_(I/D 0)(u2 vz)(D 0 ) n(ul vl)
0 D/\—o¥ u}/\0 /D —of uf
ul 0 2
= e Ul 1 N u = 1.
A ELIO
Hjp, has representations inherited from H,
AZH, A, namely,
eifragiby aD[le(u) D[S’](u),

181 Lt

and

with u an element of U(1).

In the subspaces labeled by D the representations of
P are induced by Hp, of Eq. (75). The induced repre-
sentations are defined on functions F, , ,(A/U(1)),

where
%1) B (: |§|)

is a right-coset decomposition of SL(2, C) in which
A

=y —

uQ)

A
Fooo oo [—2—
(113 D) (U(l))
is defined as

Fw,p)( A ) = F(m',)(‘A— ’AD—A-)
u(@) u() u@m
=f;'1i,(Acl s Ac;)' (76)
In order to see how F , n,(A/U(1)) behaves under
arbitrary Poincaré transformations—and also to see
that D ought to be subscripted, indicating that it
remains unchanged under a Poincaré transformation—
it is necessary to see how (A, A.) is related to
A/U(1) and Ap.

Equation (74) enables one to find in which double
coset an arbitrary element of (P,, P,) is; to make (74)
into an equation specifying all the elements on the
right-hand side uniquely once the element of (P,, P;)
is given, it is neccessary to divide out the diagonal
subgroup elements by Hy, of Eq. (75). Then

(57 "]

= l:(Rl H(al)Rl),
0 R,
x R, H{ay)R, I 0\ /Ap S)H
L )
0 A

y (A/ g (€Y [A/U(Ol)]—1+)]‘

Then

an
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Inparticular, the Lorentz transformations of (P, Py)
SINE
B, —v¥ u¥)’ \—v;

can be written as
[ 3]
<1(; é)(y% |6]1)/€))} 7

so that for given (A,, Ay), the values of u; , vy, 4y, Vs,
a, B, 19|, and D are all uniquely fixed. Thus, one can
choose the element (A, , A;) and find how Ry, Ry,
Ap, and AJU(1) depend on A, and A, so that
Fi,pA/U1)) in Eq. (76) is uniquely defined.
Fi;;,p/(A/U(1)) behaves, under an arbitrary Poincaré
transformation, as

U(Ay, agF (ilizD)(A/ u(1))
- F”‘”’{[(A/g v [A/U?l)]‘”)’
(AD(A/ u(1)) 0 )}
0 [ApA/U(T
Il ") ")
=F(,.l,.z,{[(g [A/U(l)]H(a;)[A/U(l)]‘Lu)

% (u AD(A/U(l))H(ao)[AD(A/U(l))Fu)}

Uy

0 u

8 [(A,/OU(I) [A'/U(()l)]-”)

w« (M0 o
0 [ApA' /U™
+81 +8S2
= eiﬁl'[A/U(l)]aoeiﬁz'AD[A/U(l)]ao z Z DEE?(“)

i1'=—81 i3’=—8,

X DS U)F iy (A [U(D),

t222

(79)

where use has been made of the fact that U(1) com-
mutes with Aj,, the representations of Hj, are given
in Eq. (75), and, as in the case of the right cosets, A,
u, and A'/U(1) are defined by (A/U(1)A, =
u(A'/U(1)). Equation (79) can be simplified by
defining Pp, = p, + Ap'p, so that

2
Py — (M1 0 ) N (Mz/D 0 )
0 M, 0 M2D2
2
_ (M1 + M,/D 0 ) (80)
0 M, + M2D2
and noting that DY¥¥(u) = [u]'d,; . Then
U(Ao ’ ao)F(ilizp)(A/U(l))
—_ eI'PD'[A/U(1)]ao[u]‘i1+i2F(i1i2D)(A1/U(l)). (81)

H. KLINK
Equation (81) shows that the indices (i,i;) on

Fiiyi,0(AJU(D))

are not indices which label the components of a vector
in the (28; + 1) x (28, + 1)-dimensional vector
space as in the case of f; ; (A, , A, ). Rather, they are
degeneracy labels, distinguishing between the different
ways in which #, + 7, can give the same value. That is,
i + i, ranges between —(25 4+ 1)(2S,+ 1) and
+(28; + 1X2S, + 1); for a fixed but arbitrary value
of k, k] < (28; + 1)(2S; + 1), there will be various
choices of i, and i, such that i, + i, = k and the
subscripts iy , i on F; ; py(A/U(1)) serve to distinguish
these choices.

The functions F;; py(A/U(1)) are elements of a
Hilbert space having norm

, A A
Fy a=fd_ Fi, (_)
IF iy, U(l), D | Ty

The measure d(A/U(1)) is not specified since it is not
needed.

We thus have the first stage of the tensor-product
decomposition completed, namely the direct-integral
(and sum) decomposition of

ﬁlig(Acl’ Acg) into F(iligD)(A/U(l)):

“ﬁm”z = z aD I|F(i1i31))”2,

i1iz

’ < 0. (82)

(83)

where dD is the direct-integral measure which is not
specified, because it is not needed.

The second stage of the tensor-product decomposi-
tion consists in expanding Fy; ;, p)(A/U(1)) in a series of
irreducible functions of P. The induced representation
given in Eq. (81) is reducible since it is induced by the
subgroup Hp, which is a “‘smaller” subgroup than H
of Eq. (58) which induces irreducible representations
of P. The difference is that H contains SU(2) whereas
Hp, contains only U(l). We will therefore expand
Fii,5,m/(A/U(1)) with respect to irreducible functions
over SU(2)/U(1), namely, DENSU(2)/U(1)).

Before carrying out this expansion, however, it is
necessary to look at the representation Eq. (81) some-
what more carefully. Notice that the standard or
rest-frame vector p has the property that

SUQH(HSUQYT = H(p);

we must also inquire as to which elements of SL(2, C)
leave H(Pp) invariant. It is clear, first, that U(1) leaves
H(Pp) invariant, for, according to Eq. (80), H(Pp)
has only diagonal entries.
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Call SU(2)p that subgroup of A which leaves
H(Pp)invariant,ie. SUQ),H(Pp)SU(2)}, = H(Pp)."
Now, A;}(Pp) [see Eq. (68)] is the Lorentz trans-
formation from the rest frame P to Pp,. But

SUQ)H(P)SU(2)* = H(P)

and

H(Pp) = AJ(Pp)H(P)A (Pp)
so that
SUQ)pA(PR)H(P)ATH(Pp)SUD),

= A;XPp)H(P)AJH(Pp)
and, therefore,

A(Pp)SUQR)pAT(Pp) = SU(2),

since any transformation leaving H(P) invariant is a
rotation. Clearly the representations of SU(2)p are
the same as SU(2), namely,

SU2)p — DFISU2), (84)

Fs i, (
with

uQ) U ) T e

4

2S+ [ /R . R, ._ R
ﬁ(Si1igD)(Ac) = ( ) Jd( L )Dl;;g-f!ig,i (AG(PD) —2 Acl(PD)) F(ilizD) (_2 Ac)

u(1)
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where the SU(2) element is given by the equation
A (PRSUR),ATY(PY).
We next decompose P into right cosets with respect
to
(S UQ)p {H()S U(2)D)
0 SUQ)p

in preparation for writing an induced irreducible
representation of P:

A H@A™\ _ (Rp H(a)Rp\ (A, 0
(0 AT ) ( 0 Rp+ )( 0 A;”)’

(85)
where Rp is an element of SU(2)p and A, is the same
right coset as given in Eq. (60); this choice of right
cosets is a most convenient one and it is not hard to
see that {A;} and SU(2)p cover all elements of
SL(2, C) uniquely. The elements A/U(1) can then be
written as [Rp/U(1)]A,, and it is possible to proceed
with the expansion of F; ; n)(A/U(1)):

A R © 5 0§ 4 1\ Rp .
) = Fusn (52 A) = 3, 3 () Pias( AP G2 AT(PD)) B (50

u(1)

(87)

U(1) U(1)

Now we test how fj(s;,;,0/(Ac) transforms under an arbitrary Poincaré transformation

(Anao) (2S5 + N[ (R . Rp - Iy A
ﬁ(ShizD)(Ac) A_o‘* (h—) fd<_2') DE;S-F]iz,i(Ac(PD) —L Acl(PD))e PoA/U 0F(z'1i2D) (__ Ao)

4 U(1)

Rp

25 + 1y} f R, . _ ot .
- d DLSY i(AcP R pyp )e’[" LEBIOE N (—D
( 4 ) (U(l)) s Al Po) 37y A (P) D)

[s1*

- () [

UQ)

— eiAc_lPD‘flo (M)%J- d (&) [u ]il+i2Di[1§_]i;,i|:
47 u(1)

[s1°

- p(zﬁ_l)* fd(ﬁ)
47 u1)

v

=

+8
= e 3 DETALPHRD A:l(PD))(zs -
=—8 47
* R, . R’
X D "'(ACP — B AP >)F (*D
e (P0) | Fiam u()

+8
= &P 3 DIALPD RO (P frisiiamn(Ao)

U(1)

17 The relation SU(2)H(ﬁ)SU(2)+ = H(p) can also be written in

the more usual form
SO0(3) 1\ .
( 0 0) P= ﬁ,
where SO(3) is the three-dimensional rotation matrix whose elements
are related to SU(2) in a 2 to 1 fashion. There is obviously a similar
correspondence between SU(2), and SO(3),,, where SO(3), is a
subgroup of the four-dimensional Lorentz group satisfying

S0(3),P, = P,,.

u) u()
Ry,

TOR )

!

R _ AP R
D,-1+,.2,,-(AC(P D) 72 AP D)) ette Fr0F i) (“ ?J(Ai) Ac’)

R

Ry ~
AP o)) 2. RglA:l(Pw]Ful,-zD) (— Ac,)

U(1) U(1)

R 7 - R ’
Dﬁﬂ-a,{Ac(PD) T A:l(PDmc(PD)R;A:l(PD)]Fm,-zm (—D— Ac»)

))

UQ)

Ac,)

(88)

Here, use has been made of the fact that U(1) commutes
with A,(Pp) and the measure dRp,/U(1) is invariant
under a rotation Rj,; the elements &;,, R)/U(1), A,
and u are defined by the following equations:

A, _Rp

S Bo= 2 ANy = 2
U(1) U(1)

~ U

0

~ R/
RpAy =u =2 A,
DAc U(l)
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so that
Rp/U(1) = uR,LJUDR .
But A,(Pp)RpAZ (Pp) = R so that Susii,m(,) is transformed into
+8
i 5 DIFUR) frisuim(Ae),
=18

v

=

which agrees with Eq. (64) and, hence, shows that f;s, ;,p)(A,) Is an element of an irreducible function space
of P.

Thus the transformations which decompose f; ; (A, , A,) into irreducible functions f;(s; s, ;(A,) have been
found. Symbolize these transformations by S so that

S :ﬁliz(Acl H Acz) Qﬁ(SiligD)(Ao) = Sﬁliz(Acl ’ Ac2)-
To get the Clebsch-Gordan coefficients, we consider the inner product

+8
(FUAD, fisnm@B D) = S f AN FIAD fusinm (A,

i=—8
+8
(f:(Ac)a Sﬁlig(A01 ’ Acz)) ='=§S dAcf;I*(Ac)Sﬁliz(Acl 3 Acz)a (89)

using for f;(A,), the function DYLZI(A,) and for f, , (A, , A,,) the functions D511 (A, ) DEYS: (A, ).

1919101 Paizpsoe

Making the substitutions of Eq. (78), whereby (A, , A,,) is replaced by A/U(1) and Ay, gives

DL (A ) DEYE(A,,) = Dl (AJU(1) DyRsia A p(AJU(1))]
= Dt (AU D) e (AT U(D)

priimay (Pp—pP1)izpaos
. =F (iligD)(A/ u)). (90)
Finally,
25 + 1}t [s1* 1
Fusuao8) = (2757 | aRofUO) DK, AP RS/ U(IAZ (P
X Dl Rp/ UMD D isnya [RolUDA. (91)
so that

((MS]Pg; i1izl [M,S,Ip101; [M,S,]pe0s)

+3 . 2S+ 1 ./R
=N3> |dADRSA, )fd(- D)
,~=z_s Pyipal )( 4ar U@)

. R R
x DI [A Pp)—Z A;(P }D“‘@Sﬂ =D A )
1+ig, ( D) U(l) [4 ( D) P18 P10} U(l) [

R
[ Mo D
b D(Pulg%:ll)ingaz( U(l) Ac)

r P

- N(2S4+ 1)% 3 f dAcd(Ui(ll’-)) 5P, — A,P)DST(P, A)

. R . . R R
x D},i%z,i[AcwD) X AJ(PDﬂ as(pl _ B Acpl) Disy ( 2, o Ac)

u() U(1) U(1)
X 63(PD PR Y p2) D!Sﬂ(p Ap 2 A)
Uy )T\ Pyt
28 + 1\ R R
=N 8P — p, — fdAcd(——D)63(‘——DA )
( y ) ( P — P) ua) § 41 UQ) P1
R . R
xéa(P —p — B ) )D,ISJ,. ,[AcP —DAA-IP]
D D U(l) Do 1+¢2, ( D) U(l) ¢ c( )
R R
x DiSd(p,, =2 AC)DES;]( JAp =2 A),
1 1(p1 U(l) 05 | P2 DU(I) ¢ (92)
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where delta-function-normalization factors have been
absorbed in the factor N.

There are five integrations and six d functions; the
remaining & function will give energy conservation
or, what is equivalent, the value of the mass M. As
with the group P, this is equivalent to fixing the
double-coset label, for

M = P}, = [H(Pp)|
= M} + M} + 2M,My((D* + D™)/2),

as can be seen from Eq. (80). Now the d functions can
be written as

8* (B, — AJU(D)p)3°(p. — ApA/U(D)py),
so that
A =A/U)p, and py = ApA/U(D)p,.
Consider the quantity
pi- Py = ATYUWB, - A JUMAL e = 1 - Ap'ps.
But

so that
P1° P2 = M My(D?* + D7®)2
and
M* = M} + Mj + 2p, - p, = (p, + po)*.

To actually carry out the integrations explicitly is not
difficult, since the integration is essentially

f AU (B, — AJUM)p)S Py — py— AJU(D)py)

and it is not difficult to obtain the measure d(A/U(1)).

It is, however, more useful to carefully specify the
rotations involved in the Wigner functions, for these,
rotations are the quantities of most interest in the
Clebsch—-Gordan coefficients. To that end, consider
Fig. 1 in which three frames are considered, one the
arbitrary frame in which particles 1 and 2 have
momenta p; and p, and two fixed frames, the rest
frame of particle 1 and the center-of-mass frame (or,
what is equivalent, the rest frame of the biparticle).

Notice that the Lorentz transformations A;'(p,),
which carries p, from its rest frame and A;1(P) which
carries P from its rest frame (the center-of-mass frame)
are both fixed as soon as p, and p, are chosen in
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Rest frame of

particle 2
-1
A (p)
< 2 -1
b/ T" ¢ (Ap Pp)
? Center -of-mass
A-:(p) Pem  frame
Arbitrary
At )
frame c ‘Pp

-

P Rest frame of
A-‘:1(P1) D P’ particle 1

FiG 1. Coordinate frames relevant to the Clebsch-Gordon problem.

some arbitrary coordinate system. Now

DiSU(p, , AJU(D))

1101

deals with the rotation

(p1, AJUD) = AJAJUDpJ[A/UD]IAT (py)
= [AJUMDIAT(p)

since p; = AJU(1)p,. But A,(p,) is fixed by the vector
p1and AJUQ1) is fixed by p; = A/U(1)p, and AZ'p, =
AfU()p,, with D fixed by $(D%*+ D=2 = p, - py/
M, M,. This defines the rotations, but to see which
rotation this is in the figure, let P’ = A (p,)P. Now
Pp, = AJ/U(1)Pis aligned along the “z” axis in the rest
frame of particle 1, so that (p;, A/U(1)) is the rotation
which carries the vector P’ into the z axis. A similar
sort of construction is easily carried out for
DE:(p,, AL AJU()).

i20g

Finally, there is the rotation in

DI, IAPOIRD[UDAAZ (P)].
It will be shown that this rotation carries p,,, into j as
shown in Fig. 1. To see this, define § = A;1(Pp)f;.
Then p is aligned along the z axis in the center-of-mass
frame since P, has no x or y components. Also,
b = AJUp, = Rp/U(1)A,p,, where here A, is the
unique right-coset element carrying P to Py, so that

5 =APo)by = A(Pp) ;JR(-ZI’) Aupy
A Ro e
- Ac(PD) U(I)AcAc (P)pcm ’ (93)

where p.,. = A (P)p,; but A (Pp)R,/U(DAATI(P)is

the rotation contained in the D%} | function and this
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is the rotation which carries p,,, to p. The Clebsch-
Gordan coefficients are thus

([MS1po; iyiy | [M1S1iP10'1; [MS;]ps02)
=N [(254—%1)] O*(p — p1 — p2)

x d(M? — (p, + p)?)
x DSV (Po — B)DE(py, [AJUD)])
x DISU(p,, Ap[AJUMD)).

taas 94
The labels i, and i, as seen from Eq. (81), are
degeneracy labels which serve to distinguish equiv-

alent representations labeled by [MS].

IV. OUTLINE OF CLEBSCH-GORDAN COEFFI-
CIENTS OF THE LORENTZ GROUP SL(2, C)

Thus far, the direct-integral decomposition of
tensor products has been carried out explicitly for two
groups P, and P. In the case of SL(2, C), the tensor-
product decomposition has been carried out in a series
of papers by Naimark.1®

Consider, for the moment, the tensor-product
decomposition for the principal series of representa-
tions of SL(2, C).® For the principal series of repre-
sentations, the inducing subgroup of SL(2, C) is
{¢ .7}, which has one-dimensional representations;
the right cosets can be chosen to be (} {). Thus,
induced representations are defined on functions f(z),
with norm

I = f & Q) < . 95)

The tensor-product space consists of functions
F(z,, z,) with norm

\E) = f dzy dzy |Faz)* < 0. (%)

According to Naimark, the operator S, which carries
F(z,, z,) into f[m’o](z), where [m, o] are the irreducible
representation labels of SL(2, C), can be written as a
kernel transformation

foner® = [ s derar 22, I, DG 2), O
where

a(zl s 229 Zy [m’ G])

—_ |22 _ zl|§‘(m+m1+m2)—i1}(a+a1+ag)—1(22 _ Zl)%(~m+m1+m2)
X |Z — zl|%(—m—m1+m2)+iili(a—al+az)—1(z _ Zl)%(m—mfrmz)
X [22 _ Zl%(—erm1-mz)+z‘%(a+:rl—ag)—l(zz _ Z)%(m+m1“m2),

(98)

WILLIAM H. KLINK

To get the Clebsch-Gordan coefficients it is neces-
sary to obtain the functions D7) (z) and check
that they have the correct transformation properties.
It seems, although this has not been shown, that the
values of J'M’ will be fixed by demanding that
DUzl 1(2) have the correct transformation proper-
ties, exactly as in Sec. II, where DIXI(A) has the
correct transformation properties under U(A,, ay)
only if p’ equals j.

The Clebsch-Gordan coefficients are

([mo]JM I [my0,)J1M; 5 [maoa}J M)

[ma] [my6;] [maas)
= N(Dﬁgu'JM(Z), S{DJ?;QI'JIMI(ZJ D;:’z;}z'.szz(zz)})
[ * L
= Nfdz dz, dZ2DJ"’L7t}’JM(Z)DJ”:’IEE’JlMl(Zl)

(99)

L 1
X DJn:’z;lzg’JzMg(z‘l)a(zl y Z94 Z, [mO']),

where, by the above remarks, all of the primed vari-
ables are fixed. The functions DU77) . (z) have been
obtained by several authors, but, since they are
rather complicated, will not be given here.

CONCLUSION

It has been shown that, for induced representation,
functions over cosets are useful in evaluating Clebsch—
Gordan coefficients if the tensor-product decom-
position of two irreducible representations into a
direct integral of irreducible representations is known.
The method is sufficiently general to handle even those
reductions which are not multiplicity free.

In actually computing the Clebsch~Gordan coeffi-
cients a key role is played by the functions

DN (ge) = (Ixkxol Ugy) Ix1x);

here x, is meant to denote a ‘“‘standard state.” The
functions DI*](g,) play a dual role in that they are, on
the one hand, a concrete realization of |[4]x), while on
the other hand all the manipulations as regards in-
duced representation theory are done on the standard
states x,. It is because of this dual role that the
DIX)(g,) functions serve as the bridge between the
abstract spaces of induced representation theory and
the concrete basis functions |[y]x).
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Solution of the Faddeev Equation for Local Potentials by
Approximate Product-Integration*
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(Received 24 March 1969)

A practical method of solving the Faddeev equation for short-range local potentials is proposed. The
method consists of (a) transforming the Faddeev equation into a form in which the inhomogeneous
term satisties a Holder condition and then (b) solving the resultant two-variable integral equations by

approximate product-integration.

In recent years, the formal theory of the quantum-
mechanical three-body problem has been greatly
advanced through the work of Faddeev.! The Schro-
dinger equation for nonrelativistic three-particle
systems can be reformulated into a set of integral
equations of the Fredholm type, now known as the
Faddeev equation. The application of the Faddeev
equation to nonrelativistic three-body problems has
been of considerable interest because the Faddeev
equation treats on an equal basis all possible non-
relativistic processes such as bound states, elastic
scattering, and break-up.

The Faddeev equation can be reduced to a set of
coupled integral equations in two continuous variables
with 3 X (L 4+ 1) X min (2J 4+ 1,2L + 1) compo-
nents, where L is the maximum orbital angular mo-
mentum in the two-body subsystems and J is the total
angular momentum.?® If the two-body interaction or
¢t matrix is separable, then the Faddeev equation re-
duces to a set of coupled integral equations in one
continuous variable. Considerable work has been
done on the three-body problem with separable
interactions,* because the numerical problems are
manageable for solving one-variable integral equations.
This separable approximation is expected to remain as
a practical tool for investigating the three-body
problem.

While simplicity is an attractive reason for using
separable potentials, these potentials do not necessarily
give accurate representations of a physical interaction.
The local potential description of interactions is
known to be applicable to atomic problems (Coulomb
interaction) and to the two-nucleon system (at least for
the one-pion exchange contribution to the potential).

* Work supported by the U.S. Atomic Energy Commission.

* L. D. Faddeev, Mathematical Aspects of the Three-Body Problem
in the Quantum Scattering Theory (Daniel Davey and Co., Inc.,
Hartford, Conn., 1965).

2 A. Ahmezadeh and J. A. Tjon, Phys. Rev. 139, B1085 (1965).

3 T. A. Osborn and H. P. Noyes, Phys. Rev. Letters 17, 215 (1966).

4 1. Duck, in Advances in Nuclear Physics, M. Baranger and E.

Vogt, Eds. (Plenum Press, Inc., New York, 1968), Vol. 1, pp. 343
409, and references cited therein.

It is therefore desirable to develop a practical method
of solving the three-body Faddeev equations with
local interactions.

For simplicity, we consider the case of a J =10
state of three identical spinless bosons interacting
pairwise through an s-state local potential. Then the
two-variable integral equation to be solved can be
written as®® (we use the same definitions of kinematic
variables as in Refs, 2 and 5)

v(p, 9)
= @«P, q; Po; 90)

© . Alg.qz) .
+ f dqu DK (P, 4 Ps. 40P, 4, (1)

Bla,q2)
where the kernel is given by

K(p, q; p2» q2)

2 1
G)tmq R+a-s’
and the integration limits 4 and B are given by

A(q,9.) = 5(29 + q.)*

Hp% pl; S — 4%

and
B(q, 92) = %(29 — gx)%

The variable p is proportional to the magnitude of
relative momentum of the pair and q is proportional to
the magnitude of the momentum of the third particle
in the three-body center-of-mass coordinate. The
constants p, and ¢, are the initial momenta. y,(p, q) is
three-body 7 matrix with the pair interacting with
relative angular momentum / = 0 in the final state.
The function #(p? p}; S — g% is the two-body ¢
matrix for the interaction between the pair of particles
and p, is defined by p? = p? + 42 — ¢*. Itis normalized
so that on the energy shell it is #(p?, p*; p*) =
(e” sin d)/p, where ¢ is the s-wave phase shift. The
total energy S of the three-particle system is given in

5 D.Y. Wong and G. Zambotti, Phys. Rev. 154, 1050 (1967); J. S.
Ball and D. Y. Wong, Phys. Rev. 169, 1362 (1968).
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the center-of-mass system. A small positive imaginary
part ie in S is suppressed here and in the following.

For the three-particle bound-state problem, we need
not specify the inhomogeneous term ¢,(p, q; po, do);
furthermore, the initial states [p,q,) need not be
specified, because the kernel of Eq. (1) is independent
of p, and g,. However, most of physical experiments
involve scattering of a particle by a bound pair. In this
case, the initial states must be specified by the initial
momenta p, and q,, and the inhomogeneous term
takes the form of

24P a5 Po> 40) = — (479", 3 S — ¢")3(¢" — qv)-

@
The two-body ¢ matrix contains poles corresponding
S — ¢® = S, where S’s are the two-particle bound-

state (negative) energies. Therefore, it is convenient to
write ¢ as
#p% p3s S — a°) = {p°, P S — ¢*)/D(S — 9%,

where D(S — g?) is the determinant |1 4 VG| of a
matrix equation which is obtained from the two-body
Lippmann-Schwinger equation, ¢ = V + VG, after
discretizing the momentum variables.® In the neigh-
borhood of S, =S — ¢% the function D(S — ¢?)
behaves as [(S — q%) — S,].

As it stands now, the inhomogeneous term g, given
by Eq. (2) does not satisfy a Holder condition® due to
the presence of singularities. For reasons which will
become clear later, we transform Eq. (1) into a form in
which the inhomogeneous term satisfies a Holder
condition:

(P> 4; Pos 90) = (P> 45 Po> 90)

© 9 Alq,qz2) 25
+ f dqu dp;K(p,q; P2>q2)P«(P2> 25 Po» d0),
0 Bla.q2)

3
where
i’s(p’ q; Po ’ ‘Io)
= gD(S — ¢ v.(p, 9) — @:(p, ¢; Po, 90)]
and

@LP, 45 Po> 90)

Ala,aqg) s )
=— -f dpiK(p, 4; pa, 40)K(03, P3; S — 47),

T JB(a.ag)
with
. 2 PR %S — ¢t 1
R(p, q; paz) = (2 Py )

Otr 2.DS —g2) pi+ai—S

Equation (3) or (1) cannot be reduced directly into a
matrix equation, because the integration limits for

8 N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff
Ltd., Groningen, The Netherlands, 1953), p. 12.

KIM

Pp. integration are not constants and are dependent on
the ¢ and ¢, variables.

We define a singular operator K by the following
relation:

w0 R Ala.q2) .

Kg,(p. 4) = (P, ) — f da? f ap;
0 Blq.qaz)

X K{p, 4; Ps, 42)P(P2> 42)

= §¢,p, 9), 4

where we suppress the constants p, and g, in ¢, and
@,. If we assume that ¢,(p,q) satisfies a Holder
condition H(yu, ), that is, for any given pairs of values
(p",q") and (p’, q'), there exists a relation

19(p", 4") — (P, 4

SMlp"=p1*+Nlg"— 4",

with0 < u < 1and 0 <#» <1, where M and N are
constants, then the singular operator K transforms
¥,(p, g) into a new function §(p, q), which also satisfies
the Holder condition. The above statement is valid if
the singularities appearing in K, are of the Cauchy
type.” Conversely, if §,(p, q) satisfies the Holder con-
dition, then P (p, q) also satisfies the Holder condition
under the transformation K. The argument presented
here can also serve as a proof of the existence of
solution §,(p, q), where §¥,(p, q) is a function of two
variables satisfying the Holder condition. The same
proof can be obtained by looking at the convergence
of the Neumann series for §,(p, ¢), as is usually done
for the solution of one-variable integral equation.

If $.(p,q) satisfies the condition H(u,»), then
P,(p, q) also satisfies the condition H(u) for the vari-
able p uniformly with respect to ¢ and the condition

H(v) for ¢ uniformly with respect to p.® Here H(u) is
the condition that

190", 4") — s(p", g < M |p" — p'l%,
with 0 < p < 1; similarly, for H(») it is

19p", 4") — 90", aN < N 1g" — q'T",
with 0 < v < 1. Therefore, we can expand ¢,(p, ¢) in
terms of a set of known linearly independent functions
F,..(p, q) which satisfy the condition H(u, »):

¢s(p’ q) = %Lamn(s)F‘mn(p’ 9 (5)

where a,,,(S) are unknown complex coefficients. The
p and g dependences of ; are included entirely in the
function F,.(p,q). The above expansion is not re-
stricted to a particular value of S, i.e., S can be either
§ > 0 or § < 0. The functions F,,,(p, q) need not be
separable in p and g variables.

7 See p. 50 of Ref. 6.
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We select N, points in the p variable and N, points
in the ¢ variable, and write the integral part of Eq. (3)

as

© A(a;,a2) - .

I= f dqs f dpsKy(p;, 4;5 P2 42)P(P2» d2)
0 Blaj.az)

Ng Akl(pi > qi)@s(l’?k’ qu)' (6)

With this discretization of the continuous variables p
and ¢, Eq. (3) becomes a matrix equation,

1—AY =2, 0

where Aisa N X N matrix with N = N, X N, and the
matrix elements of A are given by A,,(p;,¢;), which
we determine below. Here, a pair of indices (7, ) or
(k, 1) is regarded as a single index running from 1 to N.
Substituting (5) into (6) and requiring terms with the
same coefficient a,,, to be equal, we obtain a set of
simultaneous linear equations for A4,(p;, ¢,):

@ . A(pj.q2) .
f dpzf dpsK(Pi» 455 P> 42)F mn(P2 > d2)
1} Bipj.az)
= % Axl(Pis ADF n(Pars q21)-  (8)

Equation (8) represents a matrix equation of the
form FA = M, where the matrix elements of M are
given by moment integrals on the left-hand side of
Eq. (8). The moment integrals are of the Cauchy type
integral and hence they are bounded. Interestingly, the
coefficients a,,,(S) need not be calculated at all.
Significantly, N, points selected in the p variable are
now over the entire range (0, c0) and need not lie
within the integration limits (B, 4).

The numerical method described above is a general-
ization of the method known as ‘“approximate
product-integration” for the one-variable to the two-
variable case.® The approximate product-integration
method for the one-variable case is found to be
convenient for the bound-state problem, and is used in
calculation of three-particle bound-state energies
described below.

The bound-state energies are values of S at which the
determinant |1 — A] vanishes. Therefore we look for
zeros of the determinant as a function of S. We write
the integral part I of Eq. (3) as

N
I = lZ Wipi 95)

Alaj,q27) 9 p
><f dp: K(p:» 455 P2s 420P(P2s d22),

Blej,qa1)

where W, are the weights for Gaussian quadrature.
This expansion is possible because for S < S; the

¢ A. Young, Proc. Roy. Soc. (London) A224, 552, 561 (1954).
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kernel K, has no singularities. Otherwise, we must use
the two-variable method described previously. For
the p, integration we cannot use a standard quadrature
method, because the integration limits are not con-
stants. However, since §,(p,, ¢.) satisfies the condition
H(p) for the variable p, uniformly with respect to g;,
we can expand it as

Ny
Ps(P2> 92)) = % bw(d2)f m(P2)s

and write the integral part I as

N, Ny
I= Z Wip;» 45 2 W(p;» 453 420)Ps(Pax» 921)s
I x

where the W, are to be determined by

Algs.az) .
f dpsK{(p:» ;5 P2> 420)fm(P2)

Bla;,a27) N
= > WilD;, 455 92)f mlD2)s
)

which is again a matrix equation. The matrix elements
of A in Eq. (7) are now given by Wy(p;,4,)Wi(p;, 43 420)-

The three-particle bound-state energies are calcu-
lated as a function of the interaction strength A for a
local Yukawa potential V(r) = Ae~"[r (we set i =
M =1, where M is the rest mass of the particle).
Gaussian quadrature method is used to approximate
the integral part of the two-body Lippmann-Schwin-
ger equation, and the two-body ¢ matrix is computed
numerically by inverting the resultant matrix equation.
The linearly independent functions f,(p) are chosen

to be
1 P\
fol2) = %5 +a(p2+a),
m=012",N,—1,

where o is a parameter taken to be 2. To test the
accuracy of the solution, N, is varied from 2 to 10,
and N, from 2 to 5. With N, = 10, the bound-state
energies calculated with N, = 4 and 5 agree within
0.1%. Table I shows the convergence of the method

TaBLE 1. Successive approximations for the binding energies of

the J = 0 state of three spinless ibosons computed from the

s~state local Yukawa potential with different values of the inter-

action strength A. The number of points N, in the ¢ variable is
set equal to 10.

binding energy
A N,=3 N,=4 N, =
—1.6 —0.1089 —0.1090 —0.1090
-1.8 —0.2876 —0.2881 —0.2881
-20 —0.5466 —0.5472 —0.5472
—-2.2 —0.8880 —0.8868 —0.8869
—24 —1.3152 —1.3081 —~1.3079
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used here for the bound-state energies at different
values of A. The bound-state energy of 0.2881 at
A= —1.8 can be compared with two other inde-
pendent results of 0.295 by Wong and Ball and 0.293
by Osborn.?

The approximate product-integration method for
the two-variable case described previously is also
applicable to the bound-state problem, as well as to
scattering problems with § > 0 or 0 > § > S,. The
success of the method is critically dependent on a
clever choice of linearly independent functions

*T. A. Osborn, “Faddeev’s Equations for Local Potentials,”
SLAC Report No. 79, Stanford University, Stanford, California,
1967.
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F,..(p,q). Some advantages of the wethod, either for
the one-variable case or for the two-variable case, are
that all rapidly varying parts, including the Cauchy-
type singularities in the kernel, can be included in the
moment integrals and that discrete points chosen in
the continuous variable p, need not lie within the
integration limits. Finally, we make an important
remark that, to reduce the Faddeev equation to a
matrix equation, we must transform it into a form in
which the inhomogeneous term satisfies the Holder
condition.
ACKNOWLEDGMENT
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The specifically relativistic cut-contributions to the ring equations of a relativistic plasma as discussed
in a previous paper are considered in more detail. The question of principle—whether or not these con-
tributions can give rise to specifically relativistic instabilities—is investigated with the aid of a simple
nonequilibrium velocity distribution which leads to unstable cut-contributions, but not necessarily to

unstable Landau-pole contributions.

I. INTRODUCTION

In a previous paper! we derived the kinetic equations
in the ring approximation for a relativistic plasma. A
remarkable feature of these equations is the coupling
which exists between the kinetic equation for the
particles and the kinetic equation for the energy
density of the normal modes of the electromagnetic
field through which the particles interact. Another
distinguishing feature of these equations is the
appearance of cut-contributions arising from cuts in
the complex plane on which the frequency-dependent
collision operator is defined. As shown in I, the origin
of these contributions can be traced back to the
velocity cut-off introduced by the relativistic particle
dynamics. These specifically relativistic contributions
to the kinetic equations have been discussed qualita-
tively in Sec. 5 of I. It is the purpose of this paper to
consider them in moreg detail. However, because of the
complexity of these terms, we restrict ourselves to the
question of principle, whether or not these cut-

1 M. Baus Physica (to be published), referred to as L.

contributions can give rise to a specifically relativistic
instability. For this purpose we consider the following
particle-kinetic equation, taking dielectric screening
into account:
O,po(Ps; 1)
o0
= —[Tar [ape 33 -5l
0 ¢ kikj

X (F (=78, + Fl (t—17)-8)

X po(Pis Ps3 1)- (1)
Equation (1) was derived in Ref. 2 {see Eq. (I1.35)],
where the relevant notations have been defined. It
was shown in II that (1) is a particular contribution to
the general relativistic ring equations of I. We recall
that p,(p;; #) is the momentum distribution of particle
J» € the (large) volume, 0, the gradient with respect
to p,, whereas fﬂj’ki(t) is a Fourier transform with
respect to the positions of particle { and j of the
average force due to 7 and acting on j. We observe
now that it is sufficient to investigate F(¢) itself

2 M. Baus, Physica (to be published), referred to as II.
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used here for the bound-state energies at different
values of A. The bound-state energy of 0.2881 at
A= —1.8 can be compared with two other inde-
pendent results of 0.295 by Wong and Ball and 0.293
by Osborn.?

The approximate product-integration method for
the two-variable case described previously is also
applicable to the bound-state problem, as well as to
scattering problems with § > 0 or 0 > § > S,. The
success of the method is critically dependent on a
clever choice of linearly independent functions
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the one-variable case or for the two-variable case, are
that all rapidly varying parts, including the Cauchy-
type singularities in the kernel, can be included in the
moment integrals and that discrete points chosen in
the continuous variable p, need not lie within the
integration limits. Finally, we make an important
remark that, to reduce the Faddeev equation to a
matrix equation, we must transform it into a form in
which the inhomogeneous term satisfies the Holder
condition.
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tributions can give rise to specifically relativistic instabilities—is investigated with the aid of a simple
nonequilibrium velocity distribution which leads to unstable cut-contributions, but not necessarily to

unstable Landau-pole contributions.

I. INTRODUCTION

In a previous paper! we derived the kinetic equations
in the ring approximation for a relativistic plasma. A
remarkable feature of these equations is the coupling
which exists between the kinetic equation for the
particles and the kinetic equation for the energy
density of the normal modes of the electromagnetic
field through which the particles interact. Another
distinguishing feature of these equations is the
appearance of cut-contributions arising from cuts in
the complex plane on which the frequency-dependent
collision operator is defined. As shown in I, the origin
of these contributions can be traced back to the
velocity cut-off introduced by the relativistic particle
dynamics. These specifically relativistic contributions
to the kinetic equations have been discussed qualita-
tively in Sec. 5 of I. It is the purpose of this paper to
consider them in moreg detail. However, because of the
complexity of these terms, we restrict ourselves to the
question of principle, whether or not these cut-

1 M. Baus Physica (to be published), referred to as L.

contributions can give rise to a specifically relativistic
instability. For this purpose we consider the following
particle-kinetic equation, taking dielectric screening
into account:
O,po(Ps; 1)
o0
= —[Tar [ape 33 -5l
0 ¢ kikj

X (F (=78, + Fl (t—17)-8)

X po(Pis Ps3 1)- (1)
Equation (1) was derived in Ref. 2 {see Eq. (I1.35)],
where the relevant notations have been defined. It
was shown in II that (1) is a particular contribution to
the general relativistic ring equations of I. We recall
that p,(p;; #) is the momentum distribution of particle
J» € the (large) volume, 0, the gradient with respect
to p,, whereas fﬂj’ki(t) is a Fourier transform with
respect to the positions of particle { and j of the
average force due to 7 and acting on j. We observe
now that it is sufficient to investigate F(¢) itself

2 M. Baus, Physica (to be published), referred to as II.
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rather than (1), because it follows from (1) that any
instability in F(z) will induce an instability in the
kinetic equation (1). We recall that the time behavior
of the averaged force F(¢) is given by (see 11.27, 32)

—z(w—k V)i

fdw
w—Kk-v

X {(k+v— w)Dy(w)+v — v.-Dfw) vk}, (2a)
Di'(w) = o’e(w) — (¢ k)T, (2b)

where C is the Laplace transform inversion contour,
v, V' are particle velocities, €,(w) a dielectric tensor,
and T is the unit tensor in transverse k space (see I).
We can still simplify the investigation by considering
a spatially isotropic dielectric tensor, in which case
we can separate the longitudinal and transverse modes
(see 1.29): € = ;L + ¢, T (T=1— L, L = Kkk/k?).
For simplicity we consider only the longitudinal
contribution. In this case the time behavior of (2)
and thus of F(¢) is governed by

e—z(w—k v)t K-v
— =k do .
k? fc ofw — k- V) ek, w)
Here we are interested only in the time behavior of
(3) resulting from the cut-contribution discussed in
I. Using the contour (1.65c), in which case the
complex o plane is cut from c |k| to ¢ |k| — ico and
from —c |k| to —c |k| — {00 (¢ = velocity of light),
we can write the cut-contributions to (3) as

3)

e—i(Ev—k-v)t—yt

=3 Omdy

(v — kv — ip)(ev — iy)

1 1

% (eL(k, ev+0—iy) er(k,ev—0— iy))’

©)

where F() ~ I(t) and » = c |k|. In order now to

study the time behavior of I(t), we observe that at

w=4vF 0 —iy, e, (k, w) is defined by analytic

continuation. This analytic continuation is easily

obtained (as is explained, e.g., in Ref. 3) when

er(k, w) is written as a Cauchy integral. For this

purpose it is necessary to perform the change of

variables from p to the velocities v. As a result of these

operations one obtains the following expression for
er(k, w):

efk,w) =1+ 2478 4 dvn-——l——h(k', V310
n V< e w—k- Y,
+ 6(—Im w)f(c |k| — |Re w])gk, w), (5)

where Im @ ## 0 and where 6(x) is the Heaviside step

8 R. Balescu, Statistical Mechanics of Chareed Particles (Inter-
science Publ. Co., New York, 1963).
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function [6(x) =1 for x > 0, 6(x) = 0 for x < 0].
The function 4 is defined as (m, being the rest mass)

h(k, v; 1) = a(")(k 9 b t)) .

a1\ p
my 20 1 0
=——|k:———=k.vv.-— 31),
1 -2 /c2)2( v o aV)pO(v )
(6)
whereas g is given by
2
g(k, w) = —27i ¥ iﬂ“ﬁﬂ
xf dv,o(k -v, — wh(k, v,; 1) 0
vp<c u=w/k
The time behavior of (4) is thus given by
ood e—i(év—k-v)t—yt
I(t) =
® e=z:tlﬁ y(ev — kv —iyNey — ip)
eg(k, ev — iy) (8)

X )
ek, ev + 0 — iy)es(k, e» — 0 — iy)

which we rewrite finally as

dyfik; v, v'; y; e gk, ev — iy; 1)
)

I( t) =E=z:tl 00o

with

VAU A ST
i €e
(v —k -V — iy)ey — iy)

X 1 .
er(k, ev + 0 — ip)er(k, ey — 0 — ip)

We observe now that the time behavior of (9) is
governed, apart from the oscillating factor of (10), by
the y behavior of e~7'g(ev — iy). When the velocity
distribution is of the exponential type, its analytic
continuation contained in g will exhibit damped and
growing oscillations in y, so that the y integral in
(9) is not necessary well behaved. As a result one can
not, even for time-independent velocity distributions,
commute the asymptotic time limit #— t5>> ;!
and the y integration and conclude that (9) is a
transient (here 7, and ' are, respectively, the
relaxation and collision time). The behavior of (9),
however, can be investigated asymptotically with the
aid of the method of steepest descent,* but, as will
soon become clear, no general statement can be made
about (9). This situation is in contrast with the

—i(ey—k-v)i

(10)

4 Ph. Dennery and A. Krzywicki, Mathematics for Physicists
(Harper and Row, Inc., New York, 1967).
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beautiful Landau-stability analysis (see, e.g., Ref. 3).
We will now investigate (9) with the aid of a particular
velocity distribution.

2. ASYMPTOTIC EVALUATION OF THE CUT-
CONTRIBUTION FOR A PARTICULAR
VELOCITY DISTRIBUTION

As far as the question of principle—whether or not
(9) can become unstable—is concerned, it will be
sufficient to evaluate (9) asymptotically (£ — fz) with
the method of steepest descent for a particular, but
not too unrealistic, velocity distribution. Below, it will
be seen that the instability condition as investigated
along these lines requires that the analytic continua-
tion of the velocity distribution contain at least three
independent coefficients in y space. This excludes
Gaussian distributions and leads definitively to cubic
nonequilibrium distributions. Moreover, in order to
have simple computations, we will use spherical
coordinates in velocity space in agreement with the
symmetry of the integration domain (v < c), thereby
avoiding the velocity-dependent integration limits
encountered with other coordinate systems. However,
in order to keep the Cauchy integral structure in (5),
we delay the angle integrations. Let us take now a
three-parameter spherically symmetric velocity distri-
bution, e.g., a Gaussian with a cubic correction:

polvi ) ~exp (@ + B0 — 8. (11)
For simplicity we rewrite (11) as
po(¥; t) ~ exp (av + bv® + div®). (12)

The cutoff of (12) for v > ¢ will be accounted for by
taking a finite integration domain (v < c). Moreover,
notice that, because of the finite integration domain
(v < ¢), the normalization of (12) does not restrict
the sign of the parameters a, b, d. Using now k- v =
kvu (u = cos 0), we can rewrite (7) for (12) as

dmed d J“ 2am}
k,w)= =27 Y —""| duy, —2
8k, ) m g’ ko= w? kPl

2
x ku,, a+2bﬂ+3dL) (—‘"—)
: ( PR L PP
(13)

If we commute the g and y integration, we can rewrite
(9) as

1
=33 f B0, (14)
We recollect all exponential terms and write
Bty = 4 f dpk(B)e™®, (15)
0

M. BAUS

where we have introduced the new variables T = ¢2;
f = yt~L. From (9), (12), and (13) we have

h(B) = (=1 — ib))B — bof* + ibyf°,
by = (alkut) + (2bev[kpu2t) + (3v2d/k*u®),
by = (bjk*u?) + (3evd|kud),
by = dt/k3us.

For large = (£ > ;') the main contribution to (15)
will come from the saddle point

L) =0, p=p.=p+ipL,

(16)

dp
2 _ 2 21t
gL = 4 [(bz — 3b1by)" + 9bs]* SinQ’
3b,
2 _ 2 21}
:C _ _b_2 :F [(b2 3blb3) + 9b3] . COSQ, (17)
3b, 3by 2
with
tan 6 = 3by/(b} — 3b,b,). (18)
The paths of steepest descent are given by
Im [A(B) — h(B1)] = O (19)

and consist of two perpendicular straight lines through
B (degenerate hyperbola). The original contour of
(15) can be deformed into the path of steepest descent
if the real part of the saddle point is positive:

gL > 0. (20)

On the other hand, as (12) does not vanish automati-
cally when v > ¢, we can keep the original definition
of the velocity distribution as long as we require the
imaginary part of the saddle point to be negative:

Bi<O. (21

When (20) and (21) are fulfilled, (15) will behave like
t¥e™bx) and become unstable (growing oscillations)
when

Re A(B,) > 0. (22)

We now investigate the three conditions (20)—(22) as a
function of the three parameters b,, b,, by or a, b, d
[see Eq. (16)]. From (16) we have, for (22),

Re h(B,) = (—f% + bifY) + by(B — B2
+ boBLBLY — 382 2 0. (23)
It is seen that Re A(B,) > 0 is trivially satisfied when

b, <0, (24)
by, > 0, (25)
b3 >0, (26)
1 pe

1<=<—25<3, 27
bl +
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whereas (24)-(26) imply (20) and (21) on account of
(18) for B, . Clearly (24)-(27) is only a particular
solution which guarantees that each term of (23) is
positive. For any given ¢ 3> ! we can now look for
the regions of a, b, d, k, and u satisfying, for example,
(24)-(27) and in these regions® I(¢) [(14)-(15)] will
grow at least as ¢. [The exponential could eventually
tend to a constant, but cannot decay because of
(23).] This shows that, in principle, the cut-contri-
bution (14) can exhibit instabilities. However, it
should be noticed that this does not necessarily
imply an instability for the kinetic equation (1),
because the k, u regions where the conditions [e.g.,
(24)-(27)] are satisfied can be of no importance with
respect to the k, u, and v integrations which we still
have to perform.

3. LANDAU STABILITY AND CUT-
CONTRIBUTION

Let us now look under what conditions the cut-
instability will be specifically relativistic, i.e., will not
be accompanied by unstable Landau-pole contri-
butions. Using (12) in (5) for Im w = o” > 0, we can
write

ek, o + i”)

_1+z47're d,

o —-k-v)—iw
((wl — k .y )2 + w,,g (a + 2bv'ﬂ, + 3dv121)p0(v'n)'

2
Mgy,
"1— v:/czkovn

(28)
Using the fact that for a zero of (28) Im e, = 0,

& As an example one can check that (27) can be satisfied for any

positive bg when b, —0 and with —1 < b, < —} or by ——\/3/3 <
b, < 0 when by — + oo for any positive b, .
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following the usual procedure® we write

Re e;(k, o' + iw”)

—k-vk-v,,
X
(@ — kv, +

— (a + 2b0, + 3d)p(v,).

(29)

Therefore the instability condition Re €7, = 0, »” > 0
cannot be satisfied when

a+2bv, +3d2 <0 for 0<v,<c, (30
i.e., when the roots of
3dv2 + 2bv, +a =0 31

are complex or lie outside the domain (0, ¢).

The regions of a, b, d satisfying (30) together with,
e.g., (24)-(27) will thus lead to a specifically relativistic
cut-instability for which no traditional pole instability
exists.

4. CONCLUSIONS

The cut-contributions to the kinetic equations for a
relativistic plasma introduced in I have been investi-
gated in more detail. It has been shown that, in
principle, these contributions can become significant
for not too unrealistic nonequilibrium situations and
yield a specifically relativistic instability which is not
necessarily accompanied by a traditional Landau-
pole instability. However, a more detailed study of
this type of instability is still required.
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Variational principles are used to find approximate solutions of integral equations arising in the
Kirkwood-Riseman theory of the properties of flexible macromolecules. Upper and lower bounds are

obtained for the translational diffusion constant.

I. INTRODUCTION

Integral equations of the form

1

o) =16+ A =g ()
where 0 < « < 1and 1 is negative, arise in the
Kirkwood-Riseman theory® of intrinsic viscosities and
diffusion constants of flexible macromolecules. Numer-
ical solutions of this kind of equation have been
obtained by Ullman®2 and by Schlitt.# In this paper
complementary variational principles for integral
equations® are used to find approximate solutions for
equations of the form (1). When f(x) = 1, these prin-
ciples lead to upper and lower bounds for the trans-
lational diffusion constant.

II. COMPLEMENTARY BOUNDS

Consider the Fredholm integral equation

¢(x) = f(x) + AKg(x), (2)

where

Ko =[x, 00 d, 3
in which the kernel X(x, #) is symmetric and positive
definite. If 4 is negative, it follows from the theory of
Sec. 3 of Ref. 5 that the complementary bounds

G(D) < I(g) <J¥) (A<0) 4

hold, where
I(g) = ff(x)w(x) dx, ®)
G(®) = f 2f® — * 4+ OIKD} dx, (6)

J¥) = f {(f+ AK¥Y — ¥AKY} dx.  (7)

1 J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948).
2 R. Ullman, J. Chem. Phys. 40, 2193 (1964).
3 N. Ullman and R. Ullman, J. Math. Phys. 7, 1743 (1966).
4 D. W. Schlitt, J. Math. Phys. 9, 436 (1968).
a 9561;) D. Robinson and A. M. Arthurs, J. Math. Phys. 9, 1364

Here ¢ is the exact solution of the integral equation
(2), and ® and ¥ are any trial functions. The nearer
® and ¥ are to ¢, the closer the bounds G and J are to
I and to each other.

Since

K =|x—1 —1<xt<1, (8)

is symmetric and positive definite (this latter property
following from the analysis of Auer and Gardner®),
these results can be applied to the integral equation (1).

III. CALCULATIONS

With the kernel (8), calculations have been per-
formed for two cases: (i) f(x) = 1, and (ii) f(x) = x2.
In each case the trial functions used were

q) = A1x2 + Bl’ llf = A2X2 + Bz, (9)

the parameters 4,, B, A,, B, being found from the
stationary conditions
G _o 3 _ B _ B _y
04, 0B, 04, 0B,
which optimize G and J. Since the same functional
form is employed for both ® and ¥, the closeness of
the optimum parameter values measures the accuracy
of approximate solutions of this nature, as does the
closeness of G and J also. In Tables I and II we give
the results for a range of 1 values and for « = 0.2, 0.5,
and 0.8.
When f(x) = 1, we see from Eq. (5) that
1
1) = [ g0 ax, (an
and this by the Kirkwood-Riseman theory? is inversely

proportional to the translational diffusion constant
D; that is,

f " g(x) dx = ¢/D,

(12)

where ¢ = 2MkT/M{, in which kT is the Boltzmann
energy, { is a friction constant characteristic of the

8 P. L. Auer and C. S. Gardner, J. Chem. Phys. 23, 1545 (1955).
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TasLe I. Variational parameters and bounds: f = 1.

1499

—A A, B, Lower bound G A, B, Upper bound J V-0
(@) « =0.22
2 0.06322 0.15079 0.34372 0.06070 0.15160 0.34378 0.00017
4 0.05227 0.07675 0.18834 0.04981 0.07754 0.18843 0.00046
8 0.03685 0.03722 0.99004(—1) 0.03485 0.03786 0.99132(—1) 0.00129
16 0.02281 0.01781 0.50834(—1) 0.02145 0.01825 0.51002(—1) 0.00329
32 0.01289 0.00859 0.25772(—-1) 0.01207 0.00885 0.25966(—1) 0.00747
64 0.00689 0.00419 0.12977(—1) 0.00643 0.00434 0.13189(—1) 0.01610
128 0.00356 0.00207 0.65118(—2) 0.00332 0.00215 0.67342(—2) 0.03303
256 0.00181 0.00103 0.32618(—2) 0.00169 0.00107 0.34894(—2) 0.06523
512 0.00091 0.00051 0.16324(—2) 0.00085 0.00053 0.18628(—2) 0.12370
1024 0.00046 0.00026 0.81656(—3) 0.00043 0.00027 0.10484(—2) 0.22112
(b) «a =0.5
2 0.05529 0.09956 0.23598 0.05227 0.10047 0.23660 0.00262
4 0.03441 0.05131 0.12557 0.03241 0.05192 0.12636 0.00627
8 0.01943 0.02596 0.64880(—1) 0.01826 0.02632 0.65794(—1) 0.01389
16 0.01036 0.01304 0.32994(—1) 0.00972 0.01324 0.33978(—1) 0.02896
32 0.00535 0.00653 0.16639(—1) 0.00502 0.00664 0.17663(—1) 0.05798
64 0.00272 0.00327 0.83556(—2) 0.00255 0.00332 0.94004(—2) 0.11114
128 0.00137 0.00164 0.41868(—2) 0.00129 0.00166 0.52424(—2) 0.20136
256 0.00069 0.00082 0.20956(—2) 0.00065 0.00083 0.31566(—2) 0.33612
512 0.00035 0.00041 0.10484(—2) 0.00032 0.00042 0.21120(—2) 0.50379
1024 0.00017 0.00020 0.52436(—3) 0.00016 0.00021 0.15893(—2) 0.96701
() « =08
2 0.01171 0.04591 0.99618(—1) 0.01148 0.04598 0.99698(—1) 0.00080
4 0.00623 0.02347 0.51088(—1) 0.00611 0.02350 0.51178(—1) 0.00176
8 0.00321 0.01187 0.25876(—1) 0.00315 0.01189 0.25972(—1) 0.00367
16 0.00163 0.00597 0.13023(—1) 0.00160 0.00598 0.13122(—1) 0.00757
32 0.00082 0.00299 0.65328(—2) 0.00081 0.00300 0.66338(—2) 0.01523
64 0.00041 0.00150 0.32718(—2) 0.00041 0.00150 0.33736(—2) 0.03018
128 0.00021 0.00075 0.16372(—2) 0.00020 0.00075 0.17394(—2) 0.05877
256 0.00010 0.00037 0.81894(—3) 0.00010 0.00038 0.92138(—3) 0.11118
512 0.00005 0.00019 0.40956(—3) 0.00005 0.00019 0.51208(—3) 0.20020
1024 0.00003 0.00009 0.20480(—3) 0.00003 0.00009 0.30738(—3) 0.33372
8 Here N(—m) means N X 10—-™,
TaBLE II. Variational parameters and bounds: f = x*.
—i A, B, Lower bound G A, B, Upper bound J -6/
(a) « =02
0.1 0.98363 —0.05753 0.35510 0.98246 —0.05728 0.35512 0.00006
0.5 0.91128 —0.14787 0.26594 0.90668 —0.14659 0.26618 0.00090
1.0 0.82827 -0.17270 0.21618 0.82101 —0.17053 0.21676 0.00268
2.0 0.69756 —0.16961 0.16595 0.68763 —0.16654 0.16721 0.00752
4.0 0.52877 —0.14022 0.11803 0.51767 —0.13672 0.12047 0.02025
8.0 0.35590 —0.09886 0.76454(—1) 0.34603 —0.09572 0.80492(—1) 0.05017
(b) « =0.5
0.1 0.90868 —0.05610 0.32608 0.96548 —0.05530 0.32618 0.00031
0.5 0.65125 —0.09346 0.19819 0.64379 —0.09141 0.19934 0.00574
1.0 0.47755 —0.08213 0.13627 0.46983 —0.07995 0.13850 0.01608
2.0 0.31069 —0.05932 0.84730(—1) 0.30432 —0.05749 0.88284(~—1) 0.04026
4.0 0.18270 —0.03691 0.48472(—1) 0.17838 —0.03566 0.53206(—1) 0.08897
8.0 0.10014 —0.02084 0.26164(—1) 0.09757 —0.02009 0.31736(—1) 0.17557
() « =0.8
0.1 0.62552 —0.03356 0.22784 0.62443 —0.03343 0.22808 0.00105
0.5 0.24862.« —0.02215 0.84682(—1) 0.24781 —0.02202 0.85544(—1) 0.01008
1.0 0.14169 —0.01376 0.47504(—1) 0.14118 —0.01368 0.48588(—1) 0.02231
2.0 0.07616 —0.00774 0.25302(—1) 0.07587 —0.00770 0.26532(—1) 0.04636
4.0 0.03956 —0.00412 0.13079(—1) 0.03940 —0.00409 0.14393(—1) 0.09130
8.0 0.02017 —0.00213 0.66520(—2) 0.02009 —0.00211 0.80116(—2) 0.16970
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fluid, M is the molecular weight of the polymer unit,
and M, is the molecular weight of the monomer unit.
Since G and J provide complementary bounds for
I(g), it follows that ¢/G and ¢/J obtained from Table
I provide upper and lower bounds for D, the trans-
lational diffusion constant. Thus

J<D<cG (f=1). (13)

When f(x) = x2, the functional I(p) in (5) has no
direct significance, but other writers®* have also
considered this case.

IV. DISCUSSION

Previous numerical solutions of Eq. (1) have been
concerned with the case « = 0.5, which corresponds to
a Gaussian model for the statistics of the polymer
chain. It is to be expected that statistics other than
Gaussian will lead to values of a lying somewhere
between zero and unity. Using the variational method
of this paper, we have obtained results which enable us
to compare the solutions for Gaussian and non-
Gaussian models.

Judging by the closeness of the bounds G and J, and
by the closeness of the parameters 4,, 4, and B,, B,,
we see from Tables I and II that the solutions are
quite accurate for the smaller A values shown. With
these values in case (i) corresponding to f(x) =1,
we are able to place close upper and lower limits on
values for the diffusion constant D. For fixed values of
A in the range —2 to —256, we see from Table I and
Eq. (13) that the diffusion constant D increases as «
increases. For the larger A values, some variation of
accuracy occurs as « changes, the least accuracy being
recorded for « = 0.5.

ANDERSON, ARTHURS, AND ROBINSON

TasLe III. Comparison between results of Ullman and this

paper for f(x) = x% o = 0.5, A = —0.5,

x ¢ (Ref. 3) ) ¥
0.019511 —0.081022  —0.093212 —0.09116
0.116084 —0.073681  —0.08468 —0.08273
0.227786 —0.052520  —0.05967 —0.05801
0.413779 0.015277 0.01804 0.01882
0.502804 0.062386 0.07118 0.07135
0.636054 0.15394 0.17001 0.16904
0.778306 0.28370 0.30104 0.29857
0.912234 0.45436 0.44849 0.44433
0.999554 0.65425 0.55721 0.55181

In case (ii), corresponding to f (x) = x2%, some com-
parison with previous work is possible. Table III
contains the numerical solution of Ullman and
Ullman? for « = 0.5, A = —0.5, and our variational
solutions ® and ¥, which for this case are given by

® = (0.65125)x% — 0.09346, (14

(15)

While these variational solutions are accurate to
0.57% in terms of the bounds G and J, we see from
Table III that the agreement with the numerical
solution is only moderately good. This, however,
must be attributed to the extreme simplicity of the
trial functions used here. More elaborate trial func-
tions, for example ® = Ax* 4+ Bx*+ C, will un-
doubtedly lead to more accurate variational solutions
and closer bounds. Even in a situation like this when
the bounds are not of direct physical interest, the
advantage of an approximate analytical solution valid
for all x is worth stressing.

¥ = (0.64379)x* — 0.09141.
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A new point of view is presented for which the Schwarzschild singularity becomes a real point singu-
larity on which the sources of Schwarzschild’s exterior solution are localized.

INTRODUCTION

The exterior Schwarzschild metric may be written
in polar harmonic coordinates as!

At = — =% ar L LE 2 g 4 4 a) do,
r+4+ « r— o {
doo? = d6?® + sin® 6 dg, M
o = GM/c%.

By polar harmonic coordinates is meant that 7,
x* = rsin 0 cos ¢, x2 = rsin 6 sin ¢, and x® = r cos ¢
are harmonic functions. These coordinates {f, x°} are
admissible only for r > a.

Most people feel that the singularity of (1) as
r — a—the Schwarzschild singularity—is not an
intrinsic one, since the only curvature invariant K|
of which every other invariant is a regular function,
is K= mf(r + «)® and does not display any special
behavior at r = «. One may then ask whether or not
the metric (1) can be “extended” regularly. Actually,
several extensions have been proposed in the literature,
the most commonly quoted being those of Finkel-
stein® and Kruskal.? Both extensions lead to space-time
models which are not globally static and are conse-
quently inadequate for representing the exterior
solution of a source in static equilibrium.

In this paper we aim to show that, besides the
extension point of view, there is another one for which
the Schwarzschild singularity becomes instead a real
point singularity on which are localized the sources of
the exterior static solution. For anyone who accepts it,
this point of view eliminates any speculation about the
physics of objects supposed to have collapsed beyond
the Schwarzschild singularity.

1. THE SPACE MANIFOLD 7,

(a) The space metric which corresponds to (1)
could be, of course,

r+ o«
r—a

ds* =

dar® 4+ (r + o)* dw?, 2

L V. Fock, The Theory of Space-Time and Gravitation (Pergamon
Press, Inc., New York, 1964).

2 D. Finkelstein, Phys. Rev. 110, 965 (1958).

3 M. Kruskal, Phys. Rev. 119, 1743 (1960).

but it could also be

st = dr® + (r® — of) dat. 3)

(ds® = £2ds?, &2 are, up to a sign, the square of
the generator of the group of timelike motions.)
Corresponding to the coordinates which we are using,
& = (r — a)/(r + «). Several local properties of (3)
as compared to the corresponding ones of (2) have
been discussed by Fock,! Ehlers and Kund,* and Bel
and Escard.®

We choose (3) as the metric of the space. This choice
is essential in the following construction of the space
manifold V,.

(b) Let ¥.* be the open submanifold of R; defined
by x € P¥ if r > . ds? defines a distance d* onto
7 by

d¥(x;, xo) = inff

Uay,ze)

ds, x,,x,€V¥ (4
I(x,, x,) being the set of all piecewise-differentiable
paths joining x; and x,.

The metric space V,f(d*) is not complete. But one
can prove very easily the following result:

The completion Vy(d) of V;¥(d*) contains only one
additional point. Let x, be this point. Then d(x,, x) =
r—a|(xely.

The steps of the proof are the following. Every
Cauchy sequence x,, of V.*(d*) is either of type (1) or
of type (2). x,, is of type (1) if there exists k such that
for n >k, r, > a > «. Every Cauchy sequence of
this type converges to a point x € F*. x, is of type
(2) if for every € > Othere exist nsuch thatr, — « < e.
No Cauchy sequence of this type converges.

If x,, and x/, are any two points of P;¥, one has that

&)

From this inequality it follows that, if x,, and x, are
two Cauchy sequences of type (2),

d*(xm, x;z) S Irm - r;;l + 77(7';,2 - az)%.

lim d*(x,, x;) = 0.

n=m-—* oo

4 J, Ehlers and W. Kund, Contribution to Gravitation, L. Witten,
Ed. (John Wiley & Sons, Inc., New York, 1962).

5 L. Bel and J. C. Escard, Rend. Atti. Accad. Nazl. Lincei. (VIII)
41, 476 (1966).

1501



1502

This means that any two such sequences are equivalent.
This proves the first part of our result.
From (5) with x,, = x and from
B, x) 21— 1=l — o, (6)
valid for x/, of type (2) and n large enough, it follows
lim d*(x,, x}) =r — a
This proves the second part.

(¢) V4(d)is by construction a complete metric space
to which we may add a differentiable structure
compatible with that of V). We need only define a
local chart (U, ¢), U being, for example, an open ball
d(xy, x) < b of center x, and ¢ a homeomorphism of
Uinto a Euclidean ball of center 0 {y* = y? = y* =0}.
We define ¢ by

:xy—>0, x—y={y'=usinbcosdg,
y? = usin 0 sin ¢, y* = u cos 6},
u = G(r — a)t. )

Let g, be the determinant of d5? corresponding to this
local system of coordinates. Then,*

&wy = (r + o))2a.

The space manifold ¥; can now be built from the
union of two local charts (U, ¢) and the original one
as defined by the coordinates {x’}. One can prove,
then, the existence of a global coordinate system {z*}
compatible with the asymptotic Euclidean behavior
of d5? and such that §,;, = 1 everywhere.

2. METRIC AND FIELD SINGULARITIES

We shall use in the neighborhood of the origin
(point x,) the coordinates {u, 8, #}. The space metric
is

ds? = 3(4a)u du? + S*(u) dw?,
S = By M [u} + (12304 (8)

Consider the orthonormal cobasis: #' = (ufda)t,
6% = S df, 6° = S sin 6 d.

The strict components of the Rieman tensor which
are not identically zero in this cobasis are

©)
If u — 0, these components tend to infinity. Conse-
quently the point x, is singular with respect to the

Riemannian structure of V3. It is also a singular point
of the gravitational field”® E = —c? grad In &, where

&= ul|[ut + (12:3)}]%. (10)

8 lim,—»0 §(,) = 1.If instead we had defined ¢ by u = r — «, as
seems most natural, we would have had lim, ¢ g,y = 0.

7 Justifications of this terminology can be found in Refs. 1, 4, 5,
and 8.

8 C. Cattaneo, Nuovo Cimento 10, 318 (1958).

? See, for instance, Ref. 1.

R — R — 3 — 2G4
R12,12 = R31.31 = —R23,23 = o254,

L. BEL

In fact, in the same cobasis one has

El = _c2aS-—2’ E2 = Ea = 0. (1 1)

3. THE SOURCE OF THE EXTERIOR SOLUTION

(a) Let us consider a spherically symmetrical
space-time which is globally static with metric (1) for
r> R > o and

1At = — (L) di* + .48, (dS* = \8,;,(0") ds* ds’,
G=r, =0, =4, (12
for 0 < r < «. We assume that ,ds? is of class C3 and
a solution of Einstein’s interior field equations:

(13)

We assume also that the global metric is C!, piece-
wise C? (across the hypersurface r = R).

It is well known® that one of the field equations (14)
may be written as

Sup = xTup, x = 8nGJcE

1& U =4nGu, U= ct logé, pu= 1§~2(Tg - T::),
(14)

where ;A is the Laplacian operator corresponding to
1d5® = 12 ds®. From (14) one can prove that

M=[ weptardoag, g =deria). (9

(b) We now consider the exterior solution only.
For any open set which does not contain x, we have,
of course, AU = 0 (U = c?In £). We wish to define
AU as a distribution. The function U is locally
integrable using as volume element the volume
element of ds®:

2
@ =

T [u? + (120® sin 6.

It then defines a distribution

(U, f) = f Uf@} du db dg, fe DU(P. (16)

3

AU is now defined as a distribution by

UA(®! du d6 d,
Ps—Ble)

(AU, f) = lim

€0

17

where B(e) is the open ball of center x, and radius e.
To calculate (18) we may use the generalization of
Green’s formula to Riemannian spaces and write

[Ua—f iy "—U]i‘ﬁ‘ @)t do dg,
Sale) du du |u

Sy(e) = 0B(e). (18)

(AU, f) = —lim

€0



SCHWARZSCHILD SINGULARITY 1503

Using the fact that or
AU = 4G5, . (19)

We may say then that the source of the exterior
solution is Md, and write symbolically, but con-
sistent with (14) and (15),

M= f M8, (8)} du db d.
VS

lim e loge = 0,

€0

the calculation can be finished as in the Newtonian
case and we get

(AU, fy = 4G Mf(x,) (20)
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We examine the system of coupled differential equations to which the constraints on the Cauchy data
reduce if expressed in terms of the “shift”” vector N, and “lapse” Ny. If ®'g,. and @ ¥g,,/0¢ are given
and Dirichlet boundary conditions are imposed, the solution N, is found to be unique if 2 X (energy
density) — (three-curvature) > 0, but need not be unique when this inequality is not satisfied. No general
existence theorem is known, but we list some conditions which make solutions impossible.

I. INTRODUCTION

In the general theory of relativity the causal develop-
ment of the metric field is completely determined, at
least for some finite time, once the initial data are
given on a spacelike hypersurface. The correct data
are of the Cauchy type and, if the spacelike hyper-
surface is designated by x° = 0, this means we are to
specify Wg,,, Wg,, = 9 “Wg, [0x?, and the energy-
momentum tensor 7, at x® = 0. However, it is seen
that, of the ten Einstein equations, the four
equations

(D

do not contain second time derivatives at all and
therefore must be regarded as four constraints on the
initial data.

In order to find a consistent set of initial data, one
can try to proceed in this fashion: prescribe arbitrarily
some of the g,, and g,,, then find those remaining by
solving Eqgs. (1) for them. Foures-Bruhat' has re-
viewed several ways of formulating this problem of
initial conditions. We will be concerned with the

Gz(ga[b gaﬂ) = T[[)l

* Present address: Massachusetts Institute of Technology, Cam-
bridge, Massachusetts.

t Present address: Rensselaer Polytechnic Institute, Troy, New
York.

1Y, Foures-Bruhat, in Gravitation: An Introduction to Current
Research, L. Witten, Ed. (John Wiley & Sons Inc., New York,
1962), p. 130.

approach discussed by Wheeler.>* In this formula-
tion one defines the “shift” vector N, and the “lapse”
N, by
ds® = g, dx' dx* + 2N, dx* dx°
+ (Vg*N N — No)(dx):. (2)

Here ®g,, is the metric induced on the hypersurface
x® =0 (we will hereafter abbreviate g, = ®g,). It
can be shown that, within the hypersurface, N, trans-
forms like a 3-vector and N, like a scalar. These shift
and lapse functions have a very simple geometrical
interpretation: they determine how hypersurfaces near
x% = 0 are to be constructed.

We now take g, and g, as prescribed and attempt
to consider Eqs. (1) as four equations for the unknowns
Ny and N,. These equations can be written as

[(Vimn = Ema¥DINl™ = S, 3)
No = [y*/(2¢ — R)I, @)
where
Vrs = (N5 + Nyjp — 810 (%)
P* =) — v (6)

2 R. F. Baierlein, D. H. Sharp, and J. A. Wheeler, Phys. Rev.
126, 1864 (1962).

3 J. A. Wheeler, in Relativity, Groups and Topology, C. DeWitt
and B. DeWitt, Eds. (Gordon and Breach, Science Publishers, New
York, 1964), p. 317.

4 J. A. Wheeler, in Gravitation and Relativity, H. Y. Chiu and W.
F. Hoffman, Eds. (W. A. Benjamin, Inc., New York, 1964), p. 303.
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R is the curvature scalar formed out of the 3-metric
ga and € and S, are, respectively, the energy density
and the density of energy flow (the precise definitions
are given in Sec. IV). From Egs. (3) and (4) we obtain
the following condensed initial-value equations which
only involve the vector N,:

{[(25 - R)/V*]k(ymn - gmnyg)}lm = Sn' (7)

These last equations can be obtained from the action
integral

I=[-ree— RE+sWghan ®

by seeking the extremum with respect to variations
of N,.

The problem of finding consistent Cauchy data
reduces to that of solving Eqs. (7) for the shift N,
where €, S,, .., and g, are given functions. The
solution must satisfy the restriction

7*Qe - R) >0 €}

everywhere. It then becomes necessary to ask, Do the
Eqgs. (7) have one and only one solution whenever
some appropriate boundary conditions are given?
Sections II and III discuss this question. Section IV
contains a few remarks about the source terms.

II. UNIQUENESS

The uniqueness problem for Egs. (7) is of particular
interest because of its relation to the Mach principle
as formulated by Wheeler.* It is also relevant to the
question of the absence of a gravitational analog to
electric charge.® As domain for the solution of Egs.
(7) we take a region C of finite proper volume con-
tained in the hypersurface x° = 0. We will suppose
that C is the union of a finite number of oriented
curvilinear tetrahedra, i.e., C is a 3-chain. This will
make it possible to apply Gauss’s theorem. We do not
place any further restrictions on the topology of C;
in particular, ‘“wormholes” are not excluded.

We will consider boundary conditions of the
Dirichlet type: the function N, is to be prescribed on
the boundary d(C) of C. We then find that the solution
is unique, provided that everywhere

2¢— R> 0. (10)

However, it may happen that the boundary 4(C)
vanishes: for example, if the hypersurface x° = 0 is a
3-sphere and C is all of this 3-sphere. We will call such
a space “‘closed.” In this case no boundary conditions
are imposed on N,, but nevertheless the solution of

5J. A. Wheeler, in Relativistic Fluid Mechanics and Magneto-
hydrodynamics, R. Wasserman and C. P. Wells, Eds. (Academic
Press Inc., New York, 1963), p. 1.

E. P. BELASCO AND H. C. OHANIAN

Eq. (7) remains unique up to Killing vectors. Since such
Killing vectors added to N, are physically irrelevant,
the shift is essentially unique. If Eq. (10) is not satisfied,
we can show by means of an example that Dirichlet
boundary conditions are insufficient to guarantee
uniqueness.

The uniqueness theorem can be stated as follows:

Theorem: Suppose 2¢ — R > 0. Whenever the equa-
tions

{[2e = BY* FGmn — 8uaD)™ = S, (11)

Vrs = %(ers + Nslr - grs)s (12)

7* = (7?)2 — V¥ >0, (13)
have two solutions N, = V,(x)and N, = W,(x), taking
the same boundary values N, on d(C), then the two
solutions can differ at most by a Killing vector. If
d(C) # 0, the solutions must be identical throughout C.

with

The proof proceeds in two steps: first we establish
%n(X) = AX)Bn(X), (14)

where A(x) > 0 is a differentiable scalar function and

Un = §Voain + Vajm — Emn)s (15)
Bun = ¥ Wapn + Wi — Emn)- (16)
Then we show that A(x) = 1.
Define
M, =uV, + (1 — u)W,, an
Lpn(t) = uap, + (1 — w)f,,
= ¥M,,, + M.nlm — Emn)s (18)
T*(u) = (T3 = T,,I", (19)

where u is a real parameter, 0 <u < 1. T'*(u),
regarded as function of u (for fixed x), is a quadratic
polynomial in u. It can be shown that I'*(x) has no
roots in the interval 0 < u < 1.% Since I'*(0) = g*
and T*(1) = a* are positive, the function [T'*(u)}? is
real and all its derivatives with respect to  exist and
. are'real in the interval 0 < u < 1.
Next define

Ju) = fo{—'[@e - R)I‘*(u)]‘} + S"M,c}g* d®x. (20

We will show that the derivatives of J(u) with respect
to u have the following properties:

® J'()=7(1)=0;
(ii) J"(uw) > 0 in the interval 0 < u < 1;
(iif) J”(#) > 0 in the interval 0 < u < 1 unless Eq.
(14) is true.

¢ The proof is given in Appendix A.
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These contradictory properties of the function J'(u)
establish that Eq. (14) must hold.

The demonstration of (i) is trivial since Eq. (11) is
the Euler-Lagrange equation for the integral J and,
therefore, J(u) at u = 0 and u = 1 is stationary for
arbitrary variations of the solutions W} and V,,
respectively. Items (ii) and (iii) are obtained by
straightforward calculation of J”(u).”

To show that A(x) = 1 we begin by observing that
this is certainly true on d(C) because of the Dirichlet
boundary condition. Suppose now that there exists
some region C’ such that A# 1in C'and A =1 on
d(C’). 1t follows from Eq. (14) that, wherever 4 # 1,

Wklm + Wmlk - gmk
= (Wklm + Wmlk - Vklm - lek)/(l - l)» (21)

so that W, — V, must be a solution of the “homo-
geneous” initial-value equation [i.e., Eq. (11) with
gmn = 0]. Designate by C — C’ the region where
A(x) = 1;then,in C — C’, W, — V; must be a Killing
vector. This makes the existence of any region C’
impossible because the homogeneous equation cannot
have any solution L; which reduces to a Killing vector
&, on d(C’) and also satisfies the restriction (9). Since
Killing vectors have zero divergence and since &,
vanishes on d(C),

0= &ls d3x =f En® d®x —f En®d®x
o—c a0 ae”

&n® d®x
e

= —f Lo &x = —f Ll* d’.
aen ¢

Therefore, LLS must vanish somewhere in C’ and Eq.
(9) is not satisfied.

We conclude finally that A(x) = 1 everywhere so
that W, and V; differ at most by a Killing vector. If
d(C) # 0, this Killing vector would have to vanish on
the boundary and must therefore be zero everywhere.

In absence of the condition 2¢ — R >0, it is
possible to construct counterexamples to uniqueness.
Take the closed space consisting of the cube |x!| < a,
[x%| < a, |x% < a with periodic boundary conditions
imposed on all functions in this space (3-torus).
Suppose g,,, = %, but g, 5« 0. Suppose further that
we have found some solution N, of Eq. (3) such that
Ymn 18 constant and y,, + y33 = 0. These conditions
are compatible. It is easy to check that N, 4 6} f(x?) is
also a solution of Eq. (3) whenever f(x') is a twice
differentiable, periodic function of x. Our example is
unphysical because ¢ must be negative, but similar

(22)

7 See Appendix B.
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constructions are possible in spaces of positive 3-
curvature with positive e. This lack of uniqueness is
not surprising because examination of the character-
istic determinant of the system of equations (3) reveals
that the determinant has no definite sign if 2¢ — R <
0. The equations are then not elliptic and Dirichlet
boundary conditions are not natural. Unfortunately
this seems to be the only type of boundary condition
which is physically meaningful.

III. EXISTENCE?

No general existence theorem for Egs. (7) is
known. Solutions do not exist under all possible
assignments of the functions g;;, &;;, €, and S;. Here
are three sets of conditions on these functions, each of
which guarantees that no solution exists.

(i) If the geometry is closed and admits a Killing
vector &; and

f SEgt dox # 0, (23)
no solution to any of the associated problems of
initial conditions (g;; and e arbitrary) can be found.
If a solution did exist, we would have §¢ = il for
some tensor 7%/, Thus

J‘Sifigé dx =J7rﬁ ot dPx

B _f T ang! dx =0, (24)

which would contradict Eq. (23).

(i) If the geometry is closed and g;; = L;; + Ly,
for some vector L, , and if 2¢ — R > 0, no solution to
any associated initial-value problem (S; arbitrary)
can exist. This is proved as follows: Consider a solu-
tion y,,; it must satisfy

(7" = 2¢ — R+ 9"y, > 0.
This is impossible, because
Vs = H(N° — L),
and

J‘(N“‘ ~ I),gt x =0,

(iii) For a closed geometry, if g”g,, = g/g = Oand
2e — R > 0, no solution to any associated initial-
value problem (S; arbitrary) exists. The proof of this
runs analogously to that of (ii), once it is noted that

ye = 3(Nl* + Ny).

IV. COMMENTS ON THE SOURCE TERMS?

A serious question arises when one considers
conditions like 2¢ — R > 0, which have appeared

8 E. P. Belasco, Senior thesis, Princeton University, 1967.



1506

again and again. Although ¢ and S; have, in the
“lapse and shift” formulation of the problem of
initial conditions, been assumed to be given functions,
this representation is not perfect.

Given an Einstein 4-geometry, let us generate a
problem of initial conditions. Consider the surface S
given by x° = 0. We seek a three-dimensional metric,
its derivative with respect to time, and energy terms.
For coordinates on S we choose (in a representative
patch) the coordinates x*. The metric induced in §
is thus g,;. Examination of the Einstein equations
reveals that e = —kT? and S, = —kT?, where T is
the stress-energy tensor T, expressed in a coordinate
system that agrees with x* on S but is Gaussian normal
to S.

The unreasonableness of this situation is apparent.
The metric g,; was chosen as part of the freely specifi-
able data because of its measurability. Why should the
measurement process produce data in two different
coordinate systems? To be consistent, perhaps the
terms S, and e should be written as follows:

€= —'Tg = (Too — 2T01'Ni + Ti;'NiNj)/Ntz)’ (25)
S; = =T7 = (Ty; — TuN°)[N,. (26)

The above forms, although true in all cases, are not
always natural. Additional coupled equations may
have to be introduced and other changes made in
order to describe specific matter sources. Some
particular cases of this are discussed in Ref. 1.

V. CONCLUDING REMARKS

We have seen that Eq. (7) may have no solutions,
and even if it does the solution need not be unique.
Hence, arbitrary specification of g;; and g,; may be
inconsistent and even if it is consistent it need not be
sufficient to determine the time development of the
geometry uniquely. The quite plausible separation of
the Cauchy data into two parts, one of which (g;, £:5)
is freely specifiable and another (N,, Ny) which is
completely determined by the constraint equations, is
therefore not always workable. The separation is only
possible for a restricted class of functions g;;, &;;, €,
and S;, for which Eq. (7) has one and only one solution
N,. The sufficient condition for uniqueness and the
several necessary conditions for existence of Secs. 11
and IIT suggest that the requirements for membership
in this privileged class are likely to be rather complex
and exclusive.
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APPENDIX A

The function I'*(u) defined by Eq. (19) can be
written as a quadratic polynomial in u:

[*(u) = ul[a* + B* — 2(«f)*]
+ 2ul(«p)* — p*] + 8%, (AD)

where (¢f)* = a/ff® — «, . One can show that
roots of I'*(ux) occur in the interval 0 < u < 1 if and
only if

(«f)* <0, (A2)

[(@B)*] — «*p* > 0. (A3)

[The case of equality in Eq. (A3) corresponds to
double roots.] Suppose these conditions are satisfied
and T'*(u) has roots. If we replace f,,, by —fBun,
condition (A2) will not be satisfied any more since
this operation changes the sign of («f8)*. Write the
function defined by Eq. (18) as I',,,(u; a,,, B,) 50 as
to display the dependence on «,, and f§,,. The pre-
ceding argument shows that if I'*(u;a,, S, has
roots in the interval 0 < u < 1, then I'*(u; o, —f,,)
does not.

Consider o (x) and designate by 4,(x), 4,(x), 45(x)
its eigenvalues in the local coordinate frame in which
8w = 0.. We can introduce a three-dimensional
space of eigenvalues in which the above eigenvalues
are represented by an ‘“‘eigenpoint” with Cartesian
coordinates (4,, 4,5, A3). The condition «* >0
demands that the eigenpoints lie inside a double cone
whose apex is at the origin, axis in the direction
(1, 1, 1), and which has the three coordinate axes lying
on its surface.? The two halves of the double cone are
distinguished by the value of a(x): it is positive in one
cone and negative in the other. Now we observe that
af(x) [and also f¥(x)] cannot change sign anywhere in
C since that would violate «* > 0 (or f* > 0).
Further, by Egs. (15) and (16) and the boundary
conditions,

L(ai — B dx = L(V,'f — Wi dx

= (V,— Wn*d®x = 0.
aen
Therefore, af = #% somewhere within C and then of
and ¥ must have the same sign everywhere.

Next examine the behavior of I'*(u; «,,, f,,) in the
eigenvalue space (keeping x fixed). T',.(0; o, fry)
has the eigenpoint B = (B,, B,, By) and T',,,.(1; oy,
Brs) the point A = (A4;, 4,, A3). As u varies from 0 to
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1, the eigenpoint of T,,,(u; a,,, By,) traces out a path
from B to A. Roots of I'*(u; «,,, B, correspond to
intersections of this path with the cone. The replace-
ment of 8,,, by —Bm, changes Bto —B and, since A
and B lic in the same cone, A and —B will lie in
opposite cones. But then the path from A to —B
must necessarily intersect the cone, 1.e., there must
exist roots of I'*(u; a,,, —f,;). However, we know
that if the latter polynomial has roots in the interval
0 < u < 1, then T'*(u; ,,, B,,) does not.

This establishes the absence of roots of TI'*(u)
needed for the proof of the uniqueness theorem.

APPENDIX B

Appendix A shows that I'*(u; «,,, f,,) has no roots
in the interval 0 < u < 1, but that T'*(u; o, —Bss)
does. The existence of roots of I'*(u; a,,,, —f,,) implies
that

(@p)* >0,

[(@B)*]F — a*p* 2 0.

(B1)

(B2)
By Eq. (20),

1 2 1 1 .
J'(u) = —f (2e — R)"|:i—2 F*§:|g§ &x. (B3)
c du
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If we use the expression (Al) for I'*, we obtain
d2
FF*«} — —F*_%{[(O(ﬁ)*]z — a*B*).

u

From (B4), (B2), and (B3) we see that J"(x) > 0.
We can further show that J”(u) = 0 if and only if

(B5)

(B4)

%n = Mn -

It is obvious that (B5) is sufficient to make
[(B)*] — a*B*,

and hence also J”(u), vanish. To show that (B5) is
necessary, we write

The tensor g¢,,, defined by this equation is traceless.

Substituting the expression for «,, given by (B6)
and making use of ¢¢ = 0, we find

[(@f)*P — a*B* = (23] — o, f")
— [(%)* — 0, @B — BmnB™"]
= (84" + B*q,. 4" (B7)

If this last quantity is to vanish, we must haveg,, = 0.
Hence J"(u) > 0, unless Eq. (B5) holds.
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and the quanta of circulation was shown to be A/m.
This prediction was first verified experimentally by
Vinen,* using a vibrating wire. In a beautiful experi-
ment on the motion of ions trapped in vortex rings,
Rayfield and Reif® established conclusively that
vortices are quantized with a circulation of A/m.

The presence of vortices with multiple quanta of
circulation have also been observed. Whitmore and
Zimmermann,® using the Vinen method, found
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vortices with one, two, and three quanta of circulation.
However, in the last hours of some of their runs, they
found rather stable circulation values at A/2m and
~3h{2m, but do not attach any significance to them.’
Steyert, Taylor, and Kitchens® observed the trajectory
of frozen HD particles in He 11, and found, in addition
to integral multiples of h/m, significant peaks at
#{2m and 3h[2m. Di Castro® has suggested that a
possible explanation for these peaks is that a “pair
condensate” coexists with the single-particle con-
densate. The integral multiples of A/m cannot be
explained as being due to even multiples of 4/2m
because much more energy is required to produce
one vortex line with multiple quanta of circulation
than several lines with single quanta having the same
total circulation.? If vortices with circulation h/2m
exist, they are rare compared to those with circulation
him, so the single-particle condensate must predomi-
nate. Further experiments should be performed to
establish conclusively the existence or nonexistence
of vortices with half-integral quanta of circulation.

The idea of a “pair condensate” is not new. A
number of theories have taken correlations between
particles of equal and opposite momentum into
account. In the special case that the pairing corre-
lations augment the single-particle condensate in the
zero-momentum state, it can be said that a “pair
condensate” is present. However, depending on the
interaction, the effect of the pairing correlations may
reduce the effective condensate. In inhomogeneous
systems, the single-particle condensate is no longer
only in the zero-momentum state, and correlations
must be taken into account between pairs of particles
in time-reversed states.

After Valatin'® developed a theory of supercon-
ductivity independently of Bogoliubov,!* he and
Butler'? reapplied the canonical transformation method
to boson systems taking pair correlations into
account. Their treatment of the zero-momentum state
as consisting of pairs is not the same, however,
as the original boson theory of Bogoliubov.*® Since
pairs of bosons with equal and opposite momentum
satisfy approximate commutation relations in the

?W. Zimmermann, Jr., private communication, 1967.

8 W. A. Steyert, R. D. Taylor, and T. A. Kitchens, Phys. Rev.
Letters 15, 546 (1965).

¢ C. Di Castro, Phys. Letters 24A, 191 (1967). The term “pair
condensate” is used to describe the effects of pair correlations, even
though the pair correlations need not necessarily augment the single-
particle condensate.

10 J. G. Valatin, Nuovo Cimento 7, 843 (1958).

1 N. N. Bogoliubov, Zh. Eksp. Teor. Fiz. 34, 58 (1958) [Sov.
Phys.—JETP 7, 41 (1958)]; Nuovo Cimento 7, 794 (1958).

12 J. G. Valatin and D. Butler, Nuovo Cimento 10, 37 (1958).
This paper has recently been criticized for excluding a true single-
particle condensate. See Ref. 15.

13 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).
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same way that Cooper pairs in the theory of super-
conductivity do, it is perhaps to be expected that they
would also condense if the interaction between the
particles in the pair is sufficiently attractive.

Although the pair-correlation theory has been
developed by a number of authors,** it has not been
shown to lead to agreement with the observed energy
spectrum of Hell. Due to mathematical difficulties,
the complicated integral equations have not yet been
solved for a realistic potential. A calculation by the
author'® using a delta-function potential displaced
from the origin was shown to lead to agreement with
the experimental spectrum, but the depletion was
over 100 %;. However, the pair-correlation theory goes
beyond Bogoliubov’s original theory*® in a systematic
way and thus merits further attention.

In this paper, a theory of inhomogeneous boson
systems is developed which takes into account both
the single-particle condensate and pair correlations.
In this sense it is in the same spirit as an extended
theory of Valatin, but attention is not focused on the
ground state. It is also similar to a recent theory of
Cummings and Johnston,'? but is more tractable and
does not assume plane-wave expansions. The first to
suggest such a theory combining both single-particle
condensate and pair correlations was Gross.!® Pitaev-
skil? generalized the original canonical transformation
of Bogoliubov?® to the spatially inhomogeneous case.
However, in his equations and those of subsequent
authors?® the contribution of pair correlations was
overlooked, since the interaction Hamiltonian for the
Bogoliubov quasiparticles was not put in normal
order. When the normal ordering is performed, no
contributions to the unperturbed ground-state energy
are neglected. The normal ordering of the operators
gives a pair potential for the quasiparticles which,
in addition to a contribution from the single-particle
condensate, has a term describing the pairing of
particles in time-reversed states. This term is called

1% M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959);
G. Wentzel, Phys. Rev. 120, 1579 (1960); M. Luban, Phys. Rev.
128, 965 (1962); D. N. Zubarev and Iu. Tserkovnikov, Dokl. Akad.
Nauk SSSR 120, 991 (1958) [Sov. Phys.—Dokl. 3, 603 (1958)]; V.
V. Tolmachev, Dokl. Akad. Nauk SSSR 134, 1324 (1960) {Sov.
Phys.—Dokl. §, 984 (1960)].

15 D, H. Kobe, Ann. Phys. (N.Y.) 47, 15 (1968); Nuovo Cimento
59B, 187 (1969).

16 Y. G. Valatin, in Lectures in Theoretical Physics, W. E. Brittin
and W. R. Chappell, Eds. (University of Colorado Press, Boulder,
Colo., 1964), Vol. VI, pp. 245-372. On p. 362, when the equations
become somewhat similar to ours, he arbitrarily sets ¢(x) = 0 for
simplicity, which is not justified.

¥ F. W. Cummings and J. R. Johnston, Phys. Rev. 151, 105
(1966).

18 E. P. Gross, Ann. Phys. (N.Y.) 9, 292 (1960).

1% L. P. Pitaevski, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys.—
JETP 13, 451 (1961)].

2% See, e.g., D. Pines and P. Nozitres, Theory of Quantum Liquids
(W. A. Benjamin, Inc., New York, to be published), Vol.II, Chap. 6.
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the pair-condensate wavefunction, although it need
not necessarily augment the condensate. If both a pair
condensate and single-particle condensate coexist, the
pair condensate is locked in phase with the single-
particle condensate, which gives circulation quantized
only in units of h/m. However, if the single-particle
condensate is completely depleted leaving only the
pair condensate, circulation in units of /2m is possible.
The theory here reduces to previous theories® if the
pair condensate is neglected and a delta-function
potential is used.

In the next section, a space- and time-dependent
canonical transformation is made to separate the
effect of the single-particle condensate. Then another
space- and time-dependent canonical transformation
is made to Bogoliubov quasiparticles or bogolons.
The Hamiltonian is put in normal order in terms of
the bogolon operators. In Sec. 3 the equations of
motion for the coefficients in the transformation are
obtained. The single-particle condensate wavefunction
is coupled to the bogolon wavefunctions, and vice
versa. The concept of off-diagonal long-range order
(ODLRO) is discussed in Sec. 4. Intrinsic ODLRO
in the two-particle density matrix when ODLRO is
present in the one-particle density matrix is defined
and shown to be present in this theory. On the basis
of general arguments in Sec. 5, it is shown that the
pair condensate is locked in phase with the single-
particle condensate. The only way to have half-
integral h/m circulation is for the single-particle
condensate to be completely depleted. In Sec. 6,
these general considerations are shown to be valid on
the basis of the wave equations for a vortex line in the
single-particle condensate in the presence of the pair
condensate. The wave equations are shown in Sec.
7 to imply the possibility of half-integral h/m circulation
when the single-particle condensate is completely
depleted.

2. THE BOGOLON HAMILTONIAN

The Hamiltonian for a system of bosons interacting
with a two-body potential } is*

H = f dxy’ () T(R)p(x)
+3 f f dx dyy'()w IV, PDeOYRe). 2.1)

The variable x represents the spatial coordinates x
and the time ¢ and similarly for y. The operator T is
the sum of the kinetic energy and the external potential

1 For a discussion of second quantization see, e.g., D. H. Kobe,
Am. J. Phys. 34, 1150 (1960).
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V. if it is present, minus the chemical potential:

T(x) = — 5% VAV 0 —p Q22

The field operators in the Heisenberg picture are

tHi —iH{

P(x) = T p(x)e (23)
The time-independent field creation operator y'(x)
and annihilation operator y(x) satisfy the usual boson

commutation relations

[v(x), ¢' ()] = o(x — y),
[v(x), ()] = 0,
W), ¢ (¥ =0,

which is equivalent to saying that the wavefunction
for bosons must be symmetric.

The density of particles at a point in a boson
system can be high, since the wavefunction does not
vanish if two particles occupy the same point, as is the
case for fermions. The expectation value of the density
operator in the true ground state,

p() = (' ()p(x)), 2.5)

can therefore be large at some points. It is now
possible to make a canonical transformation to a type
of quasiparticle which has, on the average, a very low
density at each point. The field operator for the new
quasiparticles is defined as

2(x) = p(x) — ¢(x), (2.6)

and was first introduced by Pitaevski!® generalizing
the idea of Bogoliuboy*® to the spatially inhomo-
geneous case. The function ¢(x), called the condensate
wavefunction, describes the condensation of single
particles. It is determined in the next section from the
equation of motion. Since the field operators yf(x)
and y(x) satisfy the commutation relations of Eq.
(2.4), the quasiparticles are bosons and the trans-
formation is canonical. The quasiparticle operator in
Eq. (2.6) describes the deviation of the operator from
the function ¢(x) [usually taken to be its average
value (p(x))?*] and can hence be called a devion
operator.

The density in Eq. (2.5) can then be expressed in
terms of the devion operators as

p(x) = |$(0)1* + 2 Re (x'(x))$(x)
+ A2 (27)

(2.4)

22 P, Noziéres, in Quantum Fluids, D. F. Brewer, Ed. (North-

Holland Publ. Co., Amsterdam, 1966), p. 9. The expectation value
can be defined either between states of fixed particle number N
and N — 1, or in a ground state in which the number of particles is
no longer a good quantum number because a source term has been
added to the Hamiltonian.
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The function |¢$(x)|> can be chosen to be a good
approximation to p(x), so the other terms will be
small.

The devions themselves can be expressed in terms
of Bogoliubov quasiparticles, or bogolons, by intro-
ducing the canonical transformation!®3

2%) = 3 ua(X)yn + 5P

The bogolons are bosons and so the creation and
annihilation operators satisfy the usual commutation
relations:

(2.8)

s V] = S

[Ym> ¥al = 0,

[yas vml = 0.
Since the devions are also bosons and satisfy the

commutation relations in Eq. (2.4), the completeness
relations

2 [ (Juz(y) — vi(X)v,(M] = 6(x —y) (2.10)

(2.9)

and
2 [, ()7(y) — vp()un(y)] = 0 (2.11)
n

must be satisfied.

The bogolon Hamiltonian can be obtained by
first using the transformation to devions on the
Hamiltonian in Eq. (2.1), and then using the trans-
formation to bogolons in Eq. (2.8). The creation and
annihilation operators for the bogolons must be put
in normal order, so that as much of the interaction as
possible will be thrown into the ground-state energy
and the bogolon kinetic energy.?* In this way the
expectation value of the bogolon interaction terms
with respect to the bogolon vacuum state can be made
zero. The bogolon interaction terms do not contribute
as much in a subsequent perturbation expansion for
the ground-state energy or the bogolon self-energy.
In this paper the full Hamiltonian is used, whereas
previous treatments®® have neglected the devion
interaction terms before making the transformation
to bogolons.

The Hamiltonian in terms of the bogolon operators
can be written as

H=Hy+ Hy + Hyg+ Hy + Hy
t Hop + Hy (212)

The bogolon interaction term H,; involves at least
three or four bogolon operators

Hiy = ZHm,
ik

28 W. F. Vinen, in Quantum Fluids, D. F. Brewer, Ed. (North-
Holland Publ. Co., Amsterdam, 1966), p. 95. However, he ex-
pands  in terms of bogolons, instead of y, and neglects the terms
coming from the normal ordering of the interaction terms.

4 This procedure is absolutely essential in the theory of super-
conductivity. See Refs. 10 and 11.

(2.13)
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where j + k = 3 or 4. In Egs. (2.12) and (2.13) the
first subscript in H; denotes the number of creation
operators and the second denotes the number of
annihilation operators, The term can thus be written as

H]-k=122 hjk(1’2,’J+k)
V2,00 dE
X VI' e V;Vj+1 Vi (2.14)

forj,k =0,1, 2, 3, 4 and the sum is over all states.
Since the Hamiltonian is hermitian,

H,, = Hj, 2.15)

for all allowed j and k. The coefficients in Eq. (2.14)
thus have the property

hu(L, 2, j+ k) =hy(G+ k- +,2,1), (2.16)

so that not all of them need be given explicitly.

The unperturbed bogolon ground-state energy Hy,
is obtained if the expectation value of Eq. (2.12) is
taken with respect to the bogolon vacuum. It is given
in the Appendix along with a discussion of the varia-
tional principle and the compensation of the lowest-
order dangerous diagrams.?® In the Hamiltonian of
Eq. (2.12) there are now two types of ‘“dangerous
diagrams.”” The usual ones in superconductivity theory
describe the creation or annihilation of two bogolons
from the vacuum, and are given by H,, and H,.
However, it is now possible to have “dangerous
diagrams” that lead from the vacuum to a single
bogolon state. The usual method of “compensating
the dangerous diagrams™ leads to the time-inde-
pendent equations.

The coefficient in the dangerous term H,, is given by

hoy(n) = f AX[W* (), (x) + WO, (0L (2.17)

where the function W is defined as
W) = TOO$(x) + f dyV(x, D))

+ f dyV (%, YL ()(x) (%)
+ O + AN F*D]. (2.18)

The devion density matrix in the bogolon vacuum
state can be obtained from Eq. (2.8) and is
00 = 3 0, (Rk).

n
The devion pair amplitude, which plays the role of an
order parameter for the “pair condensate,” is

() = X u (X)on(y).

n

(2.19)

(2.20)

% For a discussion of the principle of compensation of dangerous
diagrams see D. H. Kobe, Phys. Rev. 140, A825 (1965); Ann. Phys.
(N.Y.) 40, 395 (1966); J. Math. Phys. 8, 1200 (1967); J. Math. Phys.
9, 1779, 1795 (1968).
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It is analogous to the anomalous propagator in the
Green’s function theory of superconductivity®® and
superfluidity.?” The terms involving the devion density
and pair amplitude in Eq. (2.18) would not occur if
the devion interaction terms had not been included
when the bogolon transformation was made.

The bogolon kinetic energy term Hy; in Eq. (2.12)
has the coefficient

hyy(n, m)
- f f dx dy{u U Pttn(y) + (XU, Y)OA()

+ 3AGx, NRREEY) + un(x)r7()]
+ AT (X, DG0R() + v} (221)

which is not in diagonal form. The coefficient of the
“dangerous” term H, in Eq. (2.12) is given by

hoa(n, m)
f dx dy (o, (U, Vn(y) + vn(IUK, ()

+ AR, YU un(y) + A%(x, y)o(x)o.(0)}-
(2.22)
In both Eqgs. (2.21) and (2.22) the operator U and the
function A appear. The operator U is essentially the
Hartree-Fock Hamiltonian in the sense that it is
the sum of the kinetic energy and the self-consistent
potential due to all the other particles with exchange

Ux, y) = 8(x — y){ T(x)

+ f dzV (x, D)) + <x*<z>x<z>>1}

+ V& D000 + & OGN (2.23)
The function A is the pair potential

A(x, y) = Vx, DIF*@)* () + AT D2ON] (2.24)

and is related to the probability of a pair of particles
condensing into either the single-particle condensate
or the “pair condensate.” It is the analog of the pair
potential in the theory of superconductivity.?®

In the next section the Hamiltonian in Eq. (2.12) is
used to obtain the equation of motion for the functions
in the canonical transformations.

3. EQUATIONS OF MOTION

The Heisenberg equation of motion for the field
operator y(x) is determined by differentiating Eq.

28 L. P. Gorkov, Zh. Eksp. Teor. Fiz. 34, 735 (1958) [Sov. Phys.—
JETP 7, 289 (1958)].

27 S.T. Beliaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958) [Sov. Phys.—
JETP 7, 289 (1958)}.

28 See, e.g., P. G. de Gennes, Superconductivity of Metals and
Alloys (W. A, Benjamin, Inc., New York, 1966), pp. 137-145.
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(2.3) with respect to time, which gives
ip(x) = [p(x), H]. 3.H

The Hamiltonian of Eq. (2.12) is substituted directly
into Eq. (3.1) in order to obtain the equations of
motion for the functions in the canonical trans-
formations of Egs. (2.6) and (2.8). The bogolon
interaction terms involving three or more operators are
neglected. The canonical transformations to devions
and bogolons in Egs. (2.6) and (2.8) can be combined
to give

P = $0) + 2 X}y + vl (3.2)

Then Eq. (3.2) can be substituted into Eq. (3.1) and
the coefficients of the same operator on the left and the
right sides can be equated.

The coefficients of the unit operator give the
equation for the condensate wavefunction:

ig(x) = 3 Uno(mu,(x) = h(moi(x)].  (3.3)

The coeflicients of the bogolon annihilation operator
v, give the equation for the amplitude u,(x):

f,(x) = 3, [hna(m, mun(x) — 2he(m, m)oi(x)]. (3.4)

Likewise, the coefficients of the bogolon creation
operator y! give the equation

wn(x) = 2 [hll(m: n)vm(x) - 2k02(m9 n)u’:n(x)]‘ (35)

If the coefficients hyy, hyy, and Ay, in Egs. (2.17),
(2.21), and (2.22) are substituted into the equations
of motion in Egs. (3.3)-(3.5), and use is made of the
completeness relations in Egs. (2.10) and (2.11), the
equations for ¢, u,,, and v, are obtained. The equation
for the condensate wavefunction ¢ is

i(x) = TR)H(x) + f dyV(x, PE)()$(x)

+ f dyV(x, I () bx)
+ G O + GEOIONF G (3.6)

It is a generalization of the usual Gross**-Pitaevski®®
equation for the condensate wavefunction, since it
involves coupling to the bogolon functions %, and v,
through the devion density matrix (x"(x)x(y)) and
devion pair amplitude (y(x)z(y)) defined in Egs.
(2.19) and (2.20), respectively. The equations of
motion for the bogolon w, and v, are

it (x) = f dyU(x, y)in(y) + f dyA*(x, Yo (y) (3.7)

2% E. P. Gross, Ann. Phys. (N.Y.) 4, 57 (1958).
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and

~i8,09 = [ Y005, 90) + [ dyh, D)

(3.8)
The Hartree-Fock Hamiltonian U is defined in Eq.
(2.23) and the pair potential is defined in Eq. (2.24).
If the devion density matrix and pair amplitude were
neglected in Eqs. (2.23) and (2.24) and a delta function
potential were used, Eqgs. (3.7) and (3.8) would reduce
to previously given equations for u, and v,.2° How-
ever, these terms are not obviously small, and should
thus be included.

The equations derived for the condensate wave-
function and the bogolon wavefunctions u, and v,, are
analyzed in more detail in Secs. 6 and 7. The next
two sections examine some general concepts in order
to obtain a better understanding of the pair condensate.

4. OFF-DIAGONAL LONG-RANGE ORDER

The concept of off-diagonal long-range order
(ODLRO) in the reduced density matrices has been
developed by Yang® on the basis of ideas introduced
by Penrose®! and Penrose and Onsager.® This concept
provides the most general criterion for the existence
of superfluidity or superconductivity, since it avoids
all mention of Hamiltonians, interactions, or state
vectors. The existence of superfluidity in boson
systems is due to ODLRO in the one-particle density
matrix p,, whereas superconductivity is due to
ODLRO in the two-particle density matrix p,.

The explanation given by Di Castro® for the occur-
rence of half-integral h/m circulation is that there
could be an intrinsic ODLRO in the two-particle
density matrix, as well as ODLRO in the one-particle
density matrix. He suggested that this intrinsic
ODLRO was due to a “pair condensate” of a type
similar to that in superconductivity, and that it
automatically implied the existence of half-integral
h/m circulation. It is shown in this section that there is
indeed intrinsic ODLRO in the two-particle density
matrix, but subsequent sections show that half-integral
h{m circulation is not automatically implied.

Yang® has defined ODLRO for p; and for p, in the
absence of ODLRO in p,. However, it is possible to
extend the concept to include ODLRO in p, in the
presence of ODLRO in p,. The following four cases
can be distinguished:

(a) No ODLRO in p; and no ODLRO in p,;

(b) No ODLRO in p, and ODLRO in p,;

(c) ODLRO in p; and no ODLRO in p,;

(d) ODLRO in p, and ODLRO in p,.

30 C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

31 O. Penrose, Phil. Mag. 42, 1373 (1951).
32 Q. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
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Yang considered the first two cases and lumped the
last two together under ODLRO in p,. However, it is
useful to distinguish between the ODLRO in p, as a
result of ODLRO in p, and the intrinsic ODLRO in p,.
In the following we will say that p, has ODLRO only
when it has intrinsic ODLRO.

The one-particle density matrix p, is defined as

Pl(xs Y) = <'/’T(x)’l’(Y)>, (4'1)

where the expectation value is taken in the true
ground state. If p, does not have ODLRO, then

pi(x,¥) >0, as |x—y|—>o0;  (42)
but if p, has ODLRO, then
pi(x,y)+ 0, as [x—y|—>c,  (43)

which is equivalent to saying that p, has an eigenvalue
of order N.
The two-particle density matrix is defined as

pa(W, X, ¥, 2) = (¢ (W' X)p(Y)p(2)). (4.4)

In order to separate the effects of p, on p,, an intrinsic
two-particle density matrix is defined as

Apa(x,¥) = po(X, X, ¥, ¥) — pu(%, Y% (4.5)

The absence of intrinsic ODLRO (or just ODLRO)
in p, is defined to be the absence of ODLRO in the
intrinsic two-particle density matrix

Ap2(x’ Y) g 0, as lx - YI — 0, (46)

regardless if p; had ODLRO or not. In the case where
p1 does not have ODLRO, Eq. (4.6) reduces to

PZ(xa X,Y, Y) - 05 as IX - YI —> 0, (4'7)

which is just Yang’s definition of the absence of
ODLRO in p,. In the case where p, has ODLRO,
Eq. (4.6) reduces to

|X - yl > 00,
(4.8)

which is the nonintrinsic part of the ODLRO in p,.

The presence of intrinsic ODLRO in p, is defined to
be the same as ODLRO in the intrinsic two-particle
density matrix

pZ(xa x’ Y’ Y) - lim Pl(x, y)2’ as

AP2(X’ Y) > 0’ as (4'9)

If p; does not have ODLRO, then this definition re-
duces to
pa(X, X, y,y)+ 0, as (4.10)

which is just Yang’s definition of ODLRO in p,. In
the case where p, has ODLRO, Eq. (4.9) can be

[x — y| — oo,

|x — y| — oo,
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TasLE L. Presence or absence of off-diagonal long-range order
(ODLRO) in the one*- and twoP-particle density matrices.

. Pz No ODLRO ODLRO

1

No ODLRO pe—0 pr—>0
Ap, — 0 Apy +>0

ODLRO p+H—0 pr0
Ap, —0 Ap; 0

& p, =yl owo).
b g, =yl owt YEWE, Apg = py — p, 2, all limits being as |x — y] — oo,

rewritten as

|X - yl — O,
@.11)

pa(X, X, ¥, y) - lim py(x, y)?, as

which shows that there is some contribution to the
ODLRO in p, other than that due to p,. The four
cases discussed here are summarized in Table 1.

In order to illustrate these ideas, we can apply them
to the density matrices calculated from the canonical
transformation introduced in Sec. 2. If the devion
operator is neglected in Eq. (2.6), the field operator
becomes just the condensate wavefunction ¢. Then the
one- and two-particle density matrices defined in Eqgs.
(4.1) and (4.4) are

pi(X, ¥) = ¢*(x)p(y) (4.12)

and

pa(X, X, ¥, ¥) = ¢*(x)$*()$(y)b()-

This approximation is equivalent to the Hartree
approximation®® for the ground-state wavefunction.
In this approximation, p; has ODLRO according to
Eq. (4.3). The two-particle density matrix has ODLRO
according to Yang’s definition in Eq. (4.10), but
since the intrinsic two-particle density matrix from
Eq. (4.5) is

(4.13)

Ap, =0, (4.14)

py does not have any intrinsic ODLRO according to
Eq. (4.6).

The situation is different if the full canonical trans-
formation of Eq. (3.2) is used. The one-particle
density matrix defined in Eq. (4.1) then becomes

pi(X, Y) = $*()d(») + ) ())s

where the devion density matrix is defined in Eq.
(2.19). Equation (4.15) shows that p, has ODLRO
according to Eq. (4.3). The intrinsic two-particle

(4.15)

33 E. P. Gross, J. Math. Phys. 4, 195 (1963).
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density matrix in Eq. (4.5) becomes

Apy(x, y) = ¢*(xX)* () x (1O
+ AT )PP
+ 26* ()P ()2 ()
+ A Y
+ G (4.16)

which has ODLRO according to Eq. (4.9) if the devion
pair amplitude defined in Eq. (2.20) is not zero. In the
case where the condensate wavefunction ¢ is zero,
there is no ODLRO in p,, but there is still ODLRO in
the two-particle density matrix due to the pair ampli-
tude. In this case, which is analogous to superconduc-
tivity, there might still be a form of superfluidity due
to the presence of the pair condensate described by
the pair amplitude. In the next section the idea of
circulation quantization is considered including both
the single-particle and *“pair condensate.”

5. CIRCULATION QUANTIZATION

The quantization of circulation in He 1 was first
suggested by Onsager! in a footnote, and later de-
veloped independently by Feynman.? The condition
used was the single-valuedness® of the condensate
wavefunction ¢ and the quantum of circulation is
him. If there is also intrinsic ODLRO in the two-
particle density matrix, there would be a pair con-
densate of the type important in superconductivity
coexisting with the single-particle condensate. The
pair condensate could also undergo motion and the
circulation in it would be expected to be quantized.

The order parameter for the single-particle con-
densate is ¢, which should be single-valued. The order
parameter for the pair condensate is taken as

(xX)x(x)) = O(x),

the devion pair amplitude, which should also be
single-valued. The total effective condensate is taken
to be the two-particle amplitude

F(x) = @@px) = s(0)é(x) + O(x), (5.1)

which is related to the pair potential in Eq. (2.24).
The function V" describes both the single-particle and
the pair contribution to the condensate. It can be
treated ad hoc as a wavefunction for a pair of particles
and a velocity of the total condensate is defined as the
current divided by the density or

_h Im V*(x)V¥(x)
2m  VrO¥(x)

The factor 2m appears because the two-particle

(5.2)
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amplitude is considered. The single-particle conden-
sate can be written as

$(x) = 1$(x)] €5
and the pair condensate as
D(x) = [D(x)[ 9, (54

where S and Q are real functions. If Egs. (5.3) and
(5.4) are substituted into Eq. (5.1), the result is

qf(x) — izs(.'c)ﬂ(}s(x)P + }(I)(X)i eisz)——&S‘(w)I' (55)

When Eq. (5.5) is substituted into Eq. (5.2), the result
is, in general, complicated and the velocity is not just
the gradient of a function.

In the special cases where the pair condensate is
zero

(5.3)

|O(x)| = 0 (5.6)
or the phases are related by
O(x) = 25(x), (5.7)

Eq. (5.2) becomes
v = (%/2m)2VS. (5.8

The circulation x can be calculated, assuming that the
wavefunction is single-valued:
o= §v cdl = nh/m, (5.9)

where n is an integer. This equation is just the usual
circulation-quantization condition. Thus, in order to
obtain circulation quantization, the “pair condensate”
must be zero or it must be locked in phase with the
single-particle condensate. Therefore, when a single-.
particle condensate exists, it is not possible to have
half-integral h/m circulation.

However, in the special case where the single-
particle condensate vanishes, leaving only the pair
condensate, the velocity becomes

v = (h2m)VQ. (5.10)

Then Eq. (5.9) gives circulation quantized in units of
h{2m. This situation is analogous to superconductivity,
since only the pair condensate contributes. Since the
single-particle condensate wavefunction ¢ is usually
considered to be the order parameter for the superfluid
phase, its vanishing would mean that the system was
normal. However, a new phase with a nonvanishing
order parameter {(yy) could conceivably exist if the
interparticle potential were sufficiently attractive. In
fact, some model calculations do show such a phase.%

3¢ A. Coniglio, F. Mancini, and M. Maturi, “On the Coexistence
of Single- and Two-Particle Condensation in an Interacting Boson
Gas,” preprint, Istituto di Fisica Teorica dell’ Universita, Napoli,
Italy, 1968.
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The experimental situation regarding the half-
integral h/m circulations is not clear. The apparent
half-integral h/m circulations observed by the Vinen
method® could easily be explained by assuming a
fractional vortex line attached to the wire. If the
complete data of Whitmore and Zimmermann® is
examined, there is little evidence for half-integral
h/m. In the last hour of their runs they found stable
circulations, some of which appear to be at half-
integral A/m and which DiCastro® has considered
significant. However, these stable circulations occurred
when the surface of the helium bath was within one
centimeter of the wire, and could be shifted to a dif-
ferent value, still not an integral multiple of k/m, by
heating the wire. At integral values of 4/m this could
not be dong, so the significance of these peaks is
questionable. The experiment of Steyert et al®
definitely shows peaks at /#/2m and 3k/2m, which the
authors themselves considered significant. The experi-
ment has been repeated to obtain better statistics, and
the half-integral h/m peaks continue to persist.>® The
reason that the macroscopic particles observed should
move with the superfluid velocity is not clear, however.
There is the possibility of detecting vortices in a pair
condensate by using the method of Rayfield and Reif,*
but this method requires that the single-particle
condensate be completely depleted.

6. VORTEX LINE IN THE SINGLE-PARTICLE
CONDENSATE

The previous general arguments can be verified by a
consideration of forms of solutions admitted by Eqs.
(3.6)-(3.8). The case considered in this section is that
of a combined single-particle and pair condensate in
which there is a single vortex line.%” It is shown that the
pair condensate becomes locked into the single-
particle condensate and rotates with it. This behavior
is perhaps to be expected, since it would otherwise be
difficult to have virtual transitions from the single-
particle condensate to the pair condensate, and vice
versa. This behavior follows from the fact that Egs.
.(3.6)-(3.8) are coupled.

If there is a single vortex line present along the axis
of a cylinder, the single-particle condensate wave-
function has the time-independent form?®-3

$(X) = $(r, 0, 2) = N f(1e?, (6.1)

% §. C. Whitmore, Ph.D. thesis, University of Minnesota, 1966.

36 W. A. Steyert, private communication, 1967. He and R. D.
Taylor repeated the experiment in Footnote 8 with frozen particles of
Ne, N, air, and D,, using a laser for improved resolution in time and
space and a heat current to produce the vortices. The new results
also show half-integral 4/m circulations (unpublished).

37 A. L. Fetter, Phys. Rev. 138A, 709 (1965). His derivation is
based on Green’s functions.

3% A, L. Fetter, Phys. Rev. 140A, 452 (1965).
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in cylindrical coordinates. The number of particles is
N and fis a real function.

In order for Egs. (3.6)-(3.8) to be separable in the
cylindrical coordinates, the bogolon wavefunctions
must be of the form
i+1)8,~iEt

u(x) = thy(r)e™e (6.2)

and
ez‘kz es‘(!—l)e e——iEt.

(%) = Vpelr) (6.3)

The wavenumber in the z direction is k, and / is an
angular-momentum quantum number. If Egs. (6.2)
and (6.3) are used in Eq. (2.19) for the devion density
matrix, the result is

' (x() = Nh() = 3 oy (64)
which shows that the density in the pair condensate is
a radial function only. The devion pair amplitude
which describes the pair condensate can be obtained
by substituting Eqs. (6.2) and (6.3) into Eq. (2.20),
which gives

(()x(x)) = Ng(r)e™ = Emunm(?‘)v:m(?)eigo- (6.5)

Thus the pair condensate has the same angular
behavior as the contribution of the single-particle
condensate to the pair potential in Eq. (2.24), so the
pair potential can be factored into a radial part and an
angular part.

If Eqs. (6.1), (6.4), and (6.5) are substituted into
Eq. (3.6) for the condensate wavefunction, the
angular dependence cancels out and the equation for
the radial part is

ST EY - —a+ P+ 2h+glf=0, (6.6
when the delta function potential
Vix,y) = Vi(x —y) (6.7)

is used. Equation (6.6) is written in terms of the
dimensionless distance & = r/a, where a is the de
Broglie wavelength defined as

a= 2mNVy?, (6.8)

and the reduced chemical potential is

« = pNV. (6.9)

Equation (6.6) reduces to the usual Gross—Pitaevski
equation in cylindrical coordinates when the terms
g and h are neglected.®

The equations for the bogolon wavefunctions in
Egs. (3.7) and (3.8) under the same assumption of

3% E. P. Gross, Nuovo Cimento 20, 454 (1961).
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delta-function potential can be obtained by substi-
tuting Eqgs. (6.2) and (6.3) into them, which gives

—et =t 4+ W+ [-E(+ 1P — k4 a
—2f*—2hju— [+ gl (6.10)
and

=04 EW + [—E2( -1 -+ a

- 2f? — 2hp — [f* + glu. (6.11)
The dimensionless energy parameter € is
e = E[NV, (6.12)

where E is defined in Egs. (6.2) and (6.3), and the
dimensionless wave vector in the z direction is

x = ka.

(6.13)

The three equations for f, u, and » form a set of
coupled nonlinear differential equations which is very
difficult to solve exactly. These equations have been
investigated in the approximation that the nonlinear
terms g and £ are neglected by Pitaevski'® and Fetter.%”
Both bound-state and scattering-state solutions exist,
the lowest lying bound states occurring for / = 1.
The scattering of quasiparticles has also been in-
vestigated by Fetter,® who determined the phase
shifts and cross sections in the long wavelength limit.
The nonlinear terms are not obviously negligible,
especially if the depletion is large, and their effect
should be investigated.

7. COMPLETELY DEPLETED SINGLE-PARTICLE
CONDENSATE

In order to investigate the possible existence of
vortex lines quantized in units of h/2m, the case of
complete depletion of the single-particle condensate
is now considered. It is only in this case that the pair
condensate is not coupled to the single-particle
condensate and rotates with it. The condition that the
pair-condensate wavefunction be single-valued then
leads to the half-integral 4/m circulation quantization
condition.

Equation (3.6) has the trivial solution ¢ =0
corresponding to complete depletion of the single-
particle condensate. Equations (3.7) and (3.8) for
the bogolon wavefunction admit the solutions

u(x) = u(r)eikzei(l+£)9e—ilf:‘t (7.1)

and

o(x) = v(r) okegi-—418 ~iEt (1.2)
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The equations are then separable and the radial parts
are

—eu=u"+ &W

+ [+ —®+a—2hu—gv (1.3)
and
ew ="+ &W

+ [ - 32—+ a— 2k —gu. (14)

If these two coupled nonlinear equations have non-
trivial solutions, a new phase analogous to super-
conductivity would exist. In the absence of a vortex,
I + % is replaced by /, and the equations reduce to
those for a homogeneous boson system with com-
pletely depleted zero-momentum state.’® For the
delta function potential of Eq. (6.7) the only solutions
are the trivial ones. For other potentials, however,
nontrivial solutions may exist.3 Thus it is worthwhile
to invéstigate Eqgs. (3.7) and (3.8) for a more realistic
potential.

8. CONCLUSION

The theory developed in this paper is an extension
to inhomogeneous systems of the theories developed
for homogeneous systems which take pair correlations
into account.’® The previous theories for inhomo-
geneous systems®-37 have just been generalizations of
Bogoliubov’s original theory.!? The equations obtained
here should have applicability in systems with non-
negligible depletion and should serve as a more
realistic model of superfluid helium than the Bogoliu-
bov approximation. The effect of the nonlinear terms
in the equations is under investigation. The main
conclusion of the paper is that half-integral quanta of
circulation cannot exist unless there is complete
depletion of the single-particle condensate, leaving
only a “pair condensate.” 40
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APPENDIX: THE BOGOLON GROUND-STATE
ENERGY

The unperturbed ground-state energy Hy, in Eq.
(2.12) is given by

Hep = f dx$*(x) T(X)$(x)
+3 f f dx dy*()* IV (X, Y)(1)$(x)
+f dx<x*<x)[T(x)
+ f dy$* )V (x, y)¢(y)]x(x>>
+ f f dx dy$* (N (x, Y)Y ()x(»))

+1 j f dx dyV(x, )00 ()7 )

+ $*(x)* () xMx(x)
+ &N ()
+ G e )
+ (T ONAONCN], (A1)

where the devion density matrix and two-devion
amplitude are given in Eqgs. (2.19) and (2.20).

In the case of time-independent canonical trans-
formations, the ground-state energy can be minimized
with respect to the functions in it. Minimizing .y,
with respect to ¢*(x) gives the equation

0Hy,
0¢*(x)

where W is defined in.Eq. (2.18). Equation (A2) is a
generalized time-independent Gross-Pitaevski equa-
tion, which has coupling to the bogolon functions.
This procedure is also equivalent to setting the
“dangerous diagram” in Eq. (2.17) equal to zero.

Since there are constraints on the bogolon wave-
functions given by Egs. (2.10) and (2.11), it is necessary
to use Lagrangian multipliers and vary

= W(x) = 0, (A2)

A=Hy+ A+ B, (A3)
where
A= f dx dyA(x, y){E [u,(X)ux(y)
— XX, ¥)] — (x — y)} (A%)

and
B= f f dx dy{B(x, N3 [ (0w0)

— va(u,(y)] + c.c.}. (AS5)
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The functional derivative of A with respect to v} (x)
should be zero:

__8A
dv3(x)

- f dyU*(x, Y)va(y) + f dyA(X, Y)u(y)

- f dyA(x,¥)v,(y) + f dy[B(y,x) — B(x,y)]u.(y)-
(A6)
The functional derivative of A with respect to ), (x)
should also be zero for minimum energy, that is,
SA
" our)

=1} f dyA*x, Y)oa(y) + f AYA(Y, X oY)

+fdy[B*(x, Y — B G 0lay).  (AD)

If Eq. (A6) is multiplied by u,,(x) and integrated, Eq.
(A7) is multiplied by v,(x) and integrated, and the two

equations are added, the Lagrangian multiplier 4 can
be eliminated to yield

0= j f dx dyu (U, 7)0,(3)
+1 f f dx dyu (A, Y)i(y)
+1 f f dx dyv,(A*(X, 7)0u(Y)

+1 f f dx dy{[u,(X)BX, Y)in(y)

+ 0,(0B* X, o] — [noml).  (A8)
In order to eliminate the Lagrangian multiplier B,
it is necessary to add Eq. (A8) to itself with the indices

151

interchanged; the result is

0=14 f f dx dy{u(OU*(X, Y)0,(y)

+ (KU, Y)v,(Y) + (AR, )u(y)
+ v (DAY, Y)v,u(¥)}- (A
Equation (A9) is the same as Eq. (2.22) for A, whe
use is made of Eq. (2.23) for U. Therefore, th
variation principle leads to the same result as “con
pensating the dangerous diagrams” in lowest orde
in the time-independent case.
Equation (A9) can be satisfied if

E,in(X) = f AyU(x, Y)un(y) + f dyA*(x, Y)v,(y)

(ALC
and

—E (%) = f dyU(x, Y)ra(y) + f dyAGK, V)i (Y)-
(A11

The orthogonality condition
f X[ n(X)0n(X) — U, (o] =0 (AL2

must also be imposed if Eq. (A9) is to be satisfied. Th
E, in Eqgs. (Al10) and (All) is the bogolon energy
since Eq. (2.21) becomes

hll(n, m) = Enanma

if the additional orthonormality condition

(A13

f XU (%) — D p(EX)] = B, (Al4

is satisfied.

Thus, by minimizing the ground-state energy ii
Eq. (Al), all of the dangerous diagrams in Eq. (2.12
have been eliminated and the Hamiltonian is i
diagonal form if H,, is neglected. Equations (A10
and (All) are the same as Eqgs. (3.7) and (3.8) whe1
steadv-state solutions are used.
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By using the principle of relativity, together with the customary assumptior_ls conce;ning the nature of
the space-time manifold in special relativity, namely, space-time homogeneity and isotropy of space, a
simple but rigorous proof is given of the reciprocity relation for the relative motion of two inertial frames
of reference, which is usually assumed as a postulate in the standard derivations of the Lorentz trans-
formations without the principle of invariance of light velocity. A critical discussion is set forth of the
question of eliminating the transformations with invariant imaginary velocity, which one unavoidably
obtains together with the Lorentz transformations and the Galilean ones in adopting a procedure of this

kind.

I. INTRODUCTION

Since the appearance of the classical Einstein
paper,! in which the foundations of the theory of
relativity were first laid down, several other derivations
of the Lorentz transformations have been published
in the attempt to throw full light on the underlying
principles and to clarify both the physical content
and the mathematical implications of the latter.? In
particular, it has been shown as far back as 1911 by
Frank and Rothe® that the assumption of the exist-
ence of an invariant velocity is not necessary in order
to arrive at the correct transformation equations.
This is rather a remarkable result, since it shows that
the principle of relativity (which establishes the
equivalence of all inertial frames of reference in regard
to the description of physical phenomena) together
with the customary assumptions concerning the

1 A. Einstein, Ann. Phys. 17, 891 (1905).

2 The existing literature is very wide and rather unrelated and it
would be almost impossible to give a fairly complete summary of it.
We draw attention to the following references: (a) P. Frank and H.
Rothe, Ann. Phys. 34, 825 (1911); (b) L. A. Pars, Phil. Mag. 42, 249
(1921); (c) A. S. Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, London, 1923), Sec. 4; (d) Y. Mimura
and T. Iwatsuki, J. Sci. Hiroshima Univ. Al, 111 (1931); (e) V. V.
Narliker, Proc. Cambridge Phil. Soc. 28, 460 (1932); (f) G. J.
Whitrow, Quart. J. Math. 4, 161 (1933); (g) L. R. Gomes, Lincei
Rend. 21, 433 (1935); (h) F. Severi, Proc. Phys.-Math. Soc. Japan 18,
257 (1936); (i) E. Esclangon, Compt. Rend. 202, 708 (1936); (j) E.
Le Roy, ibid. 202, 794 (1936); (k) V. Lalan, ibid. 203, 1491 (1936);
Bull. Soc. Math. France 65, 83 (1937); (1) G. J. Whitrow and E. A.
Milne, Z. Astrophys. 15, 270 (1938); (m) G. Temple, Quart. J. Math.
9, 283 (1938); (n) H. E. Ives, Proc. Am. Phil. Soc. 95, 125 (1951);
(o) K. D. Stiegler, Compt. Rend. 234, 1250 (1952); (p) A. W. Ingle-
ton, Nature 171, 618 (1953); (q) J. Aharoni, The Special Theory of
Relativity (Oxford University Press, London, 1965), Chap. 1; (r) V.
Fock, The Theory of Space, Time and Gravitation (Pergamon Press
Ltd., London, 1959), Chap. 1 and Appendix A; (s) H. M. Schwartz,
Am. J. Phys. 30, 697 (1962); Introduction to Special Relativity
(McGraw-Hill Book Co., New York, 1968), Chap. 3; (t) E. C.
Zeeman, J. Math. Phys. §, 490 (1964); (u) R. Weinstock, Am.J. Phys.
32, 261 (1964); 33, 640 (1965); 35, 892 (1967); (v) V. Mitvalsky,
ibid. 34, 825 (1966); (w) E. Drake, ibid. 34, 899 (1966); (x) J. L.
Strecker, ibid. 35, 13 (1967); (y) L. J. Eisenberg, ibid. 35, 649 (1967);
(z) H. Almstrom, J. Phys. A (Proc. Phys. Soc.) 1, 331 (1968); (aa)
Ya. P. Terletskii, Paradoxes in the Theory of Relativity (Plenum
Press, Inc., New York,1968), Chap. 2.

nature of the space-time manifold in special relativity,
namely, its homogeneity and the isotropy of physical
space, point towards the existence of a universal
constant which has the meaning of an invariant
velocity, so that there is no need to introduce this
constant into the theory at the beginning.

Without imposing from the outset the principle of
constancy of light velocity, many of the existing
standard derivations of the Lorentz transformations
make more or less explicit use of the so called reciproc-
ity principle which, as is well known, states simply
that the velocity of an inertial frame of reference S
with respect to another inertial frame of reference S’
is the opposite of the velocity of S’ with respect to S.3

The use of this principle is not strictly necessary
to the scope, but it has the advantage of greatly
simplifying the derivation of the transformation
equations, which would otherwise require rather
lengthy calculations and the resort to nonelementary
results of the theory of Lie transformation groups.*
It appears, however, that in the existing literature no
sufficiently convincing arguments have been put
forward to justify the use of the reciprocity principle.
Indeed, it is generally assumed as a justification that
the reciprocity relation is a consequence of the
principle of relativity, whereas the latter merely
implies the invariance of the relation between direct
and reciprocal velocity.

It is the aim of the present paper to give a simple
but rigorous deduction of the reciprocity relation,
starting from the three basic postulates of the special
theory of relativity, namely, the principle of equiv-
alence of inertial frames, the homogeneity of space-
time, and the isotropy of space.®

3 See, for example, Refs. 2(h—j, q, 5, u-w, z).

4 See, for example, Refs. 2(a, k).

5 A critical analysis of the literature quoted in Footnote 2 and a
general discussion concerning the axiomatic derivation of the
extended inhomogeneous Lorentz group is the subject of a forth-
coming paper.
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Once the reciprocity relation has been established,
the transformation equations can easily be deduced,
as is well known, by making use of their group
property, which follows from the principle of rela-
tivity.® Nevertheless, it is not superfluous to present
this deduction again here, since this gives us an
opportunity to discuss critically the arguments which
have been put forward in favor of excluding the
Lorentz transformations with imaginary invariant
velocity, which one unavoidably obtains together
with the Galilei and the ordinary Lorentz transforma-
tions by following a procedure of this kind.

We confine ourselves throughout this paper to the
consideration of a two-dimensional space-time and to
transformations which conserve the space-time origin.
This implies no loss of generality, since any transforma-
tion can always be reduced to a homogeneous velocity
transformation along an axis by means of a suitable
space-time translation, together with suitable rota-
tions of the space-axes of the two observers.

II. THE RECIPROCITY RELATION

As indicated in the introduction, we start from the
following assumptions:

(i) the principle of relativity, which states the
equivalence of all inertial systems as regards the
Sformulation of the laws of nature;

(i) the homogeneity of space-time;

(iii) the isotropy of space.

We denote by x the position at which an event takes
place and by ¢ the time at which it happens, as
viewed by an inertial observer S, and by x’, ¢’ the
corresponding space-time coordinates of the same
event, as viewed by another inertial observer S’.

The homogeneity assumption comes into our
considerations in that it implies that the transforma-
tion equations which furnish x” and ¢’ as functions of
x and ¢ are linear.”

In order to prove this assertion, let us employ the
notation & for the two-vector (x,¢) and write the

8 See, for example, Refs. 2(q, s, aa).

? The question of the linearity of the transformation formulas has
long been debated in the literature [see, for example, Refs. 1, and
2(d-g, k, m, 1, s, y, aa)]. If one does not impose from the outset the
existence of an invariant velocity, then the principle of inertia, which
implies that a motion which appears uniform to an inertial observer
(x = a;t 4+ a,) must appear uniform to any other inertial observer
(x" = ajt’ + ay), is not sufficient to ensure that the transformations
are linear. To obtain this result, an additional assumption is needed;
namely, that an event of finite space-time coordinates is transformed
into an event of finite space-time coordinates. Further, one has to
require that the transformation functions be differentiable up to the
third order (compare Ref. 2r). It was Einstein (Ref. 1) who first
justified the linearity property by an appeal to space-time homo-
geneity. The argument, however, is rather obscure. Here we give a
simple proof of linearity which utilizes a formulation of the homo-
geneity principle first given by Lalan in Ref. 2k and which is
particularly appealing.
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transformation which connects S to S’ as

& =f(%). ()

Since we have decided to restrict our considerations
to transformations which conserve the space-time
origin, we should require f(0) = 0. Here, however,
this condition is dropped for the sake of generality.

The homogeneity of space-time requires that a
space-time translation T not affect the relation
between the two observers and thus leaves Eq. (1)
invariant. Denoting by 7, and T, the representations
of T relative to S and §’, respectively, we express this
property by the relation

f(T.8) = T.f(§) 2

or
“f(E+ @) =f(&) + o, 3)

where « = (a,, o), «’ = (%, , «,), and «’ depends on
fand « but not on £.
Taking & = 0in (3), we get

f(@) =f(0) + «. ©)
Substituting (4) into (3), we obtain
SE+ o) =f(&) + f(x) = f(0). &)

Subtracting f(0) from both sides and setting g(&) =
f(& — f(0), we have

g& + o) = g(&) + g(w), (6)

for arbitrary & and «. From this equation, provided
we only assume that g is continuous at the origin, we
get that

g(k&) = kg(é), @)

where k is a real number. The proof is quite standard
and is given in Appendix A.

Relations (6) and (7) state that g is linear and
homogeneous.

We thus write the relation between the pair (x, ¢)
and the pair (x', t') in the form

x" = a(®)x + b(v)t,

t' = c(v)x + d(v), 8)

where v denotes the velocity of the frame S’ with
respect to the frame S. This velocity, which we call the
direct velocity for the pair (S, S'), is given by

v = —b()a(v). €)

For the sake of simplicity, we confine ourselves in
the rest of this section to the consideration of the case
when the space axes of the two observers have the same
orientation and their times flow in the same direction,
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which implies the relations®

0x'[0x = a(v) > 0,

or'|ot = d(v) > 0, (10a)
0x/0x" = d(v)/[a(v)(d(v) + ve(v))] > 0,
dt'jot = 1/(d(v) + ve(v)) > 0. (10b)

Then, supposing that both observers use the same
unit of time and the same unit of length,® the coeffi-
cients of (8) are uniquely determined functions of v
which, by the principle of relativity, do not depend
on S.

Denoting by w the reciprocal velocity, namely, the
velocity of S with respect to S, we have

w = b(v)/d(v) = ¢(v), (1)

and our purpose then is to show that the principles of
relativity and of isotropy of space, together with some
continuity assumptions to be specified later, are
sufficient by themselves to arrive at the conclusion
that

¢) = —v. (12)

The principle of relativity implies that the set I'
of the allowed velocities of S’ relative to S does not
depend on § and that the reciprocal velocity is the
same function of the direct velocity for all pairs of
inertial systems. Hence, together with (11), we can
write

v=g(w) (13)

or
#p@) = v. (14)

Since w € I, it is clear from (13) that the range of the
function ¢ is equal to its domain I'. Then ¢ is a one-
to-one mapping of I' onto I'. Indeed, if @(a) = @(b),
we get from (14) that a = ¢(¢(@)) = ¢(e(b)) = b.

Contrary to a widely held opinion,® Eq. (14) is
the only condition imposed by the principle of rela-
tivity on the function ¢. This condition is already
strongly restrictive on the possible forms of ¢, but it
by no means alone implies relation (12). For example,
the equation

w=g(v) = —v/[l — (v/0)], (15)

which is pertinent to one of the cynematics which are
compatible with the principle of relativity,?* satisfies
relation (14) without having the form (12).

8 Note that conditions (10b) are a priori independent of (10a).

® It is easy to devise conceptual experiments by which the standards
of length and time of the two observers can be made the same.
For example, we can make sure that S and S’ use the same time
standard, if both observers assume as unit of time the mean life of a
given unstable particle measured at rest in the laboratory of each of
the two observers.

V. BERZI AND V. GORINI

It is precisely with the hope of eliminating solutions
of this kind that we resort to the principle of isotropy
of space. The main result of applying this principle
is the proof that ¢ is an odd function of v and we see
that this property, together with (14) and a physically
reasonable assumption concerning the domain of ¢
and its continuity properties, is sufficient to obtain the
result that the reciprocal velocity is given by (12).

In our case, space is one-dimensional and its
isotropy means that no one orientation along the
x axis should be considered in preference to the other.
This assertion is now made precise by stating the
isotropy principle in two equivalent forms. The first
has a more formal character and concerns the effect
that the inversion of the space axes has on the set of
transformations (8). The second one, which might be
physically more appealing, is based on simple con-
ceptual experiments of a type frequently employed in
discussions of the theory of relativity.

We state the isotropy principle in the first form by
asserting that if two frames S and S’ are connected by
a transformation (8), then the two frames S and §’
obtained from the preceding ones by inverting the
direction of the x axis are connected by a transforma-
tion of the same type. Therefore,

X = a(@®)x + b(d)f,
I'= c(@®x + d(d)7, (16)

where 7 is the velocity of §' relative to S. On the other
hand, ¥ = —x', ' = ', % = —x, f = ¢, so that

% = a()x — bv)i,

"= —c()x + d@)i, an

from which we conclude that 5 = b(v)/a(v) = —v.
Hence, I' is symmetric and, by comparison with (17),

a(—v) = a(v),

b(—-l}) = __b(v)’ (18)

e(—v) = —c(v),

d(—v) = d(v).
Then, by (11),

p(—v) = —p(v), (19)

i.e., @ is an odd function of ».
Consider now the following conceptual experi-
ments:

1. Let T be a rod at rest in S’, the end points of
which occupy the positions x; and x;. S measures the
length of T'by marking the positions x; and x, that the
end points of the rod occupy at a given time z. From
the first of the equations in (8) and, again, in (10a) we
see that the ratio between the length ! of the rod at
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rest (as measured by S') and the length / of the rod in
motion (as measured by S) is given by

I'll = a(v). 20)

2. Next, let @ be a phenomenon which takes place
at the point x and lasts from time #, to time #; as
observed by S (e.g., we may think of the life of an
unstable particle produced at rest at x at time #; and
decaying at time 7). By the second of the equations in
(10a), the same phenomenon, as observed by S,
starts at x; at time ¢, and ends at x; at time 7;, where
(x7, t;) and (x}, t,) are the transformed coordinates of
(x, 1) and (x, t,), respectively (in our example, the
particle is produced in flight at x; at time #; and then
moves to point x;, where it decays at time #;). From
the second of the equations in (8) we see that the ratio
between the durations D' and D of @ (lifetimes of the
particle) as measured by S’ and S, respectively, is
given by

D’|D = d(v). @n

3. Finally, let ® be another phenomenon which
takes place at the point x” and lasts from time 7 to
time #, as observed by S', and let (x,, #;) and (x, &)
be the transformed coordinates of (x’, ¢}) and (X', 1),
respectively. The duration of ® as measured by S
can be determined by means of the following equa-
tions:

a(v)x; + b(v)ty = a(v)x; + b(v)ty,
ti = c(v)x; + d(v)ty,
ty = c(v)x; + d(v)ty,

and, by (9) and by the second of the equations in (10b),
the ratio of the durations 5’ and D of @ as measured
by the two observers is readily seen to be

D'|D = d(v) + ve(). 23)

We state the second version of the principle of iso-
tropy of space by assuming that if » is an allowed
velocity, —v is allowed as well (hence the symmetry
of I'), and by requiring that the ratios (20), (21), and
(23) are independent of the direction of the motion of
S’ relative to S, provided that the magnitude of the
velocity remains the same, and thus are left unaltered
when v is changed to —.2° This condition implies

a(—v) = a(v),
d(—v) = d(v),
d(—v) — ve(—v) = d(v) + ve(v).

Taking into account (9), we see that relations (24) are
equivalent to relations (18), and then (19) follows.

(22)

24

10 The same requirement, as regards only the ratio (20), was
originally imposed by Frank and Rothe in their derivation of the
Lorentz transformations (cf. Ref. 2a).
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We make two further assumptions before we
derive the reciprocity relation. These are:

(a) The domain T" of the function ¢ is an interval
on the real line;

(b) ¢ is continuous on I,

In other words, it is assumed that if v, and v, are
two allowed velocities, any velocity v which is com-
prised between v, and v, is again allowed, and that the
reciprocal velocity is a continuous function of the
direct velocity. The physical plausibility of these two
conditions is obvious.

Since ¢ is a continuous one-to-one mapping of I'
onto itself and I'is connected, then, from a well-known
theorem of analysis, we can state that ¢ is either a
strictly increasing or a strictly decreasing function
of p.11

Suppose first that ¢ is strictly increasing. Let
vel'; then w = ¢(v) € I'. Assume that v < w; then
o(r) < @(w) and, by (14), w < v, which is absurd.
We can conclude in the same way v > w, so that

@(v) = v. (25)

If ¢ is supposed to be strictly decreasing, set
yp = —¢@. Then y is strictly increasing and, by (19)
and (14), satisfies p(y(v)) = v. Applying to y the same
argument as before, we obtain ¢(v) = v, i.e., Eq. (12).

The choice of Eq. (25) leads to the transformation
formulas

x" = a(v)x — va(v)t,

t' = ¢(v)x — a(v)t, (26)
while the choice of Eq. (12) leads to

x' = a()x - va(v)t,

t' = c(v)x + a(v)t. 2n

Formulas (26) are incompatible with (10). Hence,
for two observers whose space axes have the same
orientation and whose times flow in the same direction,
(12) must necessarily hold and the transformation
formulas are given by (27).

Our task of proving the reciprocity relation has thus
been completed.

IIL. EXPLICIT FORM OF THE TRANSFORMA-
TION EQUATIONS

Formulas (27) contain the two as yet undetermined
functions a{v) and ¢(v). However, it is seen at once
that ¢(v) can be expressed in terms of v and a(v).

1 See, for example, J. Dieudonné, Foundations of Modern Analysis
(Academic Press Inc., New York, 1960), Theorem 4.2.2. For the
reader’sconvenience the proof is given with some detail in Appen-
dix B.
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Indeed, consider the inverse transformations

x = A (w)a(v)x’ + A owa(v)t',
t = —A1()c)x + Aa@)’,  (28)
where

A(v) = a(wXa(v) + ve(v)}.

By the reciprocity relation, (28) can also be written in
the form

(29)

x = a(—v)x" + va(—0v)t’,

t = c(—v)x" + a(—v)t’, 30)
whereby, using (18),
a(v) = 1{(a(v) + ve()),
so that
c) = (1/p){a () — alv)}.
Then the transformations (27) read
x" = a(@)x — va(v)t,
t" = (1/o){a{v) — a(v)}x + a{v)L. 31

To interpret (26) we procecd as above, by using (25)

( a(v) —va(v)) ( a(v’)
(1/oXa (@) — a@)  a) /\(/'Na (V') = a(v'))

a(@a(v’) — @[v)a(ha™ (') — a("))

V. BERZI AND V. GORINI

instead of (12), and obtain

x' = a(v)t — va(v)t,

t'= —[(/o}{a(v) — a@)}x + a@y].  (32)
Hence, (26) is obtained from (27) by an inversion of
the time of S”, and this explains why (26) corresponds
to the choice ¢(v) = v.

The transformation formulas, which connect S to

an observer obtained from S’ by inverting the orienta-
tion of the space-axis, are

x' = —[a(v)x — va(v)t],
t'= (lo}{a(v) — a(¥)}x + alv),  (33)
whereas if S’ is subjected to both a space and a time
inversion, then
x' = —[a(v)x — va(v)t],
1= —[(1/o){a*(v) — a(@®)}x + a(v)t]. (34
It is the essence of the principle of relativity that the
set of all transformations (31)-(34), as v varies in I',
forms a group £. From this property one can derive

the explicit form of a(v). In fact, let us compose two
transformations of type (31), such that

N ((a(v’)/v)(a“‘(v) — a®) + @)W ') — a(®))  a@)a(@’) = (' [v)a@ Na(v) — a(v))

= A({p, v').

The resulting transformation must be of one of the
four types (31)-(34) for some relative velocity v”.
Howevér, since the determinant of transformations
(31) and (34) is +1, whereas the determinant of
transformations (32) and (33) is —1, then types (32)
and (33) must be ruled out.

Since the diagonal elements of the matrices of both
transformations (31) and (34) are equal, we must
have

a@)a(v’) — (/v )a(Na (V') ~ a(¥"))
= a(@)a(®’) — (' [v)a(®'Wa () — a(v)),
ie.,

(1/){1 — a2()} = (I'3){l — a (")},

whence

(36)

(/o)1 — a*(v)} = K, (37

where K is a universal constant having the dimensions
of an inverse-square velocity. Then, since a(v) is
positive,

a(®) = 1/(1 — Kv?)?. (38)
The composite velocity »” is the negative ratio be-
tween the second and the first element of the matrix

—v'a(v)
a(v’) )
— (v + v)a(@)alv") )
(35)
A, v'):
v = (v + )/l — (/v }a2(') — 1}]
= (v + )/ + Kvv'). 39)

Three cases are to be considered:
(A)K > 0.Setc = (K)~¥ and formulas (31) become

X o= (1 = ] x ~ pll — @Ay,
t'= —{@/A[l — @] Hx + [1 — e,
(40)
and v varies in the domain I' = (—¢, ¢). Equations

(40) are the ordinary proper orthochronous Lorentz
transformations.

(B) K = 0. Formulas (31) become
X = x — v,
t'=1t, “h
and v varies in the domain I’ = (~ o0, + ). These
are the Galilean transformations.
(C) K<0. Set ¢ = (—K)? and formulas (31)
become
= [1+ @) Ex — @[l + ey,
¢ = {@l[ + @A Hx + (1 + e,
(42)
and v varies in the domain I' = (—~ o0, + o0).
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Set x! = x, x* = ¢, and tga = vfc (—7[2 < a <
m/[2), and (42) becomes

x'l = (cos a)x! — (sin a)x?,

x'0 = (sin a)x* + (cos a)x°. (43)

Hence, in contrast to the Lorentz transformations (40),
which, as is well known, are hyperbolic rotations in
the plane (x,t), transformations (42) are ordinary
circular rotations. Since « is confined to the interval
(—m[2, m[2), it is clear that they do not form a group.
If we let « vary from —m/2 to 37/2, so as to obtain the
full group, we can easily see that we are led to intro-
duce also the transformations

¥ = —([ + YAl bx — [l + @),
t =~ + A Hx + [1 + @#ed)] ),
(44)

which are obtained from (42) by inverting both the
space and the time axis of S’

The rotation group (43) translates into mathematical
form a complete isotropy of space-time, so that the
two directions in time are completely equivalent as
well as the two directions in space. On the other hand,
if one believes that there is an intrinsic arrow in the
direction of flow of time, so that time reversal is
regarded as a purely mathematical operation which
cannot be physically realized, one obtains a strong
argument to rule out the transformations (42). Close
to this argument is the one set forth by Lalan,® who
postulates that if two events take place at the same
point in space with respect to a given observer, their
time order must be the same for all observers. Alterna-
tively, we could postulate that the relation which
states that the space axes have the same orientations
and that the times flow in the same direction is
transitive, which amounts to assuming that the set of
proper orthochronous transformations (31) is by itself
a group.

Two other curious features of transformations (43)
can be read out in the formula of composition of
velocities (39) which, in the present case, has the form

" = (v + )1 — (v'[c?)]. (45)

First, by composing two finite velocities v and v” such
that vo’ = ¢%, one obtains an infinite velocity v”.
Second, by composing two positive velocities v and
v' such that vv” > ¢%, one obtains a negative velocity
v". Some authors®™" use these properties as an
argument to exclude transformations (42). In our
opinion, however, an argument of this kind is not so
convincing as the preceding ones in such a general
context, because there are not sufficient reasons of
principle to exclude the appearance of phenomena such
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as those described above. Besides, it is to be noted
that peculiarities of this type also appear in the
Lorentz case, for which (39) reads

" = (v + )/l + (/D). (46)

Indeed, if, following some recent ideas,!? one con-
jectures the existence of faster-than-light particles
{(tachyons) and interprets (46) as the transformation
formula for the tachyon velocity (v° = particle
velocity as measured by S'; v” = particle velocity as
measured by S), it is easily seen that, fixing v very small
and negative, we can transform a very large, greater
than ¢, and positive v’ into a very large, greater than
¢, and negative v”. Further, there always exists a
reference frame relative to which a tachyon propagates
instantaneously. These features are just as curious as
those which have been discussed above in connection
with formula (45). Notwithstanding, this has not
prevented some authors from considering the possi-
bility that faster-than-light particles really exist, on the
grounds that the usual objections to such particles are
ultimately found to be unconvincing when subjected
to critical analysis.

Once we agree to reject formulas (42), we are left
with the problem of the choice between the Lorentz
transformations (40) and the Galilean transformations
(41). As is well known, the Lorentz transformations
admit one and only one invariant velocity which is
equal to c. In the limit when this velocity is taken to
be infinite, one obtains the Galilean transformations.
Hence the above problem of choice can be solved
only by experience and involves the search for an
invariant velocity in nature. The experimental
evidence for the existence of signals which travel with
a finite invariant velocity (such as the electromagnetic
waves in vacuo) leads us to rule out the Galilean
transformations in favor of the Lorentz ones. In
these, of course, the numerical value to be assigned
to ¢ is the experimentally measured value of this
invariant velocity, namely, the value of the velocity
of propagation of electromagnetic disturbances in
empty space.

Formally, the rotation transformations (42) corre-
spond instead to the appearance of an invariant
imaginary velocity ¢. This is expressed by the property
that they are the linear transformations which
conserve the positive-definite quadratic form x? +
c?t?, while the Lorentz transformations are those
which conserve the indefinite form x2 — ¢22. In a

12 0. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan,
Am. J. Phys. 30, 718 (1962); S. Tanaka, Progr. Theoret. Phys.
(Kyoto) 24, 171 (1960); G. Feinberg, Phys. Rev. 159, 1089 (1967),
and unpublished; R. Newton, Phys. Rev. 162, 1274 (1967); M. E.
Arons and E. C. G. Sudarshan, ibid. 173, 1622 (1968).
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four-dimensional space-time the corresponding con-
served forms are x® 4 y? 4 2% + %% and x* + )% +
2% — ¢%2 and the appropriate groups are the orthog-
onal group in four dimensions O(4) and the Lorentz
group O(3,1). The characteristic of O(4), that a
transformation containing both space reflection and
time inversion can be joined continuously to the
identity, corresponds to the topological property that,
while O(3, 1) has four connected components, O(4)
has only two.
IV. CONCLUSION

By making use of the principle of relativity and of
the isotropy of space, we have deduced in a simple
but rigorous way the reciprocity relation for the
relative motion of two inertial reference frames, which
is usually assumed as a postulate in the standard
derivations of the Lorentz transformations without
the principle of invariance of light velocity. For
completeness we have then given the usual deduction
of the transformation equations by using their group
property. We have put forward some alternative
arguments to rule out the transformations with
invariant imaginary velocity. From a logical viewpoint
these arguments might seem more appealing than
those previously given by other authors.

APPENDIX A
Let g be a mapping of R™ into itself such that
g+ 8 = g(&) + gD

Ifnis a positive integer, we get by induction, from (A1),
that

(A1)

g(n&) = ng(é). (A2)

As g(0) =0, g(—&) = —g(&), so that (A2) holds
equally well for n any integer.
Next, for any rational r = m/n, set m& = nz. Then

mg(&) = g(mé) = g(nn) = ng(n)
and thus
g(ré&) = rg(8).

Assume now that g is continuous at the origin. This
property, together with (Al), implies that g is con-
tinuous everywhere. Then, let k& be any real number
and {k,} be a sequence of rationals which converges
to k. So

(A3)

k,E——ké&
and, by continuity,

But
gk, &) = k,g(8) — kg(§),

V. BERZI AND V. GORINI

so that
g(k&) = kg(8). (Ad)

(A1) and (A4) state that g is an.endomorphism of
the vector space R”.

APPENDIX B

We recall the following two results of general
topology [cf. Ref. (11), Theorems 3.19.7 and 3.19.1].

Proposition 1: The continuous image of a connected
topological space is connected.

Proposition 2: A necessary and sufficient condition
for a subset A of the real line to be connected is that
A is an interval.

In the following, if s and ¢t are any two real numbers,
[s, ¢] will denote the closed interval {x:s < x < t}, if
s < t, and the closed interval {x:t < x < s}, if t < 5.

In order to prove that the mapping ¢ is strictly
monotone, consider two fixed points p and ¢ of T'
such that p < q. Since ¢ is one to one, we can exclude
@(p) = p(q) and suppose, for instance, that @(p) <
@(q). Let r be any other point of I', r # p, r # q.
We prove

r<p=g¢(r) < o(p), (Bla)

p <r=g(p) < g), (B1b)
and

r<q=g(r) < ¢, (B2a)

g <r= gl < ). (B2b)

Indeed, let, for example, p < r. We have ¢(r) # ¢(p),
as implied by ¢ being one to one, and suppose it to be
o(r) < @(p). Since ¢ is continuous, by propositions
1 and 2, ¢([r, q]) is an interval, so that ¢({r,q]) =
[¢(r), p(9)], whereby ¢(p) € @([r, g]) because @(r) <
®(p) < @(g). Then there is a p’ € [r,q] such that
@(p") = @(p), and this is incompatible with ¢ being
one to one because p’ # p, as implied by p <r,
p < q. (Bib) is thus proved.

(Bla), (B2a), and (B2b) are proved in a similar way.

Let now y and y’ be any two points of I’ with y < y'.
Choose s such that y <s < )’. Three cases are
possible: s = p, s < p, and p < s. In the first case,
apply (Bla) and (Blb) to get ¢(y) < ¢(3'). In the
second case, (Bla) implies ¢(s) < ¢(p) and we can
again apply (Bla) and (Blb) with s in place of p to
obtain @(y) < ¢(y'). In the last case, (Blb) gives
o(p) < @(s), and use of (B2a) and (B2b) with s in
place of ¢ gives again ¢(y) < @(y'). Hence y < y' =
o(») < (3"), and ¢ is strictly increasing. One can
show in the same way that the alternative ¢(q) < @(p)
implies that ¢ is strictly decreasing.
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The equal-time limits of some current commutators are studied in perturbation theory. Although
the orthodox equal-time limit does not exist as a distribution, a Schwinger term may be defined as a
pseudolimit—a continuous linear functional on a proper subspace of 8(R®). The results are compared with
those obtained from alternative approaches. Simple examples are given to explain why these methods

give incorrect results for the cases we consider.

1. INTRODUCTION

A number of authors'? have calculated current
commutators and Schwinger terms directly in space-
time without using spectral representations or Fourier
transformations.?

In case of lowest-order (scalar or spinor) quantum
electrodynamics, such calculations are equivalent
(see the Appendix) to defining equal-time pseudo-
limits [i.e., limits defined only on a proper subspace
of the Schwartz space S(R®)] of products of free-field
Green’s functions. These cases are of considerable
interest for (i) they contain the most singular
Schwinger terms known, (ii) the mathematics may
be made perfectly rigorous, and (iii) they thus
provide stringent testing grounds for various
methods of calculation.

The purpose of this paper is to study these examples
in detail—we study the precise mechanism by which
various methods of calculation succeed or fail in
giving correct Schwinger terms. It should be noted
that there exist examples in which the equal-time
limiting process does not commute with a spatial
limiting process used to define the currents.® We thus
contribute to an understanding of the conditions
under which each method may be appropriately used.
We now outline the contents of the following sections.

In Sec. 2 we describe a simple and correct method of
calculation based on expressing the Green’s functions

* Part of work to be submitted in partial fulfillment of require-
ments for Ph.D. degree.

1 National Science Foundation Pre-doctoral Fellow.

1 J. Schwinger, Phys. Rev. Letters 3, 296 (1959).

2 R. A. Brandt, Phys. Rev. 166, 1795 (1968).

3 Closely related work includes the following: T. Nagylaki, Phys.
Rev. 158, 1534 (1967); B. Hamprecht, Nuovo Cimento 50A, 449
(1967); K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto)
Suppl. 38, 74 (1966); J. Langerholc, Deutsches Elektron-Synchro-
tron, Hamburg, Report No. 66/24, 1966; J. C. Polkinghorne, Nuovo
Cimento 52A, 351 (1967); B. Schroer and P. Stichel, Commun. Math.
Phys. 8, 8 (1968); and U. Vdlkel and A. H. Vélkel, Commun.
Math. Phys. 7, 3 (1968).

% R. A. Brandt, J. Sucher, and C. H. Woo, Phys. Rev. Letters 19,
801 (1967).

as limits of a parameterized family of continuous
functions, multiplying these functions, and taking
the limits (as distributions) of the products. This is
done for all nonzero values of the time (a calculation
which does not appear to have been carried out
previously®). One then takes the equal-time pseudo-
limit to obtain Schwinger terms.

In Sec. 3A we study various previous methods,
generalizing them to work for nonzero times. Among
others, we study the method of Brandt,? which works
in a great number of problems. However, as he points
out, it gives the wrong coefficient for the c-number
Schwinger term in spinor quantum electrodynamics.
(Once this is fixed, the method works to all orders in
perturbation theory.) We find a simple explanation
for the necessity of taking symmetric averages when
using these methods.

In Sec. 3B we search for a quick and easy short-cut
method of calculation—in the spirit of previous
efforts, we try to apply each method directly at equal
times. All our attempts fail to give correct coefficients.
We try to make this “understandable” with the help
of simple examples.

Section 4 contains a few concluding remarks and
observations.

2. THE *{¢> METHOD
A. t # 0 Calculations

To order €2 in scalar electrodynamics one finds
formally (see the Appendix)

Cav() = O] [j,(3%), j(—$0)] |0)
= 2¢3[A (x; m)A, (x; m)
—A_(x;m)A_(x; m)
- A+,uv(x; m)A+(x; m)
+ A (x; mA_,(x; m)]. 2.1)
5 There is more information than we use here. We show elsewhere

how such information can be derived in a more general context from
spectral representations and used to derive sum rules.
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TaBLE I. #5720 light-cone singularities of products of A’s. Where &, , k,, and & form a right-handed orthogonal triad, d., =d, tids,
and Q; denote the spherical angular coordinates (6, ¢) in a system with polar axis (6 = 0) along k and ¢ = 0 along k,. The param-
eter s is defined by s = (r + |¢])-.

(A, A, — A_A)(x;0) = —i(sign £)(32m%r3)~Y[2s — d,}5(r — |1])
(ALA e — AA_)(x;0) = —i(320%r3) " (4n[3) Y QIr(s® + sd, — 34d}) + (2s® — sd? + B)dI(r — 1)
By — AL A D(x; 0) = —i(32n%r%) Y4n 3 YI(Q)Ir(s® + sd.f — 3d?) + R — (1))
Ay — ALA_X;0) = Fi(32a3r) Br/3 YEUQr(s® + sd, — 3d]) + B — 1))
A s — A e )(x;0) = Filsign )32t 1(8n/3) YEUQI3r2(2s — d,) + 4r-X(s* — sd, + d?)

+ (2% 4 5d} — (Hd)I(r — |e))

(AB ey — DA i )(x;0) = F(sign HG2mr) (H)én/SP Y (QB3r—(2s — d,) + 4r2(s72 ~ sd, + 4d})

+ (25% + sd? — (B — |t])

F isign )(32m*r?) M Br2(s® — sd, + ¥]) + @s* + sdf — (DA — [¢))
(AA L — AA_u)(x; 0) = £i(32n°r )7 Bm/D} YEUQWI(sE + sd, — 3d}) + 25® — sd} + (HA)P(r — 1))

The analogous expression in spinor electrodynamics is
Chx) = (011, (), Ju(—$2))10)
= 4eo{(22,8) — 28 AL (s A, (x;m)
— A (x; mA_(x; m)]
+ m?g,[A (x; m)A,(x; m)

— A_(x; m)A_(x; m)]}, (2.2)
where, e.g.,
C o) = FrSL2 _ 2 "
A(x;m) = 2y fe o(k* — m®»0(k,) d*k,
A, = -—a—Ai(x; m). (2.3)
o ox*

The immediate task is to carry out the indicated
multiplications of A_A_ , utilizing only the space-time
representations of these distributions.
Let ¢ = x, and r = (x2)?. Then,
A (x;0) =limA (x; 0; ¢),

€0,

where

—1 1 1
A (x;0;¢) = .
(¥3:0:¢) (8w2r) (r + i + r — |t| £ iesign t)
(2.4)

These are distributions on S(R*) which may also be
considered as t-parameterized distributions on S(R®);
we adopt the latter interpretation. Now, since the
derivative of a limit of distributions is always the limit
of the differentiated distributions, we have

0,0.(x; 0) =limA, ,(x;0,¢)
€—+0,

for any distribution-theoretic derivative 0,. These
differentiated A, distributions may be considered as
t-parameterized distributions [on S(R®)] for every
nonzero value of ¢, which interpretation we again
follow.

For each fixed nonzero value of ¢, let us define the
products

(AL AL p(x;0) = 111(1]1 AL (x;050)A, 4(x;05€)) (2.5)

and the analogous products of A_ A_ ;. (The limits
do not exist when one tries to define A, A_ similarly.®)

The relevant limits may be evaluated by means of
the relation

. 1 1 —27i (—0\"!

lim — :l = (—) d(u)
e»o, L(u + ie)"  (u — ie)" (n — 1)\ du

(2.6)
and are listed in Table I, which, together with Egs.
(2.1) and (2.2), completely specifies the highest
(¢ # 0) light-cone singularities of CJ,(x) and Cfv(x).
We need but take the £ — 0 limits to obtain Schwinger
terms.

B. t > 0 Limits and Schwinger Terms

For ¢ # 0, the products of A’s are distributions on
S(R?); because of the presence of inverse powers of
(r + |t]), they have no corresponding distribution
limit as ¢ approaches zero. However, if we restrict
attention to testing functions which vanish at least as
rapidly as r® at the origin, then, on this proper sub-
space 83 = S(R?), the limit does exist as a continuous
linear functional. Let us denote this (pseudo-) limit

¢ The one-dimensional analog is 1/(x + ie).

. 1 n
lim ( )
e—0, \x + ie

does exist as a distribution for each n. However, since x~2 is not
locally integrable at x = 0,

w (Fal==)
lim
e_.0+x+ie x — i€,

does not exist as a distribution.




CURRENT COMMUTATORS AND SCHWINGER TERMS

by lim|s; the bar and subscript specify the subspace on
which the limit is defined.
A typical term entering in Cy is

Y(Q)8(r — |t

i
(4—”) 1) @2.7)
3 r°(r + 1)
where Y7 denote spherical harmonics, e.g.,
Yi(Q) = (3/477)% cos 0.

Acting on an arbitrary testing function w (which we
express in spherical harmonics),

Z wi, m(r)Ym*(Qk) = Z Wa,i,m! Ym (€2),
(2.8)

w(x) =

we have, for ¢t # 0,

=[x dr(4_ﬂ)% W) YHQ)E(r — It 4O

0 3 °(r + 1t))®

4m\* wy,ollt) 29
_(3) R @2

where in this notation, the term in square brackets
is a distribution acting on the testing function in
parentheses immediately to its right. To calculate
lim|s, consider only testing functions w(x) for which
the coefficients w,, ; ,, vanish for n < 3. Thus,

(e
=1

i (5] C24) (5o

_ [— 2 Vzé(x)}(w), (2.10)

0 0x,

which is to say

(R -G
(2.11)

lim

=0

(where V2 denotes the Laplacian operator).
Evaluating the remaining terms in similar fashion,
we find, for example,

lim (A+,0A+,k - A—,OA—,k)(X; 0
10413
= }lim (A+ ol — A A )(x;0)
t—»oi

V28(x). (2.12)

9623,,

Combining these limits with expressions (2.1) and
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(2.2), we obtain the Schwinger terms
lim | Cl(x) = ihm C(,k(x) 2 9 — V2(x).
t—0, 13 0x;
(2.13)

This result agrees with the value for C}, obtained by
Brandt using spectral functions.?

For all other Lorentz indices, C,, is antisymmetric
in ¢, and lim|; C,,, is zero on §;. For example,

Co(x) ~ 12 (a%)aé(r) —0,

(2.14)

where the last equality holds because 8(R®) contains no
spherically symmetric function going as r* for k odd. [r
itself is not an element of S(R3). On a suitably enlarged
space of testing functions the limits are different and
nonzero.] This situation naturally reverses with each
new time derivative.

Thus consider dC,,(x)/dx,: The (0, k) components
are antisymmetric in # and have zero limits on §,; the
(0, 0) and (k, k') components are symmetric in ¢ and
have nonzero limits as continuous linear functionals
on 8, < S(R3).

Co(x) = — lim
3 t—0_

lim
t-0,

3

3. OTHER METHODS AND DISTRIBUTIONS

Let us try to obtain the same results by manipu-
lating with the Green’s functions A and A, rather
than A_ . To do this, one may use relations such as

A.A —AA)=(, +A)A, —A) =—iAA,.

Equivalently, in calculating the commutators of
currents from their definitions in terms of fields,
rather than just writing [AB, CD] = ABCD — CDAB
as in the Appendix, one may use commutator identi-
ties to obtain products of commutators and anti-
commutators of free fields, i.e., A and A,. (We have
already noted that the product A,A_ appears unde-
finable, but we may hope that the implicit use of
the equation A,A_ — A_A, =0 will not lead to
difficulties.)

There remains the problem of multiplying distribu-
tions which have overlapping singularities. A possible
approach is to displace one distribution from the
other, so that the singularity supports are not so
strongly overlapping. Then one multiplies the rela-
tively displaced pair of distributions and calculates
the limit as the displacement approaches zero.

As Figs. 1 and 2 indicate, the geometry is generally
unfavorable for such methods; there is no real vector
displacement which will make two light cones disjoint.
Moreover, as the displacement shrinks, the region of
difficulty approaches the origin, the very point with



Fic. 1. Two light
cones, displaced by a
purely spacelike vector,
& = (0, €). They intersect
in a three-dimensional
hyperboloid. At fixed x,,
the singular surfaces are
pairs of spheres, each of
radius |x,|. (See also Fig.
3.

which we are ultimately concerned. Finally, except for
a purely timelike displacement, the geometry becomes
rather complicated and computation becomes diffi-
cult. In fact, the real-displacement method was
intended only for use on the ¢ = 0 plane. Neverthe-
less, we try these methods for ¢ # 0, for, as we have
seen, the 7 % 0 answer is a simple distribution, not
merely a linear functional on a proper subspace of
S(R®). These methods, if they are to work at all,
would certainly be expected to work for ¢ # 0, and
any subtleties required to make them work should be
more comprehensible for ¢ # 0. If subtleties are dis-
covered for ¢z 0, they may then be taken into
account in a ¢ = 0 calculation.

A. Real Vector Displacements

1. Purely Spatial Vector Displacement; t # 0
Calculation of A(x; 0)A(x;0)

This method is closely related to the limiting pro-
cedures of Brandt.? In order to multiply A(x; 0) and
Ay(x;0), we consider first the displaced product
Ai(x + &; 0)A(x; 0) and then let £ = (0, §) approach
zero. [The answer we are looking for is

(A, (x; 0)A, (x;0) — A_(x; 0)A_(x; 0)

as previously defined.]
With variables as before, letting P denote the
Cauchy principal part,

A(x; 0) = (sf—w%‘—) @ — 1), 3.1)

1 1 1
A(x;0) = + P( ) 3.2
0= e T e —m) ¢
The following fact is also useful: If {T,} is a bounded
family of distributions and, for each a, w, is a testing
function locally on U, (supp 7,) and w,—w (a
testing function) and T, — T (a distribution), then

Fic. 2. Two light
cones, displaced by a
purely timelike vector,
& = (% 0). They intersect
in a three-dimensional
sphere of radius § |&,| at
At other
values of x,, the singular
surfaces are concentric
spheres.

xo= —4&.
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Fig. 3. Coordinate system
used in Sec. 3A.

! 6
T,(w,) — T(w). The statement remains valid on
replacing “distribution” by “continuous linear func-
tional on a subspace of testing functions to which all
w belong.”
Now let Ay(x + £;0)A(x;0) act on a testing
function w(x) at fixed ¢ = x, > |E|. The natural

coordinate system is spherical, with polar axis aligned
with & (see Fig. 3). A part of the product is given by’

["-16(’ - M)(Ix n EI)P(lx n IEI -

~ % fde(ltl, Q)

t)](w(” )

1
p . (33
g ([1 + 2(81/1) cos 6 + [§[*/]} — 1) G

Since the denominator of the latter integrand blows
up independently of 6 (3 7/2) as § — 0, the expression

lim Ay(x + &; 0)A(x; 0)

E-0
is meaningless for fixed ¢ # 0. Suppose one averages
over +¢& before letting § — 0. Then one finds that

the principal part contributes zero and (letting
Av_ denote this average)

lim (Av.g Ay(x + E; 0)A(x; 0) = @'glﬂz)‘sl__%i) _
1§]-0
(3.4)

This is the wrong answer for A}A, since (in contrast
to the first entry in Table I) it contains no derivative
of 8(r — |¢).

Alx + $6; 0)A(x — 3£;0)
behaves differently. We find
lim Av,, [A(x + 35 0)A,(x — 4E; 0)]

o or—1i)_ 12
r—|t
=———"— == (r — |t|).
2P 20r (r = 111
This does give the correct answer as in Table I. Thus,
A(x; 0)A,(x; 0)

=‘1§ilm0Avi§ [Ay(x + 3&; 0)A(x — }£;0)]
¢|gmoAV*5 [Ax + &; 0)A(x)].

(3.5)

(3.6)

? We have used the fact mentioned in the preceding paragraph to
replace |x + g~ by +~L.
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Later, when we work with ¢ = 0 directly, we will
recall this distinction and attempt to use the former
expression.

Here is a culprit to answer for these subtle com-
plications: In the expression

A (x) + A IA() — A

the A,A_ terms cancel upon replacing x by x + &
and y by x — & and then averaging over ££. Terms
involving the dangerous expression A, A_ remain
unless the averaging is performed.

At this point we leave the ¢ # 0 real spatial-
displacement method—when spatial derivatives are
present, geometric problems make it difficult to
proceed.

2. Purely Timelike Displacements; t # 0
Calculations of A,(x; 0)A(x; 0)

In strict analogy with the spatial limiting process,
one may consider the expression A(x + &; 0)A,(x; 0)
for &£ = (&°, 0). At fixed ¢ # 0, the singularity surfaces
are concentric spheres (see Fig. 3). The results are
strictly analogous to the spatial limiting results. We
find that

A(x; 0)A(x; 0)

= lim Avus [A(x + 3% 0AG: — 469)]

#lgglrnoAVig" [Ayx + &50A0; 0. (3.7)
As above, we attribute the inequality to the undefined
nature of A A_.

Happily, the geometry is not complicated and we
may attempt to multiply derivatives of these distri-
butions using real time-like displacements. Upon
doing so, we uncover apparently insurmountable new
difficulties. These occur simply because there are too
many inverse powers of (r — [t|) for a symmetric
averaging to remove—the limit, even after averaging,
does not exist as a distribution.

B. Calculations Directly at x, =0

It would be very nice to be able to obtain the
Schwinger terms of Eq. (2.14) by an easier method,
such as using the canonical commutation relations
for fields. In searching for a method, we take the
t — 0 limits of A, A, A,, and their derivatives, then
multiply them. This is purely experimental; there is
no a priori reason to expect the results to agree with
(2.14). (Neither will there be an a posteriori reason—
the results do not agree.) Similar phenomena have
been noted by Brandt, Sucher, and Woo.2

1529

Recalling (3.6), we calculate®

lim | Av { [nm Ag(x + 3E; O)J [lim Avs(x — 3E; 0)]},
[&1~0]s t+0 -0
where
lim A o(x; 0) = —d(x)
and e
. 9 1
HmA (x;0)= —— ——, for r0. (3.8
t~0 0x, 27°r?

Let w(x) = w(r, () be a testing function in §; = S(R?).
Then,

(ISR
= I:; !gxlloAv 6():)I EI ][W(x 16)]
_i lmAVZEkW(_%g)
27% |gi-o0 I
I O
- [240772 2, 6(x)}(w)' 49
Similarly,
. 0 o(x + 36 1 —1 V2
A e 20 (x— 3O 48077 8xk vo0o-
(3.10)

These answers are incorrect by factors of five—that is,
they give Schwinger terms with coefficients only one
tenth of the correct value for the spinor case and three
tenths the correct value in the scalar case.?

Analogous results are obtained when one simply
sets =0 then ¢=0 in the “/¢” method. An
example may clarify the mechanism by which the
“ie” method breaks down when one sets =0
formally. Consider the r-parameterized distribution
r=2(r + [t])~"6(¢ — |t[). Letting this act on the space
8, of testing functions which fall as rapidly as r™ at
the origin, we find

o(r — It)
t-oxln (r + |t))"r?

On the other hand, if we just set r =0, divide
w€eS, < S(R% by r", and define r~"*24(r) as a
bounded linear functional on §,, by

[~ 25(r)]],, () = (0/r™)(0),

_(=po

n!r® or

8.  (3.11)

(3.12)

8 Here the average is taken over all angles. When the limit is
taken without averaging, the answer varies in the interval (0, ;)
times the correct answer in the spinor case [correspondingly in the

interval (0, %) in the scalar case], depending on the direction of é
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then we obtain

_ —)* 9" é(r
03], (@) = SL LD ) (1)
n! orr
which differs from (3.11) by a factor of (})".

If one considers a real-displacement method
augmented with the “/¢” method, then the correct
order of limiting is

lim (lim lim)
=0 \e-0 E0
and the limits must be taken in precisely the order
given.
6. CONCLUDING REMARKS

When a matrix element of a current commutator
C,,(x) may be written as a sum of products of two
distributions, such that in each (i) one factor is
locally a testing function at the origin and (ii) the
other factor has a well-defined equal-time limit, then
the equal-time limit of C,,(x) does exist and may be
taken either before or after various spatial limits used
in defining currents are taken.

However, in the examples we have studied, con-
dition (ii) is violated. Under these circumstances, we
have seen that (a) the equal-time limit of C,,(x) does
not exist as a distribution (but does exist as a suitably
defined pseudolimit) and (b) it is not generally
permissible to change orders of taking limits.

These examples are sufficiently simple and trans-
parent and reasonably realistic, so that one may
regard the phenomena under consideration as

understood.®
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APPENDIX A

In scalar electrodynamics, it is convenient to use
the independent Hermitian fields ¢, and ¢,, defined

by
() =arloe ()
o) @i il\g)
In terms of these, the current j, = ie, :¢+(d—; - (Z,)t/):
may be written

Ju = e 1(X)Pau(x) — b1, (X)$o(x)).

(The advantage of using ¢, and ¢, is the absence of
normal-order symbols in the latter expression.)

To calculate formally the commutator of two
currents, we write, for example,

[($1(x)$2,u(x)); ($:1(3) b2, (1))
= $1(0)P2,u(X)$:(1) P2, (¥) — $1(3) B0, (V) br(X) B2,u(x)

= ¢1(x)¢1(J’)¢2,y(x)¢2,u(Y) - ¢’1()’)¢1(x)¢2.v(y)¢2,u(x)~
(A3)

(The latter equality holds because independent free
scalar fields commute.) Similarly, expanding the
other terms and noting that the only state connected
to the vacuum by both ¢,¢, and ¢.¢, is the vacuum,
we obtain Eq. (2.1).

It is amusing that in the spinor case the analogous
fields are ¢, and y,, defined by

(- 0
v @y 1\
where y? = fla,. These are independent in the sense
that

(A1)

(A2)

(Ad)

(0] $i(x)¥3(») 10) = 0 = (0] y5(x)%i(y) [0).
In terms of them, the current j, = ¢:9y,»: may be
written

Ju = evy’v, . (AS)

With these, one may proceed to calculate the current
commutators just as in the scalar case. Equation (2.2)
is the answer.
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The partition function and critical equations for the generalized triangular Ising lattice are determined
in terms of weight factors associated with the decorating lattice. As an example, a lattice which incorpo-
rates the Kagome, hexagonal, triangular, and rectangular lattices is solved by the method developed.

1. INTRODUCTION

Since the calculation of the partition function of
the rectangular Ising lattice by Onsager,’ many other
two-dimensional Ising lattices have been solved.?
Use of the combinatorial method involves the counting
of closed polygons with a weight factor which can be
drawn on the lattice. Hurst and Green?® have shown
how a'Pfaffian can be used directly to perform the
counting. Kasteleyn?® has shown how the Ising problem
is related to the dimer problem and that all planar
Ising lattices can be solved in principle by using a
Pfaffian whose elements are found by correct orienta-
tion of the bonds of the related dimer lattice. Fisher®
showed that Kasteleyn’s method can be simplified by
taking as the dimer lattice one in which there is a one-
to-one correspondence between polygons on the
Ising lattice and dimer configurations on the dimer
lattice. He gives a scheme by which any planar lsing
lattice can be solved in principle. The purpose of this
paper is to give a method by which the solution can be
carried out in detail. We use the method of Hurst
since the weight factors of the lattice-point polynomial
and the consistency conditions on the weight factors
defined in I give a simple method of expanding the
determinant in the partition function.

In I it was shown how all the two-dimensional
lattices could be classified such that to each class there
corresponds a single basic lattice point or cell. For a
planar lattice these cells must be connected by parallel
bonds to form a generalized triangular lattice as shown
in Fig. 1 of I. Thus the class is given by the number of
horizontal, diagonal, and vertical bonds adjacent to
the cell. Particular members of a class differ in the
internal structure of the cell,which must be the same
for all cells since we consider only periodic lattices.

1 L. Onsager, Phys. Rev. 65, 117 (1944).

2 See, for example, C. A. Hurst, J. Chem. Phys. 38, 2558 (1963),
hereafter referred to as I.

3 C. A. Hurst and H. S. Green, J. Chem. Phys. 33, 1059 (1960).

4 P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963).

5 M. E. Fisher, J. Math. Phys. 7, 1776 (1966).

Bonds connecting points inside a cell will be called
internal bonds, while bonds between cells will be
called external bonds.

We label the cells in the helical ordering with i
running from 1 to N, and we label the bonds connected
to the ith cell from 1 to 2g. We adopt the convention
that bonds numbered from 1 to g connect the ith cell
to cells with lower index (except cells in the first row)
and those numbered from g + 1 to 2g are connected
to lattice points with higher index. So, a bond con-
necting cells 7 and i’ will, therefore, have two labels,
one fixing its ordering with respect to i and the other
its ordering with respect to i’. We call these two labels
associated labels. In the language of Ref. 2, these
labels refer to terminals rather than bonds and the
latter are specified by the labels of the terminals which
form their end points.

In the generalized triangular lattice considered here,
the bonds can be grouped into six classes according to
the following convention:

(1) Terminals labeled from 1 to A which connect
horizontal bonds entering the ith cell from the
(i — Dth cell.

(2) Terminals labeled from 4 + 1 to h + d which
connect diagonal bonds entering the ith cell from the
(i — m — Dth cell.

(3) Terminals labeled from A +d + 1 toh+d +
v = g which connect vertical bonds entering the ith
cell from the (i — m)th cell.

(4) Terminals labeled from g + 1 to g + A which
connect horizontal bonds leaving the ith cell for the
(i + i)th cell.

(5) Terminals labeled from g+ A+ 1 to g+
h + d which connect diagonal bonds leaving the ith
cell for the (i + m + 1)th cell.

(6) Terminals labeled from g+ 42+ d+1 to 2g
which connect vertical bonds leaving the ith cell for
the (¢ + m)th cell.

Here, m denotes the number of cells in a row. The
bonds can be labeled from 1 to g according to the
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FiG. 1. Ordering of terminals at a vertex.

terminal by which they enter the cell. The ordering of
the terminals is as shown in Fig. 1. Because of the
structure of the lattice, to every bond numbered j
.connecting /i — 1 to i and ordered with respect to i,
there will be an associated label j' for the same bond
ordered with respect to i — 1. It can be seen from
Fig. 1 that

jJ=g+h—j+1, if 1<j<h,
j=g+2h+d—j+1, if h<j<h+4d,
J=g+2h+2d+v—-j+1, if h+d<j<Lg

We see that j and j* are the terminals by which the
Jjth bond enters and leaves the ith cell, respectively.
We denote by ¢,,;...,, the lattice-point weight factor
corresponding to the set of diagrams drawn on the
cell which are consistent with the terminals labeled
rst - - - w of the cell being connected by external bonds
and with an even number of bonds being connected to
every spin of the cell. The weight factors have an
even number of indices, ranging from zero, when there
are no external bonds connected, to 2g when all
possible external bonds are connected. These weight
factors will be functions of the internal parameters
Zy, Z3,°*",2, which depend on the internal bond
energies J and the temperature 7. For subsequent
work, it is useful to define new weight factors

(1.1)

where {ab - - - h} is that subset of the 2g indices which
is complementary (in the set-theoretical sense) to the
subset {rs - - w}.

In I it was shown how a lattice-point polynomial
involving the weight factors c,,...,, and creation and
annihilation operators could be associated with each
cell. For planar lattices, the weight factors satisfy the
consistency conditions

(Cap.. -d)v_”_lcab-"h = \Cab-«-dijl’ (1.2)
where C,,..., is a weight factor with 2» indices,

Cab---h = Crs..ows

R. G. J. MILLS AND C. A. HURST

Ca...q is a weight factor with 2u indices which are a
subset of {ab * - - h} and C,,... 4 is a weight factor with
2(u + 1) indices. The indices are restricted by the
inequalities

a<b<...<d<...<e<...<g<...<h

and the Pfaffian on the right-hand side of (1.2) is of
order 2(v — u). The polynomial is factorized into a
product of linear fermion operators and the expecta-
tion value of a product of polynomials gives a
Pfaffian which is evaluated as the square root of an
antisymmetric determinant. The combinatorial equiv-
alence of this method and the counting of closed
polygons gives the partition function for the lattice
considered.

For the generalized triangular lattice, the partition
function is

N7'log Z = log (2 cosh H, cosh H, - - - cosh H,)
27 27
+ (2-n-)'zf d0f d¢ log [A(e®, e%)|, (1.3)
(1} 0

where
A = CN (1.49)
is a matrix of order 2g with elements
Az{j = Aia‘ + 'Aia" (1.5)
Ay = —A, = (=1, (1.6)
and, for i < j,
Ay = —x,6%,,, for 1 <i<h,
= —x;e®¥.., for h<i<h-+d,
= —x,e",,, for h+d<i<g,
= A% &)
Here,
Ci; = CylCo (1.8)
and

b=1, ifj=1,
=0,

where i’ is the associated label of 7.

In Sec. 2 we show how the determinant can be
expanded in a compact expression which is quadratic
in the weight factors. The partition function for each
member of a class of lattices can then be found by
calculating the weight factors. In Sec. 3 we consider
the critical equations for the singularities in the parti-
tion function corresponding to physical singularities
found in I and show how the Pfaffian method gives
conditions on the weight factors. In Sec. 4 we solve a
new lattice with two spins to a cell by the method
developed. Finally, we conclude with a discussion of
the method and comparison with other methods.

otherwise,
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2, EXPANSION OF THE DETERMINANT

The determinant A can be written so that all the
C/, have a positive sign by using C;; = ~C;;, for
i < j, and then multiplying the odd columns and even
rows by —1 giving

A =CHICH+ (=DFxe,l, Q1)
where
P=i+1i, if i<j,
=i4+i'+1, if i>],

and x is the appropriate angle given in Eq. (1.7).

The special structure of A enables it to be reduced to
a compact expression depending on the coefficients
C,,...» and which is quadratic in these coefficients.
From Eq. (1.5) it can be seen that A is the determinant
of a matrix which is the sum of a real antisymmetric
and an anti-Hermitian matrix. The latter matrix is
such that all the nonzero elements above the main
diagonal have row indices which range from 1 to g and
column indices which range from g + 1 to 2g. Hence
the row and column indices of A; for i < j form dis-
junct sets. Furthermore, because A is an even-order
anti-Hermitian determinant, it is a real number.
Hence the phase factors can only contribute to A in
the form cos (pf + q¢), where —(h+d)<p <
(h + d)and —(d + v) < q < d + v. For the moment,
we shall put (6 4+ ®) = y and consider the coefficient
of

exp i{(py — ¢)0 + (P2 — g1 + (ps — ga)9},

with
Ospi’qish’ Osp2aq2$d, ngs,qagv.

The integers p; define the number of phase factors of
the various types which come from the portion of A
above the diagonal whilst the numbers g, give the
number of phase factors which come from below the
diagonal.

In order to evaluate the determinant A, we consider
the coefficient of x§1, x32, -+ -, x%, where 0 < o < 2.
Let Ay, Ags, ** *, Ag, denote the indices A for which
a, = 2, let A+, A, - - -, A1 denote the indices 4 corre-
sponding to «; = 1 and a positive sign in the phase
factor, let A, A, -« +, A7, denote the indices corre-
sponding to «; = 1 and a negative sign in the phase
factor, and let Ay, Age, Ay, denote the indices corre-
sponding to « = 0. All the indices satisfy the inequality
1 < 4, AF, 47, Ay < g and associated with the indices
are the associated indices 4,, 4}’, A7’, and 4, which
satisfy g < 4,, &', 47", 4, < 2g. Letn,,py,q,,and m,
denote the number of bonds selected in the horizontal
direction such that 1 < ny, py, g1, my < ki 0y, Pa, g,
and m, denote the number of bonds selected in the
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diagonal direction such that 1 < n,, p,, q,, my < d
and ng, ps, g5, and my denote the number selected in
the vertical direction with 1 < ng, ps, g5, mg < v.
The required coefficient can be uniquely denoted by

D(2y; 475 475 Ao)
= D(Agy - Agn3 Ay A5 A A Aoy o)
(2.2
and the determinant can be expanded as
A=32 23 expif(p—q)f
P ¢ mtn=g—p—q

+ (p2 — 92)x + (ps — q2)$}
X x{x3? e v x3D(Ag; AT AT Ag). (2.3)

The coefficient (2.2) can be geometrically represented
by a cluster of 2g terminals ordered from 1 to .2g as
described at the beginning of this section. The labels
denoted by A, and A, represent the bonds from one of
thecellsi—1,i—m—1,i— mtoiand from i to
one of the cells i + 1,7 + m + 1, i + m, respectively.
The labels denoted by 4] represent bonds from i to one
ofi +1,i 4+ m + 1,i + m, while the labels 4, repre-
sent bonds from i —m, i —m — 1, i —1 to i. The
labels 4, and A, represent no bonds to those terminals
of the cell.

The coefficient D(4,; AT; A7; A) is a determinant of
order 2g — 2n — p — g = 2m + p + q which is ob-
tained from A by striking out the rows and columns
containing the factors x; appearing in the product
x3ixge -+ x%, The striking out of the 2n rows and
columns for which «; = 2 eliminates the indices 4,,,,
Ay, from the determinant. The striking out of the p
rows and columns above the diagonal and the g rows
and columns below the diagonal for which «; =1
removes one set of the indices A, A}, A, A7’ from the
determinant. As all indices occur twice in the original
determinant, these indices are still present but only
occur once. The rows of the determinant are labeled by
AT, Ay, Ay, AY' and the columns by Af, 4,, 4;, 47" and,
from the manner of construction, the sets {AT, A"}
and {A}, A’} are disjunct. The rows and columns
labeled by 4,, 4; for which «; = 0 form a real anti-
symmetric submatrix of D(4y; A}; AT; A;). The sign
factors arising from these and subsequent operations
are discussed in Appendix B. We ignore the sign
factors in the following discussion, giving the total
sign for D in Eq. (2.8).

The determinant can be reduced in order by remov-
ing the antisymmetric submatrix by the method shown
in Appendix A. At each step of the reduction, the
elements of the determinant become 4 x 4 Pfaffians,
which can be replaced by a higher-order weight factor
by using the consistency conditions (1.2). On the first
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reduction, D is reduced to a determinant of order

2m+p+g—2:
D = C;|Cl
= CYClppan) " "0 ID'], (2:4)
where
Ciozor Cigs  Cisg

D;; = Ciol'ﬂ' z’7-01’ :

Ci

Using the consistency conditions Eq. (1.2) with » = 2
and p = 0 gives

D, = CC;

In Appendix A we show that the new determinant
still contains a real antisymmetric submatrix so the
process can be continued until all the antisymmetric
part which is labeled by 4, is removed. The result is a
determinant of order p + q:

’
o1ho1’d — “Ag1de1 i "

D = C77" Coyishs 2.5)

where
A denotes Ay 451402402 * * * AomAom

and ij are the indices of the sets {A7, A}'} and {4}, 47"},
respectively.

The terms of the determinant of order (p + ¢) form
a subset of the terms of the Pfaffian \C, ,,| of order
2(p + q), where the indices r, s range over the com-
bined set

{3, 17, 20", A5}

Thus, the determinant in Eq. (2.5) is equal to the
Pfaffian if the terms in the Pfaffian with both indices
from the set {4}, A;'} are made zero. Thus the deter-
minant |G, ;| can be writien, apart from a sign factor
discussed in Appendix B, as

|Cagesl = {\Clorsl - Z\Cxoabl \Cogral

+ 2 2 \Cral \Crgial}- (26)
The Pfaffians in Eq. (2.6) are of order 2(p + ¢q), 2 and
2(p+49—1), 4 and 2(p + g — 2), respectively. The
summations are over the 0, 1, 2, - - - pairs of indices
a, b which can be selected from the set {i], A7'}. By
using the consistency conditions (1.2), these Pfaffians
can be replaced by weight factors

p+a—1 _1\R p+q—2
Clo C)Loll+11‘}.1+'11_' ’ ( 1) Cloabclo Clotu cerw
and
R R +q—3
(_ 1) C)\oabcd > (— 1) Cxoc)\oabcd ’ C{o “ Clov‘ s

Here ab - - - d are indices from the set {4}, 47"} and
ru---w are the complement of ab---d in the set
{4}, A7, A{’, A7'}. The sign factor R is the parity of the

R. G. J. MILLS AND C. A. HURST

permutation required to arrange {ab---d} and its
complement in numerical order.

Finally, we combine Egs. (2.5) and (2.6) and use
Eq. (1.1) to express the determinant in terms of the
original weight factors giving

D= ("I)S{Cxazl‘fz,-;.ﬁ'h"cxz
- (_)R z Clgtw + s weAgad
+ (_)RE z ckzv‘ . wclzabcd- - } (27)

Here, all the indices are in numerical order and S is the
sign factor discussed in Appendix B given by

S =43P+ g + pr+ )
+ 3(p1 + 92)(2n, + p2 + q2)
/+ 3(ps + g3)(2n3 + ps + g3)
+3ip+9@2n+p+9).

The structure of (2.7) can best be seen by giving a
geometric representation. Each term on the right-hand
side can be represented by two clusters of 2g terminals
labeled as in Fig. 1. The first term corresponds to all
the terminals (A,, A}, A}, and A,) being connected by
external bonds in the first and second cluster, respec-
tively. The second term corresponds to the terminals
(Atu - - - w and A.a,b) being connected by external
bonds in the first and second cluster, respectively. The
second term differs from the first in that the terminals
a, b are connected by external bonds in the second
cluster rather than in the first. The third term corre-
sponds to the terminals (A « - - w and Aqabcd) being
connected by external bonds in the first and second
cluster, respectively. In no cluster are the terminals
labeled by A, connected.

So, finally, we see that the determinant A can be
expanded as
A= 3 D(hsn;0;0; do)xfixg? - « - xg7

myn=g

+22

P ¢=p M+n+pte=g

2.8

2 D(Zn; Zi;; Z’l—q; Apm)X {1 -+« X%

g

x exp i{(py + P2 — q1 — ¢2)0
+ (Pt ps— g — ‘13)4’}

+ 2 z Z z Dxalux;z R x‘;u

P ¢<p m+nt+pte=g
X cos {(p1 + P — 41 — q2)0
+ P2+ ps— g2 — 43)¢}, (2.9

where D is given by (2.7). The first summation is over
the 2¢ ways in which the bonds x,x,: - x, can be
separated into two groups Ay, - - -, Ay, with o) = 2
and Ag, -, 4y, With «; = 0, In the second sum-
mation, the p bonds Af,---, Af, can be selected
from above the diagonal in (%) ways, the bonds
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A5, , A, can be selected from below the diagonal
in (°,?) ways, and the remaining g — 2p bonds can
be separated into the group 4,y, * * *, Ay and Ay, * -+,
Aom in 29722 ways. For a given selection D(4,,; Af,;
A1, Aom), there is another selection D(Ay,; 47,5 41,5 Aom)
and these terms combine together to give a cosine
term. The third summation is over the (9)(*,?)2¢7#7¢

ways in which D(y,; Af,; A7, 4,,) can be selected.

3. CRITICAL BEHAVIOR

In I it was shown that critical equations for a general
lattice could be derived by satisfying the conditions

A(e¥, %) = 0,

9 A, €'%) = 0,

= (3.1)

2 A, %) = 0.

0¢
Since A is given by (2.9) as a sum of cosine terms in
multiple angles of 6 and ¢, the second and third
equations will be satisfied when 6, ¢ = 0, . Other
solutions may exist, but the fact that they were
nonphysical in the simpler model considered in I
suggests that they will be nonphysical in our model
also. Therefore, we confine our attention to the solu-
tion of the first equation of (3.1) for 6, ¢ = 0, =.

When 0 = ¢ =0 are substituted in (2.1), the

determinant becomes

A= G C; + (= )Fxd,l, (3.2)
since ¢'* = ¢ =1 when y =0. Since P=i+ i
if i<jand i+i" 41 if i > j, the determinant is

antisymmetric and hence it can be written as a
Pfaffian

A% = C, \thj + (—1)i+i’xiaji'|-

This Pfaffian can be expanded as a sum of terms

3.3)

x‘{‘x%ﬁ e x;‘”,
where o, = 0, 1. Let 4, - - -, A, denote the indices for
which «; = 1, where n, are chosen such that 1 < 1 <
h, ny are chosen such that A < 1 < h + d, and n, are
chosen such that # + d < 4 < g. Let the coefficient
of x1xg*« - x% be denoted by P(4,,- - -, 4,), where
= n; + ny + n,. Then the required expansion is
At= 3 pP@y, -

ay=0,1

x5,

s A)XTx5? - x5 (3.4)
The coefficient P(4,,---, 4,) is the cofactor of the
Pfaffian when the rows and columns containing the
indices A,,---, 4, and their associated indices
Ay, -+, A, are removed from the Pfaffian and the
bond weights x, for which «; = 0 are made zero. The
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cofactor itself is a Pfaffian of order 2(g — n) with
elements C,, whose rows and columns are labeled by
the set of indices {a, b, - * - , h} which is the comple-
ment of the set {A} in the set {1,2, -, 2g}. By the
consistency conditions (1.1), the Pfaffian \C},| can be
replaced by C;'Cy,.. .4, so that

P(lla T ln) = (_)TCO \Ct’lbl
= (_)Tcab---h'

Here, T is the sign factor to remove the bond weights
for which «; = 1 which is discussed in Appendix C.
From Eq. (1.1), which relates the weight factors, we
have

Cor..

= Cas
so that

A= 3 (=) Tepxixge- - - X,

2,=0,1

(3.5)

The form of the critical equations for the other
values of 6 and ¢ can be found from the case § = ¢ =
0 by transformation of the bond weights. From the
structure of the determinant in Eq. (1.7), it can be
seen that the change 6 = 0 to 6 = = has the effect of
changing x, to —x, if 1 < A < h 4 d. Similarly, the
change ¢ = 0 to ¢ = = has the effect of changing
x; to —x; if h < A < g. In Appendix C we show that
those changes can be incorporated in the sign factor
T given by
if 0=4¢=0,
if 60=0 ¢=m,
if 0=m ¢=0,
if =7 ¢=m.

(3.6)

T=n+4+ mn, + nyng + myng,
= R — MmNy + NNy — Ny,
=n + n1n2 - n2n3 - nlna,

=N — MmNy — NNy + nylts,

4. A LATTICE WITH TWO SPINS TO A CELL

In this section we show how the partition function
and the critical equations for the lattice shown in
Fig. 2 can be written down by using the results of
Secs. 2 and 3. The power of the method lies in the
fact that the calculations are straightforward, although
tedious. In general, only the method of calculation and
the results will be given.

Fic. 2. Example of a lattice
with 2 spins to a cell.

AN\~
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FiG. 3. Cell structure for lattice of Fig. 2.
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In order to represent the lattice of Fig. 2, each cell
is given ten terminals and these terminals are con-
nected to the spins as shown in Fig. 3. There is a
weight factor for each way in which an even number
of external bonds are connected to a cell. This weight
factor describes the ways in which the internal bonds
can be arranged so that there is an even number of
external and internal bonds to each spin. The weight
factors can easily be found from Fig. 3 to be

Cap-..n = Xy, if the indices ab - + - A contain an odd
number of the set {3, 4, 5, 6, 7},
= 1, otherwise.

4.1

Thus ¢g = ¢;, = 1 and ¢;3 = x,, etc. The lattice has
five external bonds and one internal bound; the cell
has ten terminals and # =3 and d = v = 1. There
is one terminal for each bond entering or leaving the
lattice and the external bonds are labeled x;, x,,- - -,
x5 corresponding to the terminal of the set {1,2,---, 5}
to which they are connected. The bonds x;, x,, and
x5 represent horizontal bonds between cells, x, rep-
resents a diagonal bond between cells, and x;
represents a vertical bond between cells. It can be seen
that the pairs of terminals (1, 8), (2,7), (3, 6), (4, 9),
and (5, 10) are the associated terminals defined in
Sec. 1. The coefficient of x,x2x,x; cos (6 — x + @) is
D(2;1,5;4;3), with my=p=p=q,=m, =1
and ny =ny = p; =q; = my = my = 0. From Eq.
(2.8), the sign factor is even. Since ' =38, 2’ =7,
3=6,4=09,and 5 = 10, Eq. (2.7) gives

D(2;1,5;4;3) = {c124578910C27 + C2a78910C1257
+ C2457810C1279 + C1247810C2579)-

The sign factors R of the second, third, and fourth
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terms are positive because (4, 8,9, 10,1, 5), (4, 5, 8,
10,1, 9), and (1, 4, 8, 10, 5, 9) are odd permutations
of (1,4,5, 8,9, 10). The weight factors are shown in
Fig. 4. It can be seen that each spin has an even number
of bonds (external and internal) connected to it. We
see that D(2;15;4;3) = 2(1 + x}). It can be seen
that x, is always connected in both clusters, whereas
X3 is never connected. The result of combining each
cluster is a bond weight x,x3x,x;. Each term in the
expansion of the 10 x 10 determinant can be evaluated
as above.

We notice that if x; and x, are selected from above
the diagonal and not selected from below the diagonal,
the Ist and 2nd columns of the determinant, which
remain when the Ist and 2nd rows and the 7th and
8th columns have been removed, are equal. No matter
what further selections are made, the Ist and 2nd
columns will remain equal so that D(4,; 1,2, A];
Ay; Ag) will be zero for all 4y, A}, A7, 4,. Similarly, we
find that

D(295 1,2, 25 A7; A4g) = D(4y; A1 1,2, A7; &) = O,
D(252,3, A5 A5 A) = D(Ag5 4132, 3, 475 49) = O,
D(4s; 3,4, AF; 415 Ao) = D(Ae; 213 3,4, 475 4) = O,
D(25; 4,5, 415 415 Ao) = D(A9; {5 4,5, 475 ) = O,
D(Ay; 1,4, 2475 475 A4) = D(2p; 213 1,4, A75 4p) = 0,
D(4y; 5, A3 3,415 Ao) = D(2953, 473 5, 215 4) = O,
D(Ae; 5, 215 1, A7; &) = D(4s5 1, A1 5, A7 49) = O,

These relationships reduce the number of terms in the
expansion of the determinant considerably.

The first summation in Eq. (2.9) produces the 25
terms which arise on selecting the 5 external bonds in
two groups Ay, -, Ay, and Ay, - -, Ay, . The co-
efficient of xjx32 - - - xZs where «; = 0 or 2 is found
from Eq. (2.7) to be

D(22,5 05 0; Agy) = €3, (4.2)

From Fig. 3 it is easily found that ¢, is xp or 1 if &,
contains an odd or even number of elements from the
set {3, 4, 5, 6, 7}, respectively.

The second summation corresponds to selecting p
bonds from above the diagonal and the same number
g = p of different bonds from below the diagonal.
Since there are only five bonds altogether, only the
two cases p=¢g =1 and p =g =2 need be con-
sidered for this lattice. Furthermore, we have
D(2y; 2F5 75 Ao) = D(Ap; A7; 275 4g), since by Eq.
(2.7) the coefficient depends on the set {4f,, - - -, 4},
Aq,c .4} for a given A,. Thus the coefficients
combine together to give cosine terms. For selections
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such that p; = ¢, for i = 1, 2, 3, the angle
{(pr+p2— g1 — 990 + (p2 + Ps — ¢2 — 99}

is zero.

The third summation corresponds to selecting p
bonds from above the diagonal and g = p bonds from
below the diagonal. For selections such that p, + p, =
¢ + gz and p; + ps = ¢» + g3, the above angle is
zero and these contribute to the absolute term.

The coefficients D(A,; Af; A7; Ap) are.evaluated by
the method illustrated in the example given above and,
after some tedious algebraic manipulations, the deter-
minant is found to be

A =301+ x3)(1 + xD)

x [(1 + x4 xD(A + *x)(1 + x5)

+ (1 = x) = x3)(1 = x)(A = x3)]

+ 4xpxa(1 4 xP(1 + x3)

X [x:(1 + x3) + x5(1 + xD)]

+ 2x5(1 + x)(1 + x)(1 + xD( + x3)

+ dxgxs(L + x0)(1 + x3)

X (1 + x5) + x5(1 + x7)]

+ 8xoXax,Xs(1 4+ XD 4 x3) + 32x5%1X9X5%,X5

— el + x5) + x5(1 + x1)]

x [(1 + xBH(1 + DA — xH(1 — xB)

+ (1 = x)(1 — x(1 + x)(1 + x5 cos §

—2(1 4 x)(1 + x3)[xox2(1 = xD(A — x5)

+ xyx5(1 — x2)(1 — x3)] cos 6

— 8x,X;[Xoxa(1 — x5) + (1 — x5)

+ x4x5(1 — x)(1 — x3)] cos 0

= 2(1 — xH(L ~ xP[xexa(l — x)( — x3)

+ xox5(1 — x5)(1 — xD] cos (6 + 4)

— 2xpx5(1 — xD(1 — x3)(1 — x3)(1 — x) cos ¢

+ 2x,%5(1 — x3)(1 — x3)(1 — x3)(1 — x2) cos 26

— 2xax,(1 — xg)(1 — xD(1 — x3)(L — x5)

X cos (20 + ). (4.3)

This result can be checked against the known results

for the rectangular, triangular, hexagonal, and Yama-
moto lattices. A particular bond x; of the lattice can be
removed by putting x; = 0. A bond can also be made
redundant if we coalesce the spins which form the end
points of the bond by putting x; = 1. From Fig. 2 we
can see that x, = 1 and any of the choices x, = x; =
xg=0o0rx;,=x3=x,=0o0rx =x,=x,=0or
Xy = X3 = x5 = 0 will produce a rectangular lattice.
For the first choice the determinant is

Ap = (1 4+ xD + x2)
— 2x,(1 — x¥) cos 6 — 2x5(1 — x%) cos ¢.
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The critical equation for this lattice can be found by
the method developed in Sec. 3. For a singularity at
6 = ¢ = 0, the critical equation is given by Eq. (3.5)
as
Co — C13X) — Cy9Xz — C3¢X3 — Ca9Xy3 — C510%5

+ €1978%1Xs — C1agsX1¥3 — C1489X1Xa + C15810%1%5

— Cagg7XeX3 — Cag79X2Xy — Cap710X2X5 — Cas69¥3%4

— C35610%X3%5 — C15910X4X5 — C123g576%1X2X3

— C124789%1X2Xq — C1257810%1%2Xs — C134689X1%3%4

+ C1356810%1X8Xs — C1458910¥1%4Xs — Ca34679X2X3Xs

+ C2356710%2X3X5 + C2a57010%2X2X5 — C3a56910X3X4X5

— C12346789%X1X2X3Xy — C123567810%1%2X3X5

— C12457891051%X2%X4Xs — C134588910%1%3%4 X5

— Caasse7910%2XaXaXs + CrazaperasroX1XeXaXeXs = 0.

The sign of the terms have been found by using Eq.
(3.6). The weight factors substituted from Eq. (4.1)
give the critical equation after some algebraic manip-
ulation as

(1 — xpx2)(1 = x4%5)(1 — x;)(1 — x3)
— (%o + x2)(x5 + x5)(1 + x)(1 + x3) = 0. (4.4)

The other critical equations corresponding to the
other values of § and ¢ at which a singularity may
occur can be found by transforming the bond weights
according to the sign factor given in Eq. (3.6). One
can show that Eq. (4.4) gives the correct equation for
the rectangular, triangular, hexagonal, and Yama-
moto lattices by the same method as used in the pre-
vious paragraph. For example, if we put x; = x3 = 0,
we obtain the equation

1+ XpXoXgXs = XoXo + X4X5 + XoX5 + XoX; + XoXs,

which corresponds with the Eq. (47a) of I for the
Yamamoto lattice.

5. DISCUSSION

The above method of expanding the determinant in
the partition function as a quadratic expression in the
weight factors is applicable to any two-dimensional
Ising lattice without crossed bonds possessing a
periodic structure of similar cells. Fisher has shown
how such lattices can be solved in principle in terms of
a Pfaffian. However, for a complicated cell structure,
his determinant is very large being of order 3(2,9, —
2r), where r is the number of spins in the Ising lattice
cell and g, is the number of bonds with spin. For the
example of Sec. 4, a determinant of order 24 would
require evaluation. Our method evaluates a deter-
minant of order 10 using weight factors which can be
found graphically.
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Fig. 4. Weight factors for evaluation of
D(2;1,5;4;3).
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A cell with f'spins has been considered as a multiple-
state model with 27 states for each cell.® An interaction
energy between states can be defined and the condi-
tions which must be imposed of the interaction energy
for the problem to reduce to the combinatories of
closed polygons on the lattice has been investigated.”
If the cell structure is simple enough, the weight
factors can be easily found and a model with many
bonds between cells can be constructed. By choosing
the strength of the bonds to decrease as the number of
bonds increases, we hope to investigate a continuum
model in a future paper.

8 H. S. Green, Z. Physik 171, 129 (1963).
? R. G. J. Mills, Ph.D. thesis, University of Adelaide, 1966.

APPENDIX A: REDUCTION OF A DETERMINANT
WITH AN ANTISYMMETRIC SUBMATRIX

We consider the reduction of a partly antisymmetric
determinant |C;,| of order 2m + r. By partly anti-
symmetric we mean that the determinant has an
antisymmetric submatrix of order 2m. We select the
smallest integer Ay, such that Cyyy; - and Cyp; | are in
this submatrix. Then to every row of the determinant
other than the 4j;th we add a constant multiple «, of
the A,;th row so as to make all the elements of the
Agyth column zero except Cyyy, o

|Coal = Copr + Zualuauclo’l’la



GENERALIZED TRIANGULAR ISING LATTICE

with
! — —
phor T Culol + auclox'lm =0,
and hence
C C .
o, = — #hor #Ao1 (Al)
Clol A1 Clollm

Then to every column of the determinant other than
the A;,th we add a constant multiple 8, of the Ajth
column so as to make all the elements of the Ajth
row except C; 4

|Chl = |Ch + Zﬂaﬂl’ﬂuc,’llm’l&
ie.,

|CZ}.’ = |C)J.’ + zualuauclq{l’ + zuéul'ﬁu
X {CMM' + Eualﬂmﬂclol'lux’}l
= lC).l’ + Zualuauclm’l’ + Zuaul'ﬁucllm’l’

. . .
since C, ;. - = 0. Tofind B, we require C; , =0, 1ie.,

Clolu + ﬁuclmlox' = 0’

and hence
ABM = —Clonulcloxlox’ .
Thus
C C, ,
” Adg1 A014
Ciw=0Cu + Ap’A C Cum
Aordor’ Ag1ior
1 Clollol' Clml Clml’
= C Clo['l Clgl'l' M (A2)
Ao1401"

C)'A!

Asa check, we note that C; ;. = C7, = 0. The deter-
minant is expanded by the Ayth row and then the
Agith column, giving

D= |Cu'\ = Cy Gmir= |\C101101'C10,'A'C11'l ‘ (A3)

Ag1dor’
We note that the new submatrix formed from the

original antisymmetric submatrix in this way is still
antisymmetric because

Clmlol' Clmlm' Clolol
Zolo' = Cﬂ-ol'}-o' Clolm
Cioio
Cintor Canzy  —Ciyin
= Ciol"-o Cio'lol
Ciyag
= —C:{.,'A,, »

and so the reduction process may be continued until
all of the antisymmetric part of the original deter-
minant has been removed.
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APPENDIX B: DETERMINATION OF THE SIGN
OF D(Ay; 2f 5 A7 o)

In this appendix we list the operations and their
sign factors for the selection of the coefficient
D(Ayu5 25,5 43,5 Aom) from Eq. (2.1) where all the
¢;; are positive and the sign on the bond weights x;
above and below the diagonal are (—1)* and
(—1)#*+1 respectively. From the relationship be-
tween the terminals and their associated terminals, we
have

sign (i +i")=sign(g+h+1), ifl <i<h,
=sign{g+d+1), fa<i<h+d,
=sign(g+ov+1), fh+d<i<Lg

(1) Selection of {A,} (n=n, + n, + n;) with
x; = 2. We select n bonds from the set g above the
diagonal corresponding to 4, * - - 45, and n bonds from
the set g below the diagonal corresponding to
Ay -t Ay,. Associated with each selection is a sign
from the bond weight and a sign from the position in
the determinant. The total sign change for all these
selections is zero.

(2) Selection of {4{} and {A}} with a; =1. We
select p bonds from those remaining above the
diagonal and then ¢ bonds with different labels from
the p bonds from below the diagonal. Again we get a
sign factor from the bond weight and a sign factor
from the position in the determinant. The total sign
factor is

$pi(l — pa) + 4pa(1 — po) + dps(1 — ps)
+ 1q:(1 — q1) + 345(1 — g»)
+ 39:(1 — go) +0(p + 9) + m(ps + 90
+ na(pe + q2) + n3(ps + g3) +q(p + 1).

(3) Selection of {4,,} with «;, = 0. This selection
is done while reducing the antisymmetric submatrix
as in Appendix A. There is no bond weight so the
sign comes only from the position in the determi-
nant as

@+ gm+ (py + g)my
+ (P2 + 92)’”2 + (Ps + q:’,)ma-

(4) Comparison of the reduced determinant Eq.
(2.5) with the determinant (2.6) can be found by
comparing the terms from the principal diagonal

i+ +g9—-1.

(5) Combining the row indices {A~, A*'} and the
column indices {A*, 1~'} in numerical order gives a
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sign factor
Pq + Pg1 + pags + Pags.

(6) Since D is a quadratic expression in the weight
factors with A, appearing in both weight factors, there
is no sign factor resulting from bringing the A, to
numerical order.

(7) Finally, there is a sign factor for combining the
numerical set A, and the numerical set {A~, A+, A+, 171}
into numerical order:

(Pl + q)(my + my) + (Pz + ¢.)(m; + ms)
+ (ps + g3)(my + my).

If we combine the signs found above and use the
relations
h=n+p +q+m,

d=ny+ p; + ¢ + ms,
v=n3+ ps+ g5 + my,
g=n+p+q+m,

we obtain the sign factor for D given in Eq. (2.8).

APPENDIX C: DETERMINATION OF THE
SIGN OF P(;, - -, 4,)

The sign T of the Pfaffian P(4,, -, 4,) given in
Eq. (3.6) after selecting out the bonds xj, - -, x%
for which «; = 1 is the product of the sign factor
(=1)*** of the bond weight and the sign factor
(—1)**#*1 corresponding to its position in the Pfaffian.
We shall list thé operations and their associated sign
factors for the expansion of the Pfaffian by the method

of Sec. 3.

R. G. J. MILLS AND C. A. HURST

(1) Selection of A;,--+,4, from the set {I,
2,---,h}.Here, A+ V' =g+ h+1:
sign=n(g+h+D+{0+g+h+1)

+(14+g—-14+8r—-14+1

+-+(Q+g—n+l+h—-—n+1+4+1)
=m(g+h+ 1+ in8 + 4g + 4h — 2ny)
=n.

In finding the position of the bond weight in the
Pfaffian, one must remember to remove all the rows
and columns containing the indices and the associated

indices of the previously selected bond weights.
(2) Selection of 4, ., 4 such that A <i <

g tng

h+d Here, A+ 1 =g+ d+ 1(mod. 2):
sign = ny(g + d + 1)
+th-—nm+1l+g—nm+h—n+d+1)
+...+(h_n1+1+g__nl...n2
+14+h—n+d—n+14+1)
= nyn, + 1, (mod 2).

(3) Selection of 4, ., .1,...4, such that h +d <
i<g Here, A+ X =g+ v+ 1(mod?2):
sign=n(g+v+D+Gh—n+d—n

+l4+g4+g—m—m+h—n+d—n,
+v4++th—nm+d—n+1
+g—m—n—m+1l+h—n+d
—ntv—n+1+1)
= mng + nyhg + ny.
Thus the total sign factor on selecting 4,,---, 4, is

T =n+4 nn, + nong + nyng. (CDH
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The Berlin-Witten-Gersch model of a classical gas gives a phase transition in one dimension for a

potential

=CI)’

V= —gye?"?, R> 4,

R <4,

in the limit ¥ — 0. The correlation function is nonvanishing in the transition region; it vanishes outside.
Investigation of the P-L isotherms (where L is the one-dimensional volume) shows a discontinuity in the

first derivative at the transition points.

1. INTRODUCTION

Recent discussions of the theory of superconduc-
tivity as to whether a one-dimensional system such as
a whisker can become superconducting® makes the
question of one-dimensional phase transitions more
than academic. Further, interest in phase transitions
in one-dimensional systems has gained momentum
recently due to Little’s work? on long-chained polym-
ers which may become superconducting. It is not too
amiss to approximate these long polymers by one-
dimensional systems.

Models which undergo a phase transition in one
dimension are of interest especially because proof or
evidence for the existence of one-dimensional phase
transitions is still inconclusive. Existence or nonexist-
ence depends markedly upon the model employed.
We do have Van Hove’s® famous work wherein he
shows that a one-dimensional system cannot exhibit
a phase transition if the forces are of finite range. The
delicate nature of this type of transition is appreciated
when one makes a comparison of our model with
other similar ones. The Kac model* gives no phase
transition whereas those of Kac, Uhlenbeck, and
Hemmer® and Gersch® do.

We describe here a simple model of a classical gas
which has long-range forces such that we can vary the
range parameter, at the same time holding the total
energy of the system constant. In the limit of infinitely
long range, a phase transition is obtained.

We approach the problem of a classical gas with an
attractive-pair potential —gye 7% for R > 4, where
R is the distance between particles and g is a coupling
constant. For R < 4, the potential is infinite (positive)

1 R. A. Ferrel, Bull. Am. Phys. Soc. 2, 315 (1966), All.

? W. A. Little, Phys. Rev. 134, A1416 (1964).

3 L. Van Hove, Physica 16, 137 (1950).

4 M. Kac, Phys. Fluids 2, 8 (1959).

® M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4,
216, 229 (1963); 5, 60 (1964).

® H. A. Gersch, Phys. Fluids 6, 599 (1963).

as in a hard-sphere gas. In particular, we are interested
in the case when y becomes arbitrarily small.

The role played by g can be seen by considering the
potential energy. In a first approximation we may
regard the density as uniform about a given particle
and neglect the correlation function. The average
value of the potential energy U per particle will then
be

U= f U(R)p dR,
L]

since in a given length element there will be p dR
particles (where p is the density) with energy U(R).
Adding up the energy over all the particles gives, for
the total potential energy Uy,

UT = %N U,
where the factor 4 prevents our counting the same

pair twice. Letting p = N/L, we obtain in the limit as
y—>0

N2J‘ao NZ
Up=—— e"FdR = — —g.
T A oL®

That is, g measures the average potential energy of

the system.

It is easy to show that a gas of hard spheres shows
no condensation phenomena (even in three dimen-
sions where phase transitions abound). A first guess
might be deceiving in our problem, because with
y = 0 we are left with a potential identical to the
hard-sphere gas. But the calculated results show that
there is a transition region for a temperature below
a critical temperature. As the parameter y grows
smaller, the “long-rangeness” of the potential “pre-
dominates” to effect a many-particle collective action.

Investigation of the P-L curves discloses the first
derivative to be discontinuous at the transition points.
The correlation function is nonvanishing in the
transition region, whereas outside it vanishes. We have
a first-order phase transition.
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In comparing our results with those of Kac, Uhlen-
beck, and Hemmer,? we note that our model leaves no
uncertainty that in the limit y — O there is a sharp
distinction in the correlation function between the
condensed-phase and the single-phase region.

Our correlation function and the rate at which
x — 0 (Appendix A) both on the vapor dome and in
the two-phase region agrees with the work of Gersch.®
Our method does not permit comparison in the region
of the transition for small y, since it allows us to
obtain only the limit functions.

2. THE CLASSICAL PARTITION FUNCTION

The configurational partition function for an
imperfect gas is a sum over all the allowed states
weighted by a Boltzman factor exp (—E/kT); in our
case, this becomes an integral in configuration space:

Zy= 1—\?-, f : 'fdn codryexp [—BW(ry Tyl
4 (2.1)

where W(r, - - - ry) is the potential energy of a con-
figuration of particles, r; the position vector of the ith
particle, and § = 1/kT. The total free energy ¥ of the
system composed of one type of particle is

exp [— ] = 2em|(BA)VZ,.

We will have more occasion to use the limiting value
of the free energy per particle o, defined to be

(o, ) = lim 2 V2 B).
N-ow N
VIN =, (2.2)

where v is the specific volume. The thermodynamic
pressure is given by
p = —0y[ov.

We now divide the total volume ¥V into X cells of equal
volume = such that K= = ¥V and such that the cells are
numbered from 1 to K. The number of particles in the
jth cell is n;. We can then write

1 N!
Zy=1 3 (n',;l nj,) f dry - f dry exp [~ W],
(2.3)

The sum is over all combinations of integers {n;},
n; 2 0, subject to the restriction

&
>n;=N.
=1

In principle, the specific subdivision of the space
into cells should be irrelevant for the final result. We
make the choice 7 = v, where v is the specific volume
in n dimensions. Then (n;) = 1 for all values of §, v.

JOSEPH L. STRECKER

3. AN APPROXIMATION TO THE
IMPERFECT GAS

We now seek to approximate Eq. (2.3). We proceed
to list the assumptions and their direct consequences.’
(1) First we assume that the interaction between

particles is pairwise,
Wiy ) =%

U(r;y),
1<i<j<N
where r; is the distance between particles i and j, and
U(r) is the potential energy of interaction between
a pair of particles.

(2) When two particles  and j are in different cells
k and m, we assume that U(r;,) = U(R,,), where
R, is the distance between centers of the kth and
mth cells. The total interaction energy with respect to
particles in different cells becomes

W(rl e rN) = 2' nknmU(ka)‘

1Zk<m<N

Note that this energy is now independent of the
coordinates of the particles; it can be taken outside
the integral.

Within a cell we define an average interaction by

exp [~ W]
= i del . -fd'r,”c exp [—BW(r - - 1,)L
(3) Let W, be defined by
W, = dm(m, — DW,.

In general, Wy will be a function of v, §, and n,,. We
now assume that the dependence of W on #, can be
neglected.

The consequences of assumptions (1), (2), and (3)
lead to

N
Zy=>Y Nv exp | $NBWy — B> apnn, |,
I, n,! i
j=17j+ ik

{n;}

where use of the following identity has been made,
EWk =%"k("k - DW, = WB;("Z — 1)
=—NW, + zakknknk’
and where ¢
a; = 3U(Ry), j#k,
a;; = 3W,,

(3.1)
(3.2)

(4) The sum over the set {n;}, where n;, are non-
negative integers and subject to the condition

j=k.

N
Em— = N,
i=

7T. H. Berlin, L. Witten, and H. A. Gersch, Phys. Rev. 92, 189
(1953).
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is a sum over lattice points, in an N-dimensional
Euclidean space, bounded by an (N — 1)-dimensional
figure, a “hyperhedron.” The center of this hyper-
hedron is the point (1, 1, - - -, 1), which describes the
configuration with one particle in each cell. This is the
average configuration, since (n;) = 1.

Our next assumption is to replace the sum over the
lattice points by an integration throughout the
volume € of the hyperhedron. We write

Zy = A(N)oN exp [ENSW,]

xfdnlg- . 'fan{exp [—ﬂc’zka,-knjnk]/
MY, T(n, + 1)]}, (33)

where A(N) is a normalization constant.

(5) The division of physical space into cells of
volume v implies that the fluctuation in the number of
particles per cell, ¢ = ((n; — 1)), is finite for all v,
B, unless of course purely attractive forces are present.
This suggests that a significant contribution to the
above integral arises from points which lie on the
intersection of the hyperplane

N
i=1
with the N-dimensional sphere

N
z (nj - 1)2 = Rz’
=1

where R? = No. The intersection is the surface of an
(N — 1)-dimensional sphere with center at the center
of the hyperhedron. The volume of the intersection is
of the order of magnitude of the volume of the
hyperhedron.

The volume integral in Eq. (3.3) may be written

N
fdnl"'Jan =J dednl"'fan.
0
Q N N

X (n;—12=R? Xm=N
=1 1

The difficulty here is that, for R > 1, a good part
of the surface of the (N — 1)-dimensional sphere lies
outside the hyperhedron. However, integration be-
comes feasible if the whole surface of the sphere is an
allowed region. We allow this extended region, but we
introduce a weighting factor to compensate for the
additional unwanted states. We employ a factor which
is 1 for R <1, which is of the order of ¢ ¥ for
R ~ N%, and which is negligible with respect to e~V
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for R ~ N. We, therefore, assume that

fdnl---fan
Q
® o
=| dR ——RY |4 dn
L exp[ 2N ”" fN
N N

Y(nj—12=R:, X n;=N
1 1

where « is a finite constant.

(6) Since in both the gas and liquid regions we
can expect 0 ~ 1, the I'(n; + 1) will be mostly of
order 1. Let us then approximate the gamma function
by exp [an;(n; — 1)]. We could then choose a = 41n 2
to fit the point n;, = 2. But it is more interesting to let
a play the role of a parameter and see its effects upon
the isotherms and the critical thermodynamic variables
as done in Sec. 6.

(7) The final assumption is to set the Born-von
Karman periodic boundary conditions on the physical
space. A one-dimensional gas would be confined to a
ring, a two-dimensional gas to the surface of a torus.
The mathematical analogy is extended to the three-
dimensional gas. The effect of this assumption is to
cyclize the interaction matrix a;;.

The partition function of our approximation to the
imperfect gas is

Zy = Av® exp [LNBW,] f dR exp [— X R“:'
o 2N

><fdn1 . -fan
A’

X exp [—azln,-(n,- e ﬁ%a,-kn,-nk].
1= 7

We fix the constant 4 by comparison with the ideal
gas; in the limit the potential we use is that of a gas
of hard spheres.

4. EVALUATION OF THE PARTITION
FUNCTION

Let us transform from the variables {r;} to the
variables {y,} by a translation and rotation such that

N N
;(nj - 1)2 = §y39

Sapn, — Dimg— 1) = SAg2  (42)
ik 1

The eigenvalues A, and eigenvectors 7, normalized
to unity are given by?
(N+1)/2

Av=ay; +2 3 ay,cos
p=2

4.1)

[%V—" (k= 1)(p — 1)],
(4.3)
ty = N~Hcos [(2n/N)(j — 1)(k — 1)]
+ sin [2a/N)(j — D(k — D]} (4.4)
8 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
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The subscript p refers to the cell number with respect
to cell 1. With the exception of A, the eigenvalues
are doubly degenerate because

Ap=Ay 4, k#1

The hyperplane is described by y; = 0. This can
readily be seen from the transformation equation,
x = Ty, which, upon solving for y,, becomes

y1=§t1kxk=N‘*Exk= N—iz("k" 1)=0.

Employing Egs. (4.1) and (4.2), our partition func-
tion now becomes

@ o
Zy=B]| dR ——R*|--ldy,--+d
N J; CXP[ N :IJ‘ f)’z YN

Zv§=R”
x 2
X exp [— S @+ ﬂA,-)y,}
j=

where we define B = Av™ exp [NB3W, — A

Relaxing the restriction on the region of integration
of the variables {y,} by means of the delta function,
then

(4.5)

Sotioo 2 ©
Zy = B dS exp —Ni)f dw
27l JS—iw 20 / J-N8/a

* o\ 1T % —
x exp {— — w*[IT] =*(S + a + BA)*]. (4.6)
2N i=2
The product in the integrand can be written as
A b
TII (S +a+B8A)
i=2
N
= exp [-— I3In(S+a+ ﬁA,)].
2
We are interested in the limit as N — co. Let
N
fS)=lm =S In(S+a+pA). (7
Now N i=2
Then (for one dimension)
2n
£(S) = 51— f don[S + a + fA(®)], (4.8)
mJo
where

Aw) = ay; + Mw)

=ay + 2 ay,cos er 4.9
r L
The sum 3, is over all the cell centers in the physical
space, excluding cell 1. The distance r has its origin
at the center of cell 1.
Let § denote the algebraically smallest value of

a + pA(w). If the s plane is cut from s = —o to
s = —S§ along the real axis, then the integrand is

analytic in the cut plane. The behavior of the integral
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in the neighborhood of s = —§ is characterized by
the density of eigenvalues A(w) in the neighborhood
of the algebraically smallest eigenvalue. This behavior
incompletely describes the behavior of Eq. (4.8) in the
neighborhood of s = —S§ because the singular nature
of the integral has in general nothing to do with the
singular nature of a single term in the sum, Eq. (4.7).
We may, therefore, separate out this singular point.

In the integral over w in Eq. (4.6), the important
values of w are of the order of N}. For finite s, the
lower limit of integration is of the order of N. In this
situation we can extend the lower limit to negative
infinity; the integral over w becomes (2w N/a)t if s is
positive. We must, therefore, evaluate

} £ Sgt+ico ,NG(S)
Zy =2 ,,hN—n(_ZEN)J. e T 4s, (4.10)
2mi o So—io S + S

where
G(S) = (5%/2a) — 3 f(S).

Applying the method of steepest descent to the

integral, we find that
Bt (N-1,,NG®)

" (S + H@6SY g,

if a saddle point .S, can be found such that .S, is real,
positive, to the right of the singularities of the inte-
grand, and with

2] - 229 o

Zy

oS os?

The constant 4 shall be determined by normalizing
to the ideal gas, for which Zy = V¥/N!. For the
ideal gas a;;, = 0 for all j, k, so that A; = 0 for all j.
Then

G(S) = (5%/2a) — } In (S + a),

0G(S) S, 1
[FL: « A+

0°G(S) 1 1
[ as(2 ]s,= s var

The solution of the saddle-point equation that
meets the requirements is
S, = S,; = 3a® + 20 — 1a.
The positive square root is chosen because G(S) has a
cut to left of s = —a. It is found that
In A4

Iim-——=ln£—GS,~.
fim =2 3 (Sia)

b

For the free energy per particle this gives

—By = $In (27m/fh*) + In ev + BI3W, — A(0)]
+ G(S) — G(S,). (4.1
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For our one-dimensional gas model, the saddle-
point equation becomes
28, 1 (™ dw
o 277L S, + a + fA(w)
In our calculations we approximate this sum by an
integral; essentially we are averaging the interaction
over the distant cells:

= I(S,,y). (4.12)

Mw) 1% f 'dRa(R) cos (R/L),  (4.13)

where the prime signifies that the integration is over
all space excluding a length L centered at the origin.
We employ a potential —gye™'% for 6 < R < oo,
where § is the diameter of our particles. For R < 6
we assume hard spheres: the potential is infinite
(positive). The definition of g has been clarified in
Sec. 1. (We have now confined ourselves exclusively to
one dimension: v = L) We are interested in the
thermodynamic quantities in the limit as y — 0.
From Eq. 4.13 we obtain

2g  ype L 0 . o
T o\ eess — psinT )
Ly + @\ 2L

28 e
A0) = — == ",
0) T

Mow) = —

These values follow readily from the definition of
Mw):

Mw)= — Zgy dRe"E cos @R
L2 L
_‘M[e_m cos [(wR/L) + ‘II]:| ©
LL [+ uyt o
where

tan A = w/yL.
Substituting limits and using the equation
cos (x + y) = cos x cos y — sin x sin y,

we obtain A(w).
The saddle-point equation can be rewritten as

N
o 2nJo S, 4+ a4+ Bay, + fAw)
1 [* dw

T 2ndo —BAO)L + x] + Bi(w)’
where we define ¢, x by
S, + S=e= —pA0)x.
After a slight rearrangement we can rewrite this as
28, 1 1 1

o« 27 —BAO)1 + x

27
X {217'

Mw) do
o AO0)[1 + x] — Mw)

}. (4.14)
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-1
M(o)(l\-&!‘)

1(x.#)

FiG. 1. Behavior of saddle-point equations for small y. 2§,/
intersects I(x, ) at x,() and the dotted curve, [-BA0)(1 + X)),
at x,(0).

Let us define the integral as K(x, ). In Appendix A
we prove that for all values of x > 0, the limit of X,
as y — 0, is zero. However, if x is set equal to zero,
the integral K(x, y) blows up. Therefore, if K(x, y) is
to be nonvanishing, x must go to zero as y — 0. Just
how rapidly x will do this is proven in Appendix A,
where K is evaluated.

We evaluate K(x, y) by placing an upper and a
lower bound on it and discovering that as y — 0 the
two bounds converge to the same limit value.

As y — 0, the value of x can change in order that
the saddle-point equation holds.

In Fig. 1 we have plotted qualitatively the mono-
tonically decreasing function I(x, y) in solid line and
28,/ against x. We have made a transformation:

S+ § = —pA0)x.

For finite y, I goes to infinity at x = 0. It is also
obvious that K(x, ) is always nonnegative. By x,(y)
and x,(0) we denote the saddle points for the two
cases, respectively, when y is finite and when y — 0.
In this limit

1 1
14+ x —pN0)’
which is the dotted line in Fig. 1.

The function § = a + fa,; + BA(0) for large values
of L is about equal to 4. It decreases to a minimum
value as L decreases, and then increases to infinity as
L decreases to a value of the order of the particle
radius. That is, in Fig. 1, the intercept 2S/« starts at
—a for L = o0, rises, and then returns through —a
on to — oo as L goes from infinity to some quantity of
the order of 4.

We show in Appendix B that for sufficiently large
values of B, the intercept —28/a crosses and rises
above the intercept [—fSA(0)]*. The range of L for
which this happens we call the transition or condensa-
tion region, and we call the two points of crossing the
transition or condensation points. When this happens,
it is clear that x — 0 so that the K(x, y) function
absorbs the difference between 2S/a and [—B4(0)].
If x is set equal to zero, K(x, y) = oo. This is obvious

I(x’ 7)“’ X > 0,
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from inspection of the denominator of the integrand
which defines K(x, y); it vanishes as w? Therefore,
the only alternative is for x — 0 as y — 0 in some way
which keeps K(x, y) finite. The rate of x is y% and is
proven in Appendix A.

Let us now review Fig. 1 as L goes from infinity to
8. At infinity the two intercepts are separated. As L
decreases, the two intercepts approach each other.
For sufficiently small §, they reach a minimal distance
and then separate again. There is no phase transition.
If, however, f is sufficiently large, then, as L decreases,
the intercepts cross each other; the intercept —25/«
rises above that of [—pA(0)]7*. For continually
decreasing values of L, then, the separation of the
intercepts will reach a maximum, then decrease,
cross each other again and recede. With L approaching
8, —28]x goes to negative infinity.

Let us now define a critical temperature f, and
critical volume L,. For f# extremely small, there
clearly exists no transition, and for f# extremely large,
thereis arange of L. However, between these extremes,
there will be some 3., L, such that the two intercepts
just touch.

5. CORRELATIONS

We define a correlation Cj;, between the number of
molecules n; and n, situated, respectively, in the jth
and kth cells as

{(n;ny)

mHEmit’

Cp=
where the average value of a function F'is defined to be

fd-rl fdrNFexp[ —BW(ry - - ray)l
(Fy=

fd-rlv- . -fdrN exp [—BW(r, -+ rN)]

Since the average number of particles per cell is 1, it
would be more appropriate to use the variable

x,- = nj -— 1
We obtain then

]1 27

iy = 4L cos (wR/L) dw
=

o S, + a+ fay + fAw)
_11 J'% cos (wR/L) dw
" 22ade —BAO)1 + x) + BHw)
_1 1 1 b wR
= 227 B0 + ] U cos =~ de
_J‘z" Mw) cos (wR/L) dw }
o —A0)[1 + x] + Mw)
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The first integral vanishes, since R = nL, where n is
an integer. We compare the second integral with
K(x, y). If we expand the cosine function, the first
order term gives K(x, y). Higher-order terms vanish as
y — 0, since higher powers of w appear in the numer-
ator of the integrand. Therefore we write

11 1
22m —BAO)1 + x]
We see, therefore, that the correlation function

(x;x,y vanishes outside the transition region, but
inside it takes some finite value.

lim (x;x,) =
=0

K(x, 7).

6. PRESSURE AND ISOTHERMS

The equation of state can now be obtained from

Eq. (4.11) by the relation p = —dyp/dL:
_L, Bl 000
Ph = L 204L p oL
1 1

T3 27rf d“’{ﬂ a%%")/ [S,+a+ ﬂA(w)]},

where use of the saddle-point Eq. (4.12) has been made.
Rewriting this equation and making use of the
results of Appendix C,

e -t
+Zi{1 +—(S—e)} (y — 0)
wi it )

(6.1)

Clearly the pressure is a continuous function at the
transition point. The derivative of the isotherm is

oP _ 3 4g
2812

oL
g, 0L
+[ s BB — oy

A

QO E -t
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We define

oP dP (8P)
AME) = = .
(aL) (aL)normal aL transition

It is clear from Eq. (6.2) that there is a singularity only
if there is a difference between de/0L in the two regions.
Clearly such quantities as S and 05/9L will be the
same on both sides of the transition point.
An equation for € and its derivatives can readily be
obtained from the relation for the saddle point:
1 1 1

* St = o T T

+ K(x, )}
(6.3)

For the normal region, K(x, y) — 0. We take deriva-

tives of the above equation and remembering that, at

the transition point € — 0,
Oe’

- (ﬁ)mm](s + BM0)) + Sp L

am’) + ﬁA(O)

(6.4)

which determines (Je/0L) for the normal region.
For the transition region, K(x, v) does not vanish.
In Appendix A we have shown

2 (AR
K(x,y) = 4 i tan~" —7T(~)
(A4x) y\x

in the limit of y — 0. A sufficiently accurate approxi-
mation to K(x, y) is

(- [543
x? 2 x*yL 2

since on the vapor dome x behaves as y¥. We now
calculate dK/9L as x — 0. The only remaining term is

2L

K(x,y) =

OK(x,7) _ (—%)VL@tan_l[ 27 (1 n 5)}
oL xt oL L\ 2
— _Lox=
2coL 2’

where c is introduced by lim x = cy%.

y—0
Using the saddle-point equation (6.3) and taking
derivatives, as y — 0, we obtain

)

S+ B20) + oL

- (gi) 2O + 8S

_oL _.__1 (a*-‘) . (6.5)

16¢ ﬂ}.(O) OL /trans
Comparing Egs. (6.4) and (6.5), we see that there is a
singularity at the transition point.
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FiG. 2. A qualitative plot of ¢, as a E
function of L. 3 /
Y a” L

In plotting the isotherms and especially the vapor
dome, it is instructive to plot qualitatively the curve for
€, in the transition region, where

2¢, = A + (42 — D)L,

A and D are defined and discussed in Appendix D.
We choose the positive sign, since, by inspecting e,
for L near 6 and L — oo, we see that e, > 0 and
e. < 0. (See Fig. 2.)

We now investigate the interplay of the various
parameters in determining the critical thermodynamic
variables and the isotherms. On the vapor dome the
equation of state is

5
e

glaL B \az)LL(L - o)
where we have found it convenient to introduce
Z = gf. We note that p,; is explicitly independent of
« and a.

We may wish to prevent the pressure over a certain
region of the vapor dome from becoming negative; in
particular, the pressure at the critical point should be
positive. We can accomplish this if we demand in Eq.
(6.6) that the positive terms be larger than the negative
ones. That is,

ZL—ﬂ} (6.6)

1 ZZ

which becomes

P(Z)y=27* - }ZL — }[8(L — 1)} < 0. (6.7)

Setting P(Z) = 0 and calling the solutions 2{,, 2¢_
for the zeros of P(Z), we obtain

L L 2\
=421+ —=).
s =5+

2 =
& L—1

2{_ is clearly always negative. We discard this
possibility. Hence a plot of 2{, indicates it has a
minimum at L = +/2 such that 2§+(\/2) =142
It goes to oo, as L—1 and L — co. For values of
Z below 2{,, we can always be assured that the
pressure on the vapor dome is positive.



1548

amln{1=d/L}
t
. a- In{t=d/L)
L e —
b L, Ly gy 7 L

Fi6. 3. Fora given Z, (= gf.) and a, the text describes the manner
in which the critical volume L, and g, are determined.

Let us now recall Eq. (4.14) for the vapor dome:

SBA0) = /2

a—1In (1—3) =%-—§(£)Ey(L).

(6.8)
or

In Fig. 3 we have qualitatively plotted the function
a —In (1 — 8/L). We can now decide on a critical
value of the temperature Z,. We plot y(L) for this
desired Z, for some value of «. The zero of y(L), L,
occurs at

Ly = 2Z (2/a)}.

We now lower the curve a — In (I — /L) by de-
creasing a until the curve just touches y(L) at one
point L,. This determines a, and L..

Now as Z increases above the critical values, to Z,
say, the zero L, shifts to the right, and the curve y(L)
rotates clockwise, both features contributing to y(L)
intersecting the curve for the logarithm at two points
L, and L,, which are the gas- and liquid-phase
transition points, respectively. We note that this
analysis does not depend upon whether L, is less than
or greater than L,.

We rewrite Eq. (4.14) for the vapor dome by defining

0 2Z of L
AZ, Lay=a—In (1 —=] —=4+-={—=
@Lao=a—i(i-7) - F+i()

=a+ G(Z,L). (6.9

Clearly, Eq. (6.8) is A(Z, L, a) = 0.

A qualitative plot of A(Z, L, a) for some arbitrary
value of @ and Z is given in Fig. 4. If we make this
value of Z our critical temperature Z,, then, by varying
a until the minimum in the curve just touches the L

4(z,L.a)

i

1

! F1G. 4. By choosing a value for
' Z, (within certain bounds), we can
! determine L, (within certain bounds)
! by suitably varying the parameter a.
)

i

[) L, L
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QL)
F1G. 5. Qualitative plot l /
of Q(L)~ dA/dL to show
that A(Z, L, a) has only L. Ly Le L

a single minimum in the
region § < L < 0.

axis, we have L_; = L,. That is, (0A/dL) = 0 gives
L,, where

oA I?
L2(L—a)é—i=§2(L—a)

+(2Z — 8L — 2Z6 = Q(L). (6.10)

Equation (6.10) allows us to choose Z, and L, inde-
pendently. Later we see that there are regions. for a
choice of Z, and L,. Then Eq. (6.10) set equal to zero
gives us a value for «. Finally, to determine @ we need
solve Eq. (6.9) for

A(Z,, L,,a) = 0. (6.11)

In Fig. 5 we show a qualitative plot of Q(L). From
Q'(L) we can determine that it will have inflection
points at L, and L_, given by

L. = 38{1 £ [1 + (12Z/ad®)(s — 22)}}}.

Let us normalize by setting d = 1. We note that
Q(1) = —1, Q(0) = —2Z,. Further,

Q'(L) = («L[4Z)(3L — 2) — (1 — 22),

where henceforth Z means Z,. We are interested only
in the region L > 1. We distinguish the two cases:

(A) (1-22)<0, (B) 1-22)>0.

Case A: Q'(L)is always positive (L > 1), and hence
the slope of Q is always positive. Q(1) = —1 and
hence Q steadily increases as L increases. There is only
one root of Q(L) = 0 and, hence, of A’(L) = 0in the
range L > 1.

Case B: Here L, can be unbounded. We observe
that Q'(0) = —(1 — 2Z) < 0. [Recall that Q(0) =
—2Z > —1.] L_ is negative. The Q curve must pass
through Q(1) = —1. Either L, <1 or L, > 1; in
either case, again there is only one root of Q(L) and
hence of A’(L).

We conclude that A(L) has only one extremum
point in the range 6 £ L < oo. The other two roots
of Q (and hence A’) may be real or complex, depending
upon whether the left side of the curve intersects the
L axis. This point is of no further interest to us.
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Once g and « are determined for some value of L,
and Z, then from Fig. 4 we see that, by increasing Z,
A(Z, L, a) descends, intersecting smaller and larger
values of L for the vapor dome. Clearly, then, L, can
take on values greater than or less than L,.

We now inspect our equations to determine what
values are available for the critical temperature and
critical volume. As we shall see, there is a certain
region in which we have complete freedom, but we
may not move outside. In the remainder of this
section all values of L and Z refer to critical values
L, and Z,, respectively. Frequently we find it conven-
ient to substitute Z = gf (again, these are critical
values).

Let us set Eq. (6.10) equal to zero to obtain the
critical volume L,. From this equation, as a condition
that o > 0 we obtain

2Z < LI(L — 1) = W(L). (6.12)

This curve W = L{(L — 1) then fixes a boundary for
allowed values of 2Z.

2{, has been discussed previously. 27, can intersect
W(L) at only one point, L =£. By considering its
derivative, 2{, has a minimum at L = \/5 when it lies
below W(L); it then rises, but always lies below the
curve W(L)as L — 1.

For a given value of «, Eq. (6.10) gives the relation-
ship between Z and L when A'(Z,, L,,a) = 0. The
quadratic equation gives

_ L+ L[l — 2L — P
B 2L — 1) '

TokeepZ, real, LL L, =1+ (2)~%. This sets the
“right-hand” boundary to values of L. 2Z , are drawn
in Fig. 6.

For a finite « > 0, 2Z, clearly always lies below
W(L); as «a — 0, 2Z, — W(L). 2Z, always lies above
2, until it intersects it, after which it always lies
below. The point of intersection results from simply
setting 2Z, = 2{, to obtain the cubic equation

27,

B+ 2a)+3t—2=0,

where ¢t = L — 1. This equation clearly has only one
real root.? For « = 0 this point of intersection is at
L =35 At L,, 2Z_ meets the curve (3a)}L for the
first time and takes the value 1 W(L,).

The allowed values of 2Z, then lie in this region
from the intersection of 2Z, with 2{,(L;) to the
joining with (3a)2L at L,. Now as « increases, the
point of intersection (L;) moves to the left as L; moves

°V. L Smirnov, A Course of Higher Mathematics (Pergamon
Press, Inc., New York, 1964), Vol. 1, p. 491.
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F1G. 6. Qualitative plot of 2{,, W = L/(L, — 1), W/2 as func-
tions of L,. 2Z, (for 2Z,, and 2Z,_) is plotted against L, for three
values of a. W intersects 2{, at L, = & where the two functions take
the common value 5. W/2, 2{,, and 2Z, for « = 8 intersect at a
common point for L, = &, at which the value of the three functions is
£. The minimum in 2{, occurs at L, = V2 such that 2§+(\/ )=

1 + V2. Shaded region is allowed values of 2Z,. (The subscript has
purposely been omitted on L, in the drawing.)

to the left. This intersection point sweeps a lower
range to 2Z,, namely, the curve W/2. At «a =8,
L, = L, = %. This can be seen by simply solving

L

=—= =2, for L=1+Qu™
TAEY {,, for + (2x)

+

27_ always lies below (Joa)L (1 < L < L,), except
for the single point L = L, where they intersect.
2Z_ starts at L = | with slope 4a. Its derivative can
never vanish and is initially positive at L = 1; there-
fore, 2Z_ is always positive and intersects (3)EL only
at L, where it takes the value W/2. As « >0, 2Z_ —
0*. When « = 8, 2Z_ intersects both 2{, and W|2 at

= §. For larger values of «, we investigate the
Taylor series expansion for W/2 and 2{, near L = §
(sée Fig. 6):

w__L
2 2AL-1)

=2 —8(L—%)+32(L—-%*4+---,
2, =8 —4L—-H+

And hence W2 rises above 2{, as L — 1. There is no
other point of intersection for these two curves. Con-
trary to the case now for 2Z, , a can continue to higher
values. As 2Z  moves steeper and steeper, it first
cuts across 2{, and then W/2. All values of 2Z_
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-4 n . n T

FiG6. 7. P-L isotherms for 4 values of the (inverse) temperature.
L ,=%2,=1.0,a=0720,a = —0.01629067. f, is the critical
temperature. The dots on the isotherms locate the transition
points.

below 2¢, are allowed. As « — 00, 2Z_ climbs steeper,
but 2¢, — oo as L — 1 so that there is no bound upon
2Z_. 2Z_ now clearly lies outside the region.

The description of the boundary for Z, as a function
of L, is complete. The lower bound is zero. The upper
bound is 2{, for the range 1 < L < $; then the
curve W(L) takes over for 8 < L < L, =1 + (2x)%.
At L, there arises a “‘right-hand” boundary which
forbids larger values of L. In the allowed region the
curve 2Z, and 2Z_ then relates Z, to L,. In Fig. 6
those values are allowed for which 2Z lies in the
shaded region.

From Fig. 6 one can assign initially an arbitrary
value of Z, and L, as long as the pair of values lies
within the bounded region. Depending upon whether
this value lies above or below the curve, W/2 determines

( coscﬁ—ﬁ)sing) dw
2 P7e®y Ty

JOSEPH L. STRECKER

whether one must vary Z, or Z_. By changing «
one can force either Z, or Z_ to pass through the
selected point. Then, with this value of «, a can be
determined from Eq. (6.11).

We can obtain a qualitative idea of how a must
vary as the parameters change. On the vapor dome
and in particular at the critical point, Eq. (6.9)
vanishes. Solving for 2Z' , we obtain

27/, =20,
=Lla—In(1 — L]
+ L{{a —In(1 — LY + 3}t

We see that if L is kept fixed, then 6, increases if either
« or a increases. But the curve 2Z. decreases as «
increases and hence g must decrease in order to
compensate.

In Fig. 7 we plot a few isotherms for the values
Lo=%, Z,=1. We have set 6 =g =1. Then
a = 0.720, a = —0.0162. The sharp discontinuity in
OP[OL is evident at the liquid transition point. At
the gas transition point we use the computer data to
calculate the discontinuity and we find it to be re-
markably sharp. For example, for g = 1.20,

<6_P) _ 013990 — 0.13965 _ ..
OL)epnase  2.8450 — 2.8400

(a_P) _ 0.13991 — 0.13992 — —0.0002.
aL 1 phase 290 — 285

For f = 1.5,

(a_P) — 0.07864 — 0.07862 -0
OL/2pnase  3.9935 — 3.9930
(@_}3) _ 0.07865 — 0.07865 ~ 0
OL/tphase  3.9945 — 3.9940

We are plagued with Maxwell loops, negative pres-
sures, and with the pressure not decreasing with de-
creasing temperature in the two-phase region. Nor is
the vapor dome decreasing as one moves toward the
liquid side of the critical point.

APPENDIX A
1. Preliminary Discussion
As we see further on in our analysis, K(x, )
always vanishes in the limit as ¢ — 0, for x finite. The
only way to keep K(x, y) finite is to allow x to go to
zero with y:

(A1)

Keup) =

- .
o+ x]|:y2 + (-CZ—):I - y(ycos%) - %sin%)
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The important terms are the first-order terms in the expansion of the numerator; the higher-order terms,
because of the contribution of a term of w* or higher, clearly vanish as y — 0. Call K’ these first-order terms,

so that
2

2% yz _Zzﬁ)i dw
K’(x, y) EJ; CU2 w w w
14 x 2+(—):|— ( cos———sin—)
[ ][V 3 y|yeos— — sins
= K] — K;.
We now show that even for x = 0, one of these terms, K, vanishes as y — 0:
oy [ ™[y + (/L] do
"ToLde ) o\ 0 o . o)
14 x —{ /[ 53 (—):”( cos————sin—)
[ I—i7/|7 3 yeos— — sins
Since x > 0,
N ©*/[y* + (o/L)*] dw

Kzgz—L , T — (A2)
-l @ e - Eon)

since in the range @ = [0, 2=], for sufficiently small y, y — 0 the two bounds converge to the same value.
Before starting, we might note that it is at = 0 that

{y/ [’}’2 n (9)2:”(7/ c0s? — @i 9) <1, the integral can blow up.
L 2 L 2]~ We now obtain this value of K(x, y). We set the

2 upper bound by using Eq. (A4):

ycosg—gsing gy+2, (A3) PP y g Eq. (A9)
2 L 2 2L 27 y2 277, A %
: Ko < | =T —do = g™ (%),

V/[)’z'i-(g)]} ycosg-—-c—o—sing‘ 07X+ Ao (4x) VX
L 2 L 2 where
¥' 4+ (yo’2L) A = [(1 + x)/I] — (y/2L).
neref = Y+ (oL We see that, to prevent K] from vanishing,
Therefore,
x=y" n>2 (AS)

1 1— : 4+ 2y cos 2 — 2gin &
[1+x {y 4 L } 4 2 L2 We now set a lower bound to K;(x, y). Clearly, be-
»* + (yoo?/2L) cause of Eq. (A3), the following relation is valid:

2[1+x]——; ;- (A4)
14 +(w/L) [1+x]——2ﬁ()}cos§—%sin%) 20.
Therefore, Eq. (A2) becomes, upon replacing the Yot
denominator by Eq. (A4), Let us now construct the following function:
2r
Y dow T+x 9
Kyl <+~ J — 0. = 42 2 LA
| 2|—2Lo[l_l:|_> F) yx+w[L2 +8+2L}
Z 2L 2
~ [yz + (‘3)][1 +x]
Finally, we are left with K| as the only important part L
of K(x, v). ( w W .
cos — — —sin —].
+y(reos? — Psin?)

2. Rate x — 0 in the Transition Region

We note that F(0) = F’(0) = 0. We now show that
over a reasonably finite range of w (w < 2), F(w) is
always nonnegative:

We now evaluate K;(x, y) as y — 0 in the transition
region. We shall see that x behaves as y%. We evaluate
K] rigorously. We do this by showing that K is
bounded from above and from below. In the limit as Flw)>0, o<2.
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_We proceed to expand F(w) in power series, so that
© 2n+2 2/L
F — —1 n+1 (_‘l_)) l: 4 il
@ =72(=D (2 Cn+2)! " (@2n+ D!
We separate the expansion into two parts:
2n+-2 2/L
-z 6 Tt )
y n=1.35- - 2 @Gn+2)! (2n+1)!
2nt2 2/L
2 )
n=2,4,6 \ 2 (2n+2)!  @2n+ 1)!
2n+2 2/L
- 30 e
n=13,5 2 Cn+2)! (2n+41)!
-Glatoats)
z) [(2;1 +4 2n+ )

Clearly F(w) > 0 for (w/2) < 1.
The equivalent statement is

2
[1+x+ " ]

> [+ (oo

w w . W
- cos— ——sin—}, o<2
7(” 2L 2)

Y2x + o?

Since both sides of the inequality are nonnegative, we
can dispense with absolute value signs. Then

2r yz dw
Ki(x, Zf
) o ¥’x + o’[(1 + x)/L + 3y* + y/2L]
2 p2n 3}
s do ;= 4 1Ltan_1 2—7-7(-12) )
o (’x/B) + 0* (Bx) y\x

where the definition of B is clear.

To prevent the blow-up of K|, x >~ y", n < 2.
From the previous relation [Eq. (A5)], we conclude
that x >~ »% B—> A4 as y — 0, and we see that the
upper and lower bounds converge to the same value.

We might note that it is possible for K (x, y) to
vanish as is necessary on the “vapor dome.” Here
then, x cannot go as y2 This means x = y", n < 2.

3. Rate x — 0 on the Vapor Dome

We wish to calculate the rate x — 0 on the vapor
dome. This is the point where the phase transition
just sets in: K(x, y) — 0 as the two asymptotes just
touch.

The equation of the saddle point is

28, 1 1

Y TR T R
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where now
lim K(x, y) = 0.

r=0
Substituting in the values expanded to first order in
¥, we have

2 —a+1In
oc[: (L

L  LyL L

x

T2g6 262 2P
where K(x, y) is replaced by its limiting value

127 (A J y
L tan =7 —) -z
) Y \x/  (4x)" 2
Now on the vapor dome as y—>0, x—0 and
K(x, ¥) — 0. Therefore, those terms on both sides of

Eq. (A6) which are independent of y are equal. We
have

2ty w02k, 29,

2+L L2+L

L1 v =
26 27 (Ax)t 2°

) 4 Bey 2g8 2g8yL  2gf ]

(A6)

lim K(x, y) =

Y0

Lyl L

_ Ly X L1 vy
2gp

284 (Ax)}

For brevity we write
Bx = Cy + Dy|x},

where B, C, D are obvious from the previous equation.
Now for y/x* to vanish, x = 239 0<e< 1.
Therefore, our equation becomes

Byz(l—e) = C}/ + D'}/E.
»¢ is the leading term on the right:

By2(1~e) - D‘}/E
201 —¢) =¢

= 2
€=3

%
, Xox s,

On the vapor dome x ~ »%.

APPENDIX B

In this appendix we demonstrate that for sufficiently
large B the curve 2S;/ax crosses above the curve
—pAO) (1 + x)™* at x =0 in the limit y — 0.
The significance of this result is that the quantity
K(x, y) cannot vanish, but must take on the proper
value in order to satisfy the saddle-point equation.
The range of values of L for which

28, 1
—BA0)

we call the transition or condensation region.

(BY)
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X2

FiG. 8. Region of inte%ia-
tion for calculation of
The cross-hatched region is
bounded abaove by the curve
y4 x3 — x; =0 and below by

p A L2l —x,=0. The cross-
hatched region is excluded
from the integration.

No
N

We need to calculate fa,;. From its definition we
have

€, = exp [—2Pay] = ié f dx, j dx, exp [—W(12)].
(B2)

Since exp [—fW(12)] =0 for [x; — x| <9, the
contribution to %, from the cross-hatched region in
Fig. 8 vanishes. If we call the remaining region Ry,
then

1
A = EJR dxlj‘dx2 exp [Bgye'F], R = |x; — x,l.

We expand the exponential in the integrand:

1
= E J‘Rldxlj‘ dx2

e, BgY) _am , .
x{1+ﬂgye TR A }

R

The first term in the expansion is simply the area of
R;:

2[(Lf2) — 012 + 2(L[2)* — 8% = (L — J)~
We are interested, as y — 0. The remaining terms
vanish in this limit, since

f dx, f dx, (ﬁgy)” R S(ﬂgy) I
R

We conclude with

(L — 6)2

U =

+ 9(y)

(B3)

(1:_;_5)2[1 + Bgyl + 0.

We now find the conditions sufficient for the
validity of the relationship in Eq. (B1). By making use
of the definition of S, Eqgs. (B2) and (B3), we have

d
[A(0)]* + A4(0) [a—-——-l-n—(-l_—z)}

p
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Since A(0) is independent of 8, Eq. (B4) can be
satisfied by sufficiently large 8.

APPENDIX C

These calculations allow us to simplify the expres-
sion for the pressure equation (6.1).
Consider the integral

. f“ [PA@)}3L] — PAO)RL]

S, + a + A (w)
f‘“ PF@)L] ;| -

o €+ fF(w)

where we define a function
F(w) = Mw) — X0) = Alw) — A0).
We calculate
oOF _ (1 |y AM@)(2/L)(w/L)?
aL (L + 2) o)+ oLy
2g e yL/2y @

)

—— —3gin—. (C2
LA+ (@LPl 2 )
Placing Eq. (C2) into Eq. (Cl), we can easily show
that the contributions to the integral from the second
and third terms of (C2) vanish as y — 0. Proof is as
follows:

f " 0*A(w)/[y* + (w/L)] o
¢ + BF(w)
<[+ i)
=Jo X Ay* + (yo*20))/[y* + (o/L)*1}
1 = [* + (o*2D))/[y* + (w/L)*]

where the inequalities (A3) and (A4) have been used.
The right-hand side of the last equation is equal to

2 2r 2 2
L f + yo /2L dw — 0.
1—3yLJ)o »*+ (o/L)

dw,

The last integral is

v f ¥ (w/E){sin (w/2)/y* 4 (w/L)*1} do
0 € + fF(w)

o®/ly* + (w/L)’]

27
~ f dow,
€ + pF(w)
using inequalities (A4). This integral behaves as K, in
Eq. (A2).
Therefore, £ becomes
1y J' F(w)
£=—|—-+=% —d o).
(L 2) v o3 pF@) @ T OW
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By simple division of the integrands, we obtain

== )

33 2)

using the saddle-point equation

27 2¢, &
f=——]1=—=(—-S4+¢|, as y—0.
LA
APPENDIX D. BEHAVIOR OF ¢,

The definition of ¢, arises from Eq. (6.3) by setting
K=0:
2e; = S+ BA(0) £ {[S + BAO)* — 4[5B4(0) — Jo]}?
= A + (42 — D)L
That we must choose the plus sign is clear from
inspection of the limits when L — 6 and L — co.

JOSEPH L. STRECKER

If L ~ 4, the significant term is Ba,;. Then
A=8+ pAM0)~ —In(1 — §/L)—> 0, L—34,
(D/4) = §pA(0) — 3 ~ f2a,,4(0) > —o0, L—34,
and clearly the positive sign must be chosen.

If L - o0, then
A ~a,

D~ —af2,
and clearly the positive sign must be chosen again.

We now investigate the behavior of e, in the
transition region. We use Eq. (6.3) and set

2§ 1 K
L=——J(14 =),
« ﬂA(O)( +2n)
/ =O(./_2 1 E A0 0

ﬂz«»( +2w)+ﬂ‘”3 ,
D/4 = («K/4m) > 0.

We see that e, is negative in the transition region. A
qualitative plot is given in Fig. 2.
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